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Abstract— We study a class of feedback tracking problems
for the planar vertical takeoff and landing (PVTOL) aircraft
dynamics, which is a benchmark model in aerospace engi-
neering. After a survey of the literature on the model, we
construct new feedback stabilizers for the PVTOL tracking
dynamics. The novelty of our contribution is in the boundedness
of our feedback controllers and their applicability to cases
where the velocity measurements may not be available, coupled
with the uniform global asymptotic stability and uniform local
exponential stability of the closed loop tracking dynamics, the
generality of our class of trackable reference trajectories, and
the input-to-state stable performance of the closed loop tracking
dynamics with respect to actuator errors. Our proofs are based
on a new bounded backstepping result. We illustrate our work
in a tracking problem along a circle.

I. INTRODUCTION

Since its introduction in [13], the PVTOL aircraft model

has become a benchmark model in aerospace engineering,

and it is of continuing ongoing research interest [2], [5],

[10]. The model is






ẍ = −ū1 sin(θ) + εu2 cos(θ)
ÿ = ū1 cos(θ) + εu2 sin(θ)− g

θ̈ = u2,
(1)

where (x, y) gives the lateral and vertical coordinates of the

center of mass of the aircraft, θ is the roll angle relative

to the horizon, the control ū1 is the thrust directed out of

the bottom, g is the gravitational constant, the control u2 is

the rolling moment, and the constant ε gives the coupling

between the roll moment and the lateral force [2]. It is a

simplified model with the minimal number of states and

inputs that has the main features needed to design controllers

for real aircraft.

The coordinates z1 = x − ε sin(θ), z2 = ẋ − εθ̇ cos(θ),
w1 = y + ε(cos(θ) − 1), w2 = ẏ − εθ̇ sin(θ), ξ1 = θ, and

ξ2 = θ̇ and new input u1 = ū1− εξ22 transform (1) into [22]






























ż1 = z2
ż2 = −u1 sin(ξ1)
ẇ1 = w2

ẇ2 = u1 cos(ξ1)− g

ξ̇1 = ξ2
ξ̇2 = u2.

(2)

As noted in [5], the main literature on (2) is divided into

set point stabilization results (e.g., [22], [27]), and results

on tracking or path following (e.g., [5], [6], [7], [15], [17],
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[18]). The challenge in designing PVTOL stabilizers is that

u1 must be nonnegative valued, and that the system is

underactuated. Much of the PVTOL literature uses output

feedbacks that only depend on (z1, w1, ξ1). However, one

can design globally exponentially stable observers for the

velocities; see [7] and Section VII below, and [2], [28] for

recent work on state feedback tracking controllers for (2).

Given a reference trajectory for (2), it is natural to

ask whether we can design feedback controllers u1 and

u2 that force all trajectories of (2) to track the reference

trajectory, for all initial configurations. This is the problem

of rendering the corresponding tracking error dynamics for

(2) uniformly globally asymptotically stable to the origin.

Several significant papers showed how such controllers can

indeed be constructed [2], [7]. The work [2] gave glob-

ally stabilizing tracking controllers for a specific class of

reference trajectories when u1 is bounded, and semiglobal

stability when both u1 and u2 are bounded, while the

controllers in [7] are not bounded. However, one would

hope to establish uniform global asymptotic stability of

the tracking dynamics by globally bounded controllers u1

and u2, for a more general class of reference trajectories.

Also, it is important for the controllers to perform well

under uncertainty, so one should design the controllers to

give input-to-state stability (ISS) with respect to actuator

errors, which are additive uncertainties on the controllers that

naturally arise in applications. The present work shows how

these additional control objectives can indeed be realized.

This is a significant new development.

II. RELATIONSHIP TO THE LITERATURE

The fundamental importance of the PVTOL model has

led to a vast PVTOL literature involving a variety of

techniques. In their pioneering work [13], Hauser et al.

used approximate input-output linearization to get bounded

tracking and asymptotic stability for (2). Later work [26] by

Teel developed small gain theory for systems in feedforward

form that gave stabilization results for the PVTOL model

as a special case, including robustness to uncertainty in

the coupling parameter ε. In [18], Martin et al. extended

[13] by giving output tracking results for a class of slightly

or strongly non-minimum phase systems that included the

PVTOL. The main idea in [18] was to use the output at

the Huygens center of oscillation, which is a fixed point

with respect to the aircraft body, and then the controller

was defined on a suitable subset of the state space. Also,

[23, Section 6.1] designed PVTOL aircraft state feedbacks

under the assumption that the coupling parameter is zero

and then selected the controller parameters to mitigate the
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effects of nonzero values of ε. Then [15] gave optimal control

methods that led to nonlinear state feedback controllers that

give hovering control that is robust to uncertainty in the

coupling parameter ε. See [4, Section VI.C] for stabilization

of equilibrium points under linear dynamic stabilizers.

Subsequent work [22] by Olfati-Saber from 2002 used a

change of coordinates from [21] to design a state controller

that stabilizes a zero velocity configuration and allows larger

values of the parameter ε. Also in 2002, Marconi et al. [17]

used an internal-based model approach and nested saturations

to design an autopilot for the autonomous landing of a

PVTOL aircraft on a ship whose deck oscillates under high

seas. See also [3] for output tracking along a circle. Later

work [8] by Francisco et al. used forwarding results [20]

for feedforward systems to design distributed delay nested

saturation feedbacks that give global asymptotic stability.

Another portion of the PVTOL aircraft literature covers

path following. The difference between tracking and path

following is that the former leads to controllers that have an a

priori parametrization of the curve to be followed, while path

following controllers do not involve such a parametrization.

See [5] for path following of Jordan curves using continuous

feedback (and possibly nonuniqueness of solutions) based

on finite time stabilization for initial states near the desired

configuration. A possible advantage of path following is that

it can sometimes mitigate the adverse effects of moving

along a path too quickly [5]. However, the PVTOL tracking

error dynamics are amenable to global Lyapunov function

methods. Lyapunov methods have the advantage that they

can quantify the effects of uncertainty, e.g., using ISS [16].

Therefore, tracking and path following are both important.

One natural approach to the PVTOL dynamics involves

backstepping [7]. See, e.g., [27], whose feedback leads to a

cascade structure that minimizes the norm of the intercon-

nection term between subsystems. When designing PVTOL

controllers, it is important to take the maximum amplitude

of the feedbacks into account. On the other hand, standard

backstepping techniques do not lead to bounded feedback

stabilizers. There are several generalizations of backstepping

that give bounded feedbacks [9], [16], [19]. See, e.g., [16,

Chapter 7], where bounded backstepping was used to track

sinusoidal PVTOL trajectories, but we believe that none of

the existing bounded backstepping results apply to the more

general problems we consider in this work. Much of the

existing work on global tracking for (2) is based on nonstrict

Lyapunov function approaches such as Barbalat’s Lemma or

LaSalle Invariance, and so does not lend itself to ISS.

Our controllers for (2) are necessarily more complex than

those of [2], [7]. However, to the best of our knowledge,

the results to follow are original and significant because

of (a) the global boundedness of our controllers, (b) their

applicability to cases where the velocity measurements may

not be available, (c) the uniform global asymptotic stability

and uniform local exponential stability of our closed loop

tracking dynamics, (d) our allowing a rather general class of

reference trajectories, and (e) our use of ISS to quantify the

performance under actuator errors of large amplitude.

III. PRELIMINARIES

A. Definitions and Notation

A continuous function γ : [0,∞) → [0,∞) belongs to

class K (written γ ∈ K) provided it is strictly increasing and

γ(0) = 0; it belongs to class K∞ if, in addition, γ(r) → ∞
as r → ∞. A continuous function β : [0,∞) × [0,∞) →
[0,∞) is of class KL (written β ∈ KL) provided for each

s ≥ 0, the function β(·, s) belongs to class K; and for each

r ≥ 0, the function β(r, ·) is non-increasing and β(r, s) → 0
as s → ∞. For each subset D of a Euclidean space, let

MD denote the set of all measurable essentially bounded

functions δ : [0,∞) → D. For each δ ∈ MD and each

interval I ⊆ (0,∞), let |δ|I denote the essential supremum

of δ on I, and |δ|∞ its essential supremum on [0,∞). For

any constant ∆ > 0, let B∆ denote the closed ball of radius

∆ centered at the origin in the appropriate Euclidean space.

Consider a forward complete system ẋ = F(t, x, δ)
evolving on some open subset X of Euclidean space with

measurable essentially bounded disturbances δ valued in

some subset D of a Euclidean space (of possibly different

dimension). We assume that 0 ∈ D, that F : [0,∞) × X ×
D → X is such that the standard existence and uniqueness

of solutions properties hold for all initial states in X and

all disturbances δ ∈ MD [16], and that F(t, 0, 0) = 0 for

all t ≥ 0. The system is input-to-state stable (ISS) with

respect to disturbances valued in D [14], [24], [25] provided

there are β ∈ KL and γ ∈ K∞ such that for all solutions

t 7→ x(t, t0, x0, δ) of the system for all initial conditions

x(t0) = x0 and all δ ∈ MD , we have |x(t, t0, x0, δ)| ≤
β(|x0|, t − t0) + γ(|δ|[t0,t]) for all t ≥ t0. The special case

of ISS where F only depends on (t, x) and the γ term in

the sum is not present is called uniform global asymptotic

stability (UGAS). In this case, we denote the trajectory for

each initial condition x(t0) = x0 by t 7→ x(t, t0, x0), and we

say that the system is uniformly locally exponentially stable

(ULES) provided there are positive constants ∆, c1, and c2
such that for all initial conditions x(t0) = x0 ∈ B∆, we have

|x(t, t0, x0)| ≤ c1|x0|e−c2(t−t0) for all t ≥ t0.

B. Useful Classes of Functions

We use the functions σℓ, ϕℓ : R → R defined by

σℓ(x) =
2ℓ
π arctan

(

πx
2ℓ

)

and

ϕℓ(x) = 1− 1

Bℓ

∫ max
{

4ℓ,min{|x|,6ℓ}
}

4ℓ

(q − 4ℓ)4(q − 6ℓ)4dq,

where

Bℓ =
∫ 6ℓ

4ℓ (q − 4ℓ)4(q − 6ℓ)4dq

for each constant ℓ > 0. The constant Bℓ is chosen such that

ϕℓ is a compactly supported smoothed indicator function for

the interval [−6ℓ, 6ℓ]. The key properties of σℓ and ϕℓ are:

Lemma 1: For each constant ℓ > 0, we have (a) σ′
ℓ(x) ∈

[0, 1] for all x ∈ R, (b) σℓ(x) ≥ 0.75x for all x ∈ [0, ℓ/4],
(c) |σℓ(x)| ≤ ℓ for all x ∈ R, (d) ϕℓ : R → [0, 1] is C3

and even, (e) ϕℓ(x) = 1 on [−4ℓ, 4ℓ], (f) ϕℓ(x) = 0 when

|x| ≥ 6ℓ, and (g) ℓ supx∈R
|ϕ′

ℓ(x)| = 315/256. �
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Property (g) holds because Bℓ = 256ℓ9/315, so

ℓmaxx∈R |ϕ′
ℓ(x)| = ℓ

Bℓ
max

q∈[4ℓ,6ℓ]
(q − 4ℓ)4(q − 6ℓ)4

= 315
256 .

The rest of Lemma 1 follows from simple calculations, by

equating the one-sided derivatives of ϕℓ at the points ±4ℓ and

±6ℓ. Lemma 1 implies that ϕℓ(x)x and ϕ(i)

ℓ (x)x are bounded

for each derivative i = 1, 2, 3. For each constant ℓ > 0, we

can use property (g) to define the function Uℓ : R
2 → R by

Uℓ(Z) =
−σℓ

(

2Z2+σℓ(ℓZ1)ϕℓ(Z2)
)

−ℓσ′

ℓ(ℓZ1)ϕℓ(Z2)Z2

2+σℓ(ℓZ1)ϕ′

ℓ
(Z2)

. (3)

The following properties are immediate from the compact

support of ϕℓ from Lemma 1:

Lemma 2: For each constant ℓ > 0, (I) the functions

∂Uℓ

∂Z (Z), Z2
∂Uℓ

∂Z1
(Z), Z2

2
∂2Uℓ

∂Z2
1
(Z), ∂2Uℓ

∂Z2
2
(Z),

and Z2
∂2Uℓ

∂Z1∂Z2
(Z)

(4)

are all bounded and (II) supZ∈R2 |Uℓ(Z)| ≤ 2(6ℓ2 + ℓ). �

C. Key Lemma

The following lemma is key to our control design for (2):

Lemma 3: Let Θ : [0,∞)× R
2 → R be any C1 function

that admits a constant ℓ > 0 such that

supt≥0 |Θ(t,X)| ≤ ℓ
16 min{1, |X1|} (5)

for all X = (X1, X2) ∈ R
2. Let ε̇ = E(t, ε) be any system

on some Euclidean state space R
p that is UGAS and ULES

to 0. Assume that ∂E/∂ε is bounded on [0,∞) × R
p. Let

L : [0,∞)× R
2 × R

p → R be any C1 function that admits

a constant L̄ such that |L(t,X, ε)| ≤ L̄|ε| for all t ≥ 0,

X ∈ R
2, and ε ∈ R

p. Let η̄ ≥ 0 be any constant, and set

Z1(X) = 2X2 + σℓ(ℓX1)ϕℓ(X2). Then










Ẋ1 = X2 +Θ(t,X)

Ẋ2 = βℓ,η̄(t,X) + L(t,X, ε) + η

ε̇ = E(t, ε)

(6)

in closed loop with the bounded C1 feedback

βℓ,η̄(t,X) =
−[1+172η̄/ℓ]σℓ

(

Z1(X)
)

−ℓσ′

ℓ(ℓX1)ϕℓ(X2)[X2+Θ(t,X)]

2+σℓ(ℓX1)ϕ′

ℓ
(X2)

(7)

is UGAS and ULES to 0 when η ≡ 0, and ISS with respect

to disturbances η : [0,∞) → Bη̄. �

See [11] for the proof of Lemma 3. The proof constructs

a function α ∈ K∞ ∩C1 and a constant c > 0 such that

|Y (t)| ≤ α(|Y (t0)|)e−c(t−t0)/16

+ 12
c

√
ℓ2 + 1

(

1 +
√

2/{ℓc}
)

|η|∞
(8)

along all trajectories Y = (X, ε) of (6) for all t0 ≥ 0, t ≥ t0,

and measurable functions η : [0,∞) → Bη̄. Lemma 3 implies

that for any constant η̄ > 0, we can choose the feedback such

that (6) is ISS with respect to disturbances that are bounded

by η̄. Moreover, η̄ can be taken as large as desired, so we get

ISS with respect to disturbances of arbitrarily large amplitude

by choosing η̄. Also, (∂/∂x)βℓ,η̄ is bounded if (∂/∂x)Θ is

bounded, and |βℓ,η̄(t,X)| ≤ 2ℓ(1 + 172η̄/ℓ)(1 + 7ℓ) for all

(t,X) ∈ [0,∞)× R
2.

IV. TRACKING OBJECTIVE

We begin by choosing any C2 reference trajectory

(z1r, z2r, w1r, w2r , ξ1r, ξ2r) : [0,∞) → R
6 for (2) that

admits a constant c1 ∈ (0, π/2) such that ξ1r(t) ∈ [−π/2 +
c1, π/2− c1] for all t ≥ 0. We also assume that ξ̇1r and ξ̈1r
are bounded, and that there is a corresponding C2 reference

input ur = (u1r, u2r) such that for all t ≥ 0, we have






























ż1r(t) = z2r(t)
ż2r(t) = −u1r(t) sin(ξ1r(t))
ẇ1r(t) = w2r(t)
ẇ2r(t) = u1r(t) cos(ξ1r(t)) − g

ξ̇1r(t) = ξ2r(t)

ξ̇2r(t) = u2r(t) .

(9)

Finally, we assume that ur, u̇r, and ür are all bounded, and

that there is a constant c2 > 0 such that inft≥0 u1r(t) ≥ c2.

We wish to track reference trajectories that satisfy the

requirements from the previous paragraph, using bounded C1

feedbacks. Equivalently, we must design bounded C1 state

feedbacks ui to drive the error variables z̃i = zi − zir(t),
w̃i = wi − wir(t), and ξ̃i = ξi − ξir(t) to 0 for i = 1, 2.

This means that the ui’s must render the tracking dynamics


































˙̃z1 = z̃2
˙̃z2 = −u1 sin(ξ1) + u1r(t) sin(ξ1r(t))
˙̃w1 = w̃2

˙̃w2 = u1 cos(ξ1)− u1r(t) cos(ξ1r(t))
˙̃ξ1 = ξ̃2
˙̃ξ2 = u2 − u2r(t)

(10)

globally asymptotically stable to 0.

V. CHOICE OF u1 AND NEW COORDINATES

Using part (II) of Lemma 2 and the constants ci > 0
defined in Section IV, we have inft≥0{u1r(t) cos(ξ1r(t))} >
0, and we can fix a small enough constant λ > 0 such that

v = arctan
(

tan (ξ1r(t))− Uλ(z̃)
u1r(t) cos(ξ1r(t))

)

(11)

admits a constant c3 ∈ (0, c1) such that v ∈ [−π/2 +
c3, π/2− c3] for all t ≥ 0 and z̃ ∈ R

2. We choose

u1 = 1
cos(v)

[

u1r(t) cos(ξ1r(t)) + Uλ(w̃)
]

. (12)

By reducing λ > 0 to a sufficiently small value without

relabeling and again using part (II) of Lemma 2, we can

assume that u1 is positive valued. We then set

K(t, z̃) = 1
1+tan2(v)

1
u1r(t) cos(ξ1r(t))

, (13)

where v depends on t and z̃, and we define the functions

Sλ(t, z̃, w̃) =

− ξ̇1r(t) +
{1+tan2(ξ1r(t))}ξ̇1r(t)

1+tan2(v)

+K(t, z̃)
[

Uλ(z̃)
d
dt

{u1r(t) cos(ξ1r(t))}

u1r(t) cos(ξ1r(t))
− ∂Uλ(z̃)

∂z̃1
z̃2

]

−K(t, z̃)∂Uλ(z̃)
∂z̃2

[sin(ξ1r(t))u1r − sin(v)u1]

(14)

and

Tλ(t,̟1, z̃, w̃) =

u1K(t, z̃)∂Uλ(z̃)
∂z̃2

[sin(̟1 + v)− sin(v)] ,
(15)

where ̟1 = ξ1 − v. Since ˙̃z2, ˙̃w2, ξ̇1r , and ξ̈1r are all

bounded, simple calculations based on Lemma 2 show that
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Ṡλ is bounded. Fix any constant a > 0 such that

max
{∣

∣

∣

∂
∂̟1

Tλ(t,̟1, z̃, w̃)
∣

∣

∣
,
∣

∣Tλ(t,̟1, z̃, w̃)
∣

∣

}

≤ a
16 (16)

on [0,∞)×R
5. Notice that (10) with the choice (12) of u1

and the new variable ̟2 = ξ̃2 − Sλ can be rewritten as






























































˙̃z1 = z̃2
˙̃z2 = − sin(̟1+v)

cos(v)

[

u1r(t) cos(ξ1r(t))+Uλ(w̃)
]

+ u1r(t) sin(ξ1r(t))

˙̃w1 = w̃2

˙̃w2 =
[

cos(̟1+v)
cos(v) − 1

]

u1r(t) cos(ξ1r(t))

+Uλ(w̃)
cos(̟1+v)

cos(v)

˙̟ 1 = ̟2 − Tλ(t,̟1, z̃, w̃)

˙̟ 2 = u3

(17)

where u3 = u2− u2r(t)− Ṡλ and v depends on (t, z̃). Then

the UGAS and ULES properties for (10) are equivalent to

those of (17), so we have reduced the stabilization problems

for (10) to those for (17).

VI. MAIN RESULT

A. Statement of Theorem

Since Ṡλ, u2r, and our thrust controller (12) are C1 and

bounded, we will have our bounded feedbacks for (10) once

we design a C1 bounded feedback u3 that renders (17)

UGAS and ULES to 0. Our construction of u3 is:

Theorem 1: Let the constants a > 0 and λ > 0 satisfy

the requirements from Section V. Set Z1,a(̟) = 2̟2 +
σa(a̟1)ϕa(̟2). Then the bounded C1 function

u3 =
−σa

(

Z1,a(̟)
)

−aσ′

a(a̟1)ϕa(̟2)
[

̟2−Tλ(t,̟1,z̃,w̃)
]

2+σa(a̟1)ϕ′

a(̟2)

(18)

renders (17) UGAS and ULES to the origin. �

See Section VIII for our extension to models with actuator

errors. We cannot eliminate Tλ the way we eliminated Sλ,

because the unboundedness of ˙̟ 1 makes Ṫλ unbounded.

B. Proof of Theorem 1

The dynamics (17) in closed loop with (18) are forward

complete because its right side grows affinely in the state

uniformly in t. Therefore, the fact that the ̟ subdynamics

of (17) satisfies a UGAS and ULES estimate of the form

|̟(t)| ≤ α1(|̟(t0)|)e−c(t−t0) (19)

for some α1 ∈ C1 ∩ K∞ and some constant c > 0 follows

from the proof of Lemma 3 with the choices ε(t) ≡ 0, (16),

and the fact that (18) agrees with the controller (7) when

we take L ≡ 0, ℓ = a, X = ̟, η̄ = 0, and Θ(t,̟) =
−Tλ(t,̟1, z̃(t), w̃(t)).

Next note that the w̃ dynamics in (17) can be written as
{

˙̃w1 = w̃2

˙̃w2 = Uλ(w̃) + L(t, w̃,̟)
(20)

for an appropriate function L that admits a constant L̄ > 0
so that |L(t, w̃,̟)| ≤ L̄|̟1| for all t ≥ 0. Hence, the UGAS

and ULES estimate

|(w̃(t), ̟(t))| ≤ α2 (|(w̃(t0), ̟(t0))|) e−c(t−t0)/16 (21)

for the (w̃,̟) subsystem of (17) for a suitable function α2 ∈
C1∩K∞ also follows from Lemma 3, this time applied with

X = w̃, Θ ≡ 0, η̄ = 0, and ε = ̟.

Finally, Uλ(z̃) = [tan(ξ1r(t))−tan(v)]u1r(t) cos(ξ1r(t)),
so the z̃ subdynamics in (17) can be rewritten as

{

˙̃z1 = z̃2
˙̃z2 = Uλ(z̃) + L(t, z̃, w̃,̟) ,

(22)

where
L(t, z̃, w̃,̟) =
sin(v)−sin(ξ1)

cos(v)

[

u1r(t) cos(ξ1r(t))+Uλ(w̃)
]

−tan(v)Uλ(w̃).

Using the properties of v and Uλ, we can find a con-

stant L̄ such that |L(t, z̃, w̃,̟)| ≤ L̄|(w̃,̟)| on [0,∞) ×
R

6. Then the assumptions of Lemma 3 are satisfied with

X = z̃, ε = (w̃,̟), L = L, L̄ = L̄, Θ ≡ 0,

and η̄ = 0, so the proof of Lemma 3 gives a func-

tion α3 ∈ C1 ∩ K∞ such that |(z̃(t), w̃(t), ̟(t))| ≤
α2(|(z̃(t0), w̃(t0), ̟(t0))|)e−c(t−t0)/256 along all trajecto-

ries of (17), which gives the desired conclusions.

VII. TRACKING WITHOUT VELOCITY MEASUREMENTS

If only z1, w1, and ξ1 are measured, then we can apply the

observer approach to output feedback from [7]. Due to space

constraints, we only sketch the approach; see [11] for details.

First, the proofs of Lemma 3 with η̄ = 0 and Theorem

1 provide a positive definite proper function V0(z̃, w̃, ̟)
and a C1 function Γ0 : [0,∞) → (0,∞) such that V̇0

is negative definite along all trajectories of (17) in closed

loop with (12) and (18) for all t ≥ t0 +Γ0(|(z̃, w̃, ̟)(t0)|),
and such that V1 = ln(1 + V0) has a bounded gradient.

The changes of coordinates used to transform (10) into

(17) give state feedbacks u1,s(t, z̃, w̃, ξ̃) and u2,s(t, z̃, w̃, ξ̃)
that are globally Lipschitz in the state uniformly in t, a

proper positive function V2(t, z̃, w̃, ξ̃), and a C1 function

Γ2 : [0,∞) → (0,∞) such that |(∂V2/∂z̃)(t, z̃, w̃, ξ̃)|,
|(∂V2/∂w̃)(t, z̃, w̃, ξ̃)|, and |(∂V2/∂ξ̃)(t, z̃, w̃, ξ̃)| are all

bounded, and such that V̇2 is negative definite along all

of the closed loop trajectories of (10) for all t ≥ t0 +
Γ2(|(z̃, w̃, ξ̃)(t0)|), namely, V2(t, z̃, w̃, ξ̃) = V1(z̃, w̃, ξ̃1 +
ξ1r(t)− v(t, z̃), ξ̃2 − Sλ(t, z̃, w̃)). It follows that


























































































































˙̃z1 = z̃2
˙̃z2 = −u1,s(t, ẑ, ŵ, ξ̂) sin(ξ1)

+u1r(t) sin(ξ1r(t))
˙̃w1 = w̃2

˙̃w2 = u1,s(t, ẑ, ŵ, ξ̂) cos(ξ1)
−u1r(t) cos(ξ1r(t))

˙̃ξ1 = ξ̃2
˙̃
ξ2 = u2,s(t, ẑ, ŵ, ξ̂)− u2r(t)
˙̂z1 = ẑ2 + k1(z̃1 − ẑ1)
˙̂z2 = −u1,s(t, ẑ, ŵ, ξ̂) sin(ξ1)

+u1r(t) sin(ξ1r(t)) + k2(z̃1 − ẑ1)
˙̂w1 = ŵ2 + k3(w̃1 − ŵ1)
˙̂w2 = u1,s(t, ẑ, ŵ, ξ̂) cos(ξ1)

−u1r(t) cos(ξ1r(t)) + k4(w̃1 − ŵ1)
˙̂
ξ1 = ξ̂2 + k5(ξ̃1 − ξ̂1)
˙̂
ξ2 = u2,s(t, ẑ, ŵ, ξ̂)− u2r(t) + k6(ξ̃1 − ξ̂1)

(23)
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is UGAS to 0 where the constants ki are positive. Indeed,

it is clear that (23) is forward complete, and that Ye =
(z̃ − ẑ, w̃ − ŵ, ξ̃ − ξ̂) converges exponentially to zero. This

and the boundedness of the gradient of V2 in the state

imply that (z̃, w̃, ξ̃) converges to zero; see [16, Section 7.8]

for analogous arguments. Similar arguments show that the

(ẑ, ŵ, ξ̂) subsystem converges to zero. Finally, analyzing the

local properties shows that (23) is UGAS and ULES to 0.

VIII. INPUT-TO-STATE STABILITY

We can also use Lemma 3 to show that the perturbed

PVTOL error dynamics


































˙̃z1 = z̃2
˙̃z2 = −[u1 + δ1] sin(ξ1) + u1r(t) sin(ξ1r(t))
˙̃w1 = w̃2

˙̃w2 = [u1 + δ1] cos(ξ1)− u1r(t) cos(ξ1r(t))
˙̃
ξ1 = ξ̃2
˙̃
ξ2 = u2 − u2r(t) + δ2

(24)

with actuator errors δi, in closed loop with the feedbacks we

designed above, is ISS with respect to measurable essentially

bounded actuator errors δ : [0,∞) → η̄B2, where the

feedback formulas must now depend on the bound η̄ on the

disturbance. The argument is similar to the proof of Theorem

1 except with actuator errors added in the control channels.

We can allow any bound η̄, through a proper choice of the

feedbacks. We illustrate this property in Section X.

IX. TRACKABLE REFERENCE TRAJECTORIES

Our assumptions are satisfied by a broad class of reference

trajectories and corresponding reference inputs. For example,

assume that (z1r, w1r) : [0,∞) → R
2 is a C4 time-periodic

function such that ẅ1r(t) + g is positive valued. Then the

PVTOL dynamics (9) are satisfied with the controls

u1r =
√

(z̈1r)2 + (ẅ1r + g)2 and u2r = ξ̈1r , (25)

and with ξ2r = ξ̇1r , z2r = ż1r, w2r = ẇ1r, and

ξ1r = arcsin

(

−z̈1r√
(z̈1r)2+(ẅ1r+g)2

)

. (26)

Also, ur ∈ C2 because (z1r, w1r) ∈ C4. Therefore, our as-

sumptions are satisfied by the corresponding reference trajec-

tory (z1r, z2r, w1r , w2r, ξ1r, ξ2r) : [0,∞) → R
6. Positivity

of ẅ1r(t)+g holds for circular trajectories (z1r(t), w1r(t)) =
g0(K̄ + cos(t), K̄ + sin(t)) for any constants K̄ ≥ 1 and

g0 ∈ (0, g), so we can track trajectories along these circles.

In the next section, we illustrate this tracking in a simulation.

X. SIMULATION

To validate our method, we took the reference profile

(z1r(t), w1r(t)) = 5 (1.5 + cos(t), 1.5 + sin(t)) (27)

for the center of mass. As we saw in the preceding section,

the corresponding reference trajectory is obtained by taking

z2r = ż1r, w2r = ẇ1r, ξ1r as defined in (26), and ξ2r = ξ̇1r.

The reference inputs are u1r =
√

(z̈1r)2 + (ẅ1r + 9.81)2

and u2r = ξ̈1r. Simple calculations show that the require-

ments from Section V are satisfied with λ = 2 and a =

10.14, so Theorem 1 gives UGAS and ULES of the corre-

sponding (transformed) PVTOL tracking error dynamics (17)

in closed loop with the feedbacks (12) and (18).

Using the preceding data, we performed two simu-

lations. First, we simulated (17) with the initial state

(0.31, 0.31, 0.31, 0.21, 0.21, 0.41), (12), and (18). In Figures

1-3, we report the resulting tracking of the center of mass,

the trajectory for the roll angle θ = ̟1 + v, and the closed

loop thrust input u1. In Figure 1, the reference trajectory

(27) for the center of mass is blue and dashed, the simulated

trajectory (z1(t), w1(t)) for the center of mass is red and

solid, and the plot covers times t = 10 to t = 20.

In our second simulation, we added the constant actuator

error δ2 = 0.15 in the u3 channel in (17) such that instead

of ˙̟ 2 = u3, we now have ˙̟ 2 = u3+0.15, and we changed

the control component u3 to

u3 =
−[1+172η̄/a]σa

(

Z1,a(̟)
)

−aσ′

a(a̟1)ϕa(̟2)
[

̟2−Tλ(t,̟1,z̃,w̃)
]

2+σa(a̟1)ϕ′

a(̟2)

with the disturbance bound η̄ = 0.25, in accordance with

Section VIII. Otherwise, everything was the same as the first

simulation. In Figure 4, we plot the resulting tracking of the

center of mass again over times t = 10 to t = 20.
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Fig. 1. Center of Mass (z1, w1) Tracking (27) Without Disturbances.
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Fig. 2. Rolling Angle θ = ̟1 + v Without Disturbances.
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Fig. 3. Thrust Input u1 from (12) Without Disturbances.
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Fig. 4. Center of Mass (z1, w1) Tracking (27) With Disturbance δ2 = 0.15.

Remark 1: We can also track along Cassini’s Oval [5]
(

z1r(t), w1r(t)
)

= R(t)
(

cos(t), sin(t)
)

, where

R(t) =
√

a2 cos(2t) +
√

b4 − (a2 sin(2t))2 ,
(28)

for certain choices of the constants a > 0 and b > a when

we take the gravitational constant g = 9.81; see Figure

5. For example, with the choices a = 2.65 and b = 2.9,

-4 -2 2 4
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0.5
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1.5

Fig. 5. Cassini’s Oval (28) with a = 2.65 and b = 2.9.

Mathematica gives ẅ1r(t) + g ≥ 0.552321 for all t ≥ 0.

It follows from our discussion from Section IX that we can

track reference trajectories with the center of mass profile

(28) using the parameter values a = 2.65 and b = 2.9.

XI. CONCLUSIONS

The PVTOL aircraft dynamics is a benchmark model that

is of continuing ongoing research interest. Much of the

PVTOL literature deals with tracking. However, we believe

that our bounded global tracking controllers are significant

because they guarantee UGAS and ULES of the closed loop

tracking dynamics under general conditions on the reference

trajectories and can be adjusted to give ISS performance to

actuator error disturbances for any a priori bound on the

admissible disturbances. Our feedback design is based on

a new bounded backstepping method which we anticipate

being useful for other models in feedforward form.
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Control. Communications and Control Engineering Series, Springer-
Verlag, London, 1997.

[24] E.D. Sontag. Stabilizability, i/o stability and coprime factorizations.
In Proceedings of the IEEE Conference on Decision and Control

(Austin,TX, December 1988), pp. 457–458.

[25] E.D. Sontag. Smooth stabilization implies coprime factorization. IEEE

Transactions on Automatic Control, 34(4):435-443, 1989.

[26] A. Teel. A non-linear small gain theorem for the analysis of control
systems with saturation. IEEE Transactions on Automatic Control,
41(9):1256-1270, 1996.

[27] R. Wood and B. Cazzolato. An alternative nonlinear control law for
the global stabilization of the PVTOL vehicle. IEEE Transactions on

Automatic Control, 52(7):1282-1287, 2007.

[28] H. Ye, H. Wang, and H. Wang. Stabilization of a PVTOL aircraft
and an inertia wheel pendulum using saturation technique. IEEE

Transactions on Control Systems Technology, 15(6):1143-1150, 2007.

1433


