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Abstract— Diagnosers for keeping track on the occurrences of
special events in the framework of unreliable partially-observed
discrete-event dynamical systems were developed in previous
work. This paper considers observation platforms consisting of
sensors that provide partial and unreliable observations and
of diagnosers that analyze them. Diagnosers in observation
platforms typically perform better as sensors providing the
observations become more costly or increase in number. This
paper proposes a methodology for finding an observation
platform that achieves an optimal balance between cost and
performance, while satisfying given observability requirements

and constraints. Since this problem is generally computational
hard in the framework considered, an observation platform
optimization algorithm is utilized that uses two greedy heuris-
tics, one myopic and another based on projected performances.
These heuristics are sequentially executed in order to find best
observation platforms. The developed algorithm is then applied
to an observation platform optimization problem for a multi-
unit-operation system. Results show that improved observation
platforms can be found that may significantly reduce the
observation platform cost but still yield acceptable performance
for correctly inferring the occurrences of special events.

I. INTRODUCTION

This paper considers the monitoring architecture shown

in Fig. 1 for event occurrence analysis of discrete-event

dynamical systems (DEDS). An observation platform here

Fig. 1. Monitoring architecture

consists of sensors generating the observed events and a

diagnoser that analyzes the data. In previous work, various

algorithms for implementing the diagnoser in Fig. 1 have

been developed. In particular, the work in [1] deals with de-

tection of special events assuming that a finite-state automa-
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ton describes the DEDS, that sensors are reliable, and that

failures/faults are permanent. This work is extended in [2]

for diagnosing behaviors of interest in discrete event systems.

Subsequent extensions and improvements of [1] address the

problem of the detection of special events accounting for

sensor unreliability and stochastic aspects in DEDS [3]–

[9]. Counting of the occurrences of intermittent or non-

persistent faults is addressed in [10]–[17]. In particular, the

issue of detecting whether or not a resetting has occurred is

addressed in [10], and [11] addresses fault counting problems

and introduces several notions of diagnosability that capture

the various counting capabilities of special events. Event

counting assuming a deterministic finite-state automaton with

partial observations is addressed in [12]. While [13], [14]

present a deterministic counting strategy for accommodating

stochastic automata with unreliable observations, [15]–[17]

develop algorithms that fully utilize the probabilistic aspects

of stochastic automata.

The work mentioned above focuses on developing di-

agnoser algorithms for analyzing the behavior of DEDS

(e.g., detecting special event occurrences) observed through

sensor configurations. The costs of sensor configurations may

vary with the number of sensors deployed, their quality,

their impact on operation, and difficulty of installation, for

example. In particular, sensor configurations that cost more

may include more sensors and of sensors with better quality,

and, typically, they give rise to better diagnoser performance.

This paper considers observation platforms, which consists

of sensors and of diagnosers. The goal is to propose a

simulation-based design methodology for finding optimal

observation platforms that balance the cost of the sensors

and the performance of a given diagnoser, while satisfying

cost constraints and performance requirements. Without loss

of generality, the diagnosers considered in this paper are

implemented using sequential window diagnosers (SWDs)

[16], where the monitored DEDS is modeled as a stochastic

automaton under unreliable partial observations. The opti-

mization problem considered here falls into the category

considered in [18], namely, that it is computationally hard,

and a observation platform optimization algorithm based on

heuristics is consequently used for solving it. The algorithm

uses two greedy heuristics, one myopic and another that con-

trarily considers projected sensor performances. The latter

heuristic is similar to the approach for optimal sensor selec-

tion developed in [19] for heterogeneous sensor networks.

However, it has been accordingly modified to address the

problem considered here. This algorithm is further extended

here from that presented in [20] in order to address an
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observation platform optimization problem on a multi-unit-

operation system.

Other work on optimal sensor selection for DEDS in-

cludes [18], [21]–[24]. While [18] addresses computational

issues regarding sensor selection for DEDS modeled as finite

automata, [21], [22] consider optimal sensor selection for

satisfying observability properties in Petri nets. Reference

[23] considers the optimization problem in the framework

of Fig. 1 assuming, unlike this paper, that sensors are

reliable. Optimal sensor selections for supervisory control

are addressed in [24].

The main contribution of this paper is extending the results

of [20] as follows:

• develop a general methodology for optimizing obser-

vation platforms;

• application of optimization algorithms reported in [20]

to SWDs described in [16].

The rest of this paper is organized as follows. Section II

gives a brief review of the monitoring architecture shown

in Fig. 1. The obsevation platform optimization problem is

formulated in Section III. A review of the SWD algorithm

is also included in Section III, while an observation plat-

form optimization algorithm is developed in Section IV. In

Section V, the optimization algorithm is applied to a multi-

unit-operation system. Section VI concludes the paper. We

assume the reader is familiar with the terminology typical of

DEDS.

II. PRELIMINARIES

A. Monitored plant and observation model

The monitored plant in Fig. 1 is modeled as a

stochastic automaton, SA = (X,Σ, a, π0), where X :=
{x1, x2, . . . , xnx

} is the finite state space, Σ :=
{σ1, σ2, . . . , σnσ

} is the set of events, and π0 := {π0(xi) :
xi ∈ X} is the initial probability distribution of the system.

The state transition probability function a is defined as

a : X × Σ × X → [0, 1], where, a(xi, σ, xj) denotes the

conditional probability that, given the system is in state

xi ∈ X , σ ∈ Σ occurs and transitions the system to state

xj ∈ X . Moreover, to insure that the system is live, we

assume ∀x ∈ X ,

nσ
∑

i=1

nx
∑

j=1

a(x, σi, xj) = 1, (1)

i.e., the occurrence of a new transition is certain from every

state. The interest here is to detect and count the number of

occurrences of a special event f ∈ Σ, which may represent

a fault or an anomaly.

As shown in Fig. 1, diagnosers are used to accom-

plish this task using observations from unreliable sensors.

Assume that there is a given pool of available sensors,

U = {s1, s2, . . . , sp}, from which sensors are chosen for

observing the monitored DEDS. Let ∆ := {y1, y2, . . . , yny
}

be the set of distinctive observation symbols generated from a

sensor configuration S ⊆ U . We denote the set of observation

symbols at the sensor outputs as

∆∗ := ∆ ∪ {ǫ}, (2)

where the symbol ǫ indicates that an event has been executed

but no observation is reported. The event output function

b : Σ×∆∗ → [0, 1] satisfies the following: ∀σ ∈ Σ,

b(σ, ǫ) +

ny
∑

i=1

b(σ, yi) = 1. (3)

The functional value b(σ, y) is the conditional probability

of having output y ∈ ∆∗ when the system executes event

σ ∈ Σ. For example, assume that the given monitored system

generates an event σ. Characterizing b(σ, ǫ), b(σ, σ), and

b(σ, δ) (with σ 6= δ) equal to 0.1, 0.7, and 0.2 indicates

the probabilities of misdetection, correct classification, and

misclassification, respectively, for this sensor. The set of

observation symbols, ∆, and the function b both depend on

the sensor configuration, S. To further illustrate the obser-

vation model, suppose that SA executes the following event

sequence: s = σ1σ2 . . . σn . . . ∈ Σ∗. Given s and sensor

configuration, S ⊆ U , there are many possible sequences of

output symbols for the unreliable observations modeled by

(2) and (3). A particular sequence of output symbols can be

denoted by o = o1o2 . . . on . . . ∈ (∆∗)
∗, where b(σi, oi) > 0

for i > 0. The sequence of observations available to the

diagnoser in Fig. 1 is denoted by y = y1y2 . . . ym . . . ∈ ∆∗,

where P∆(o) = y and P∆ : (∆∗)
∗ → ∆∗ is a plain

projection function that removes the silent event ǫ from

o. Hence, y is the output sequence o with the symbol ǫ

eliminated. Note that yi denotes the ith symbol in ∆, while

yi denotes the ith observed symbol corresponding to the

sequence of generated events.

III. PROBLEM FORMULATION

Consider the monitoring architecture discussed in Section

II and suppose there are Ns special events to detect and

count. Let O = (S,D) denote the observation platform,

where S is the sensor configuration and D is the diagnoser.

The observation platform optimization problem is formulated

as follows:

O∗ := argmin{I(O) : O ⊆ (U,D)}, (4)

subject to βi(O) ≤ βi∗, for i = 1, 2, . . . , Ns, and ct(O) ≤
ct∗, where

• U is the set of all possible sensors considered;

• D is the set of all diagnosers considered;

• the loss index is defined as

I(O) =

Ns
∑

i=1

ci · β
i(O) + c · ct(O); (5)

• βi(O), i = 1, 2, . . . , Ns, is the performance measure

for detecting and counting the ith special event;

• ct(O) is the cost of the observation platform;

• ct∗ is the maximum cost desired for O;
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• βi∗ indicates the desired performance for the diagnoser

in estimating the number of occurrences of the ith

special event.

Details of the cost and performance measure of the obser-

vation platform are addressed in the following subsections.

A. Observation platform cost

For a observation platform, O = (S,D) ⊆ (U,D), the

cost is given by:

ct(O) =
∑

s∈S

ct(s) + ct(D), (6)

where ct(s) and ct(D) denote the costs of a particular

sensor s ∈ S and for implementing the diagnoser D. The

sensor cost, ct(s), is a compound measure for sensor s that

includes metrics such as monetary cost, vulnerability, and

intrusiveness of operation. On the other hand, the diagnoser

cost, ct(D) is typically a single, fixed figure associated with

the cost of implementing a diagnoser in a computer software.

Without loss of generality but for simplicity, let’s assume that

ct(D) = 0 and (6) reduces to ct(O) =
∑

s∈S ct(s).

B. Observation platform performance

The performance measure of the observation platform is

described here. To simplify the presentation, assume there is

one special event, f , to be counted. Let β(O) denote the per-

formance of the observation platform, O. This performance

measure is determined by β(O) = F (PM (O), PF (O)),
where F is a function depending on the probabilities of

misdetection (i.e., the probability that f occurred but the

occurrence was not counted, denoted by PM (O)) and false

alarm (i.e., the probability that f did not occur but an

occurrence was counted, denoted by PF (O)), which in turn

depend on O. To elaborate, suppose α is a general design

parameter for the diagnoser D in O and consider specific

observation windows to evaluate PM (O) and PF (O). The

parameter α typically presents a trade off between PM (O)
and PF (O). For example, α may be such that, when it

becomes large (or small), the probability of misdetection

becomes small (or large) while the probability of false alarm

becomes large (or small). As the value of α varies, values

of PM (O) and PF (O) can be calculated (via experiments

or simulations). Fig. 2 shows two typical curves generated

by plotting PM (O) against PF (O) as α is varied. These are

the misdetection-false alarm tradeoff curves corresponding to

two different observation platforms. Note that the observation

platform corresponding to the solid curve gives a better

misdetection-false alarm tradeoff than the one corresponding

to the dashed curve. That is, for the same value of PF (O),
the solid curve gives a smaller value of PM (O) than the

dashed curve. The optimal case is a curve that reduces to a

point at the origin (i.e., regardless of the selected value for

α, its probabilities for false alarm and misdetection are both

zero). Hence, in general, a curve closer to the origin indicates

better observation platform performance. A measure of how

close the curve is to the origin is calculated by the area under

the curve. Let Area(O) denote the area under the PM (O)−
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Fig. 2. Misdetection-false count trade-off curve

PF (O) curve for observation platform O. Then, β(O) =
F (PM (O), PF (O)) = Area(O). Note that when there are no

sensors in the observation platform (hence no observation), it

is impossible to count the number of occurrences of f , even

under the assumption of having the discrete event model of

the monitored system. In this case, we set β(O) = ∞. We

mention that the best value of α for the diagnoser can then be

chosen based on the PM (O)−PF (O) curve according to user

specified observation requirements (i.e., values of PF (O) and

PM (O)). Note also that because our performance measure is

a function of broadly-used statistical characterizations (i.e.,

probabilities of false alarm and misdetection), experimental

realizations are needed to estimate their values.

In this paper, we consider using SWD as the diagnoser for

the observation platform, although other types of diagnoser

algorithms can readily be accommodated. In addition, while

we do focus here on solving (4) by optimally selecting a

sensor configuration S for O, we do not consider selecting

the best diagnoser algorithm from several possible ones;

instead, we focus on identifying an optimal value for its

design parameter (i.e., α), while keeping the algorithm for

implementing D fixed to that of SWD. In general, when

several candidate diagnoser algorithms (in D) are considered,

an additional optimization loop is needed to select best over-

all diagnoser algorithm based on estimated performances.

However for simplicity, this step is omitted here. A brief

review of SWDs is given below.

Suppose the special event, f , is to be detected and counted.

As the observations, yi, i = 1, 2, . . ., become available

from the sensors, the SWD estimates the number of times

f has occurred. In particular, when the mth observation

becomes available, the count estimate is calculated based on

the observations y1 through ym and is denoted by c(m). Let

m ≥ 0 and define the state probability vector,

φ(m) =
[

pN1 (m), pN2 (m), . . . , pNnx
(m), pF1(m), . . . , pFnx

(m)
]

, (7)

where pNi (m) (or pFi (m)) denotes the conditional probability

that the DEDS is in state xi ∈ X and that f has not been

(or has been) executed given m available observations and
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given initial probability

φ(0) = [π0, 0, 0, . . . , 0] . (8)

In order to update the state probability vectors as ob-

servations become available, a set of 2nx × 2nx diagnoser

matrices, is constructed. This set of matrices is denoted by

X and has a one-to-one correspondence with the observation

symbols in ∆. Hence, for each y ∈ ∆, there is exactly one

matrix, ΦSD(y) ∈ X . The general structure of ΦSD(y) is

ΦSD(y) =

[

ΦNN (y) ΦNF (y)
0nx×nx

ΦFF (y)

]

, (9)

where 0nx×nx
is the nx × nx zero matrix and ΦNF (y)

(or ΦNN (y)) is an nx × nx matrix, which determines the

probability that the system, starting at a state where f has

not occurred before, transitions to a state xi ∈ X where f

has (or has not) occurred given the observation y. Likewise,

ΦFF (y) determines the probability that the system, starting

at a state where f has occurred before, transitions to a state

xi ∈ X where f has occurred given the observation y. While

detailed descriptions of these matrices and their computations

can be found in [5], [16], the procedure for updating φ(m)
is described below for completeness.

When there is no observations available yet (i.e., m = 0),

the state probability vector is set as in (8) and the estimated

count, c(0), is set to 0. As the (m + 1)st observation

(i.e., ym+1) becomes available, the SWD updates φ(m+ 1)
according to

φ(m + 1) =
φ(m)ΦSD(ym+1)

‖φ(m)ΦSD(ym+1)‖
, (10)

where ‖ • ‖ denotes the 1-norm. For more details of the

update in (10), we refer the readers to [16]. Let 0 < α < 1
be a user selected parameter, referred to as the false alarm

tolerance, and consider the following. If

nx
∑

i=1

pFi (m+ 1) > 1− α, (11)

i.e., the probability that f has occurred is greater than 1−α,

increase the estimated count of occurrence of f , i.e., c(m+
1) = c(m) + 1, and reset φ(m + 1) such that

pNi (m+ 1) = pNi (m+ 1) + pFi (m+ 1), (12)

and

pFi (m+ 1) = 0, (13)

for 1 ≤ i ≤ nx. If (11) does not hold, set c(m+1) = c(m).
This process is repeated as observations become available.

Note that the reset defined by (12) and (13) means that,

after an increase in the estimated count, the SWD resets

the probability of f occurring to 0 while still keeps track

of the probabilities for the DEDS to be in state xi ∈ X ,

i = 1, 2, . . . , nx. Through the described procedure above,

the SWDs sequentially estimates the number of times the

special event f has occurred given the observations.

Note that the user selected parameter α strongly influences

the performance of the SWD. If a small α is chosen,

(11) is harder to be satisfied and the SWD tends to under

count the occurrences of f . Conversely, the SWD tends

to over count for large α. Another way of viewing this

is to consider a given window of events that occurred in

between an increase of estimated count. The number of

misdetections per window increases when α becomes small,

and, conversely, false counts per window increases when

α becomes large. Note that, for given α, the number of

misdetections and false counts per window can be calculated

via off-line simulations with the monitored DEDS executing

a sequence of n events. The number of misdetections and

false counts per window can be plotted against each other as

α sweeps through the interval (0, 1) with small increments

(e.g., α = 0.05, 0.15, . . . , 0.95). Simulations for calculating

the misdetections and false counts start anew for each value

of α considered. Fig. 2 was actually generated in this way

using SWD as the diagnoser.

C. Extensions to multiple special events

The description of the diagnosers above considers only one

special event, f . Extension in the sense of [1] to estimate

the occurrences of multiple events is straightforward. In

particular, let the special events be labeled as fi, i =
1, 2, . . . , Ns, where Ns is the number of special events. The

design parameter chosen for fi (e.g., false alarm tolerance of

the SWD designed for fi) is denoted by αi. Given a specific

observation platform, O, the performance corresponding to

fi is denoted by βi(O).

IV. SOLUTION TO THE OBSERVATION PLATFORM

OPTIMIZATION PROBLEM

Given the structure of the diagnoser D, the observation

platform optimization problem in (4) is solved by adding

sensors sequentially to the observation platform. A myopic

criterion may be considered for this procedure. However, the

myopic criterion does not often perform well. An example

is provided in [20] to explain this limitation, with a brief

explanation included below for completeness. In short, if

the goal is to find the least costly observation platform that

satisfies observability constraints, the resulting observation

platform may consist of many cheap sensors with typical

poor performance. However, there may exist a less costly

observation platform that satisfies the observability require-

ments by relying on few expensive sensors, but with good

performances.

In the following, the optimization problem is solved by

first using the myopic criterion to pick only the first sensor

to be added. Then, subsequent sensors are added using

a projected optimal loss index sensor selection criterion.

Detailed descriptions of the two sensor selection criteria are

provided in the following subsections.

A. Myopic criterion

To pick the first sensor to be added, the current observation

platform, Ocur = (Scur, D), is set to (∅, D), where D is the
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diagnoser considered (i.e., an SWD for this paper). A sensor

is then added to Ocur based on the following criterion: Find

s∗ = arg min
s∈(U\Scur)

{
Ns
∑

i=1

ci·β
i(Ocur ⊕ {s})+

c · ct(Ocur ⊕ {s})}, (14)

subject to

ct(Ocur ⊕ {s}) ≤ ct∗, (15)

where the operation Ocur ⊕ s means (Scur ∪ {s}, D). The

sensor, s∗, is the newly selected sensor to be added to Ocur.

Furthermore, (15) means that observation platforms costing

more than ct∗ are not considered. This criterion is based on

the instantaneous performance improvement of the candidate

sensor and is myopic.

B. Projected optimal loss index sensor selection criterion

To explain the projected optimal loss index sensor selec-

tion criterion, consider the projected loss index, I(Ocur ⊕
{s1:k}) =

∑Ns

i=1 ci ·β
i(Ocur⊕{s1:k})+c ·ct(Ocur⊕{s1:k}),

where

• Ocur⊕{s1:k}, k ≥ 1, represents a fictitious observation

platform, Ocur ⊕ s ⊕ s ⊕ . . . ⊕ s, where the sensor,

s, is added k times to the current observation plat-

form. This fictitious observation platform represents

the situation where k sensors with the same statistical

performances and costs as s are added to Ocur. The

idea is to minimize the chance of getting stuck at

a local minimum by projecting the value of the loss

index assuming that sensors were added with the same

statistical performances and costs as the candidate

sensor being considered.

• ct(Ocur ⊕ {s1:k}) represents the projected cost of the

fictitious observation platform: ct(Ocur ⊕ {s1:k}) =
∑

s′∈Scur
ct(s′) + k · ct(s).

• βi(Ocur⊕{s1:k}) represents the projected performance

of the fictitious observation platform. There is no

known closed form expression for calculating the pro-

jected performance, and, hence, the heuristic formula,

βi(Ocur⊕{s1:k})=

(

βi(Ocur⊕{s})

βi(Ocur)

)k

βi(Ocur), (16)

is used. This formula indicates that, as more sensor s

are used, the projected performance of the observation

platform improves exponentially.

The projected optimal loss index sensor selection criterion

is then formulated as

s∗ = argmin{I(Ocur ⊕ {s1:k∗(s)}) :

s ∈ U \ Scur and k∗(s) defined}, (17)

where

• I(Ocur ⊕ {s1:k∗(s)}) =
∑Ns

i=1 ci · βi(Ocur ⊕
{s1:k∗(s)}) + c · ct(Ocur ⊕ {s1:k∗(s)}) is the projected

optimal loss index;

• k∗(s) minimizes the projected loss index given Ocur

and s: k∗(s) = argmink∈[kl(s),ku(s)]{
∑Ns

i=1 ci ·
βi(Ocur ⊕ {s1:k}) + c · ct(Ocur ⊕ {s1:k})};

• ku(s) is the maximum number of s that can be added

to Ocur without Ocur⊕{s1:k} exceeding ct∗: ku(s) =
argmaxk≥0{ct(Ocur ⊕ {s1:k}) ≤ ct∗};

• kl(s) is the least number of s that should be added for

the performance of Ocur⊕{s1:k} to meet all specified

β∗
i : kl(s)=argmink≥0

{

∧Ns

i=1β
i(Ocur⊕{s1:k})≤βi∗

}

.

The algorithm for finding an optimal observation platform

is executed by first using the myopic criterion to select

the first sensor (assuming SWD as the algorithm for D

using its best identified α). Subsequent sensors are selected

according to the optimal loss index sensor selection criterion

described above. The reason for this arrangement is that,

since βi(∅) = ∞, for i = 1, 2, . . . , Ns, we cannot compute

the projected performance via (16) in order to select the

first sensor. While other selection criteria may be used for

selecting the first sensor, the current algorithm works well for

most practical cases considered. The implementation of the

proposed simulation-based optimization algorithm is similar

to the one reported in [20] with notations changed accord-

ingly and, hence, its description is omitted here. Notice that

it is a simulation-based methodology as it uses statistical

properties (i.e., probabilities of false alarm and misdetection)

that are estimated via simulation.

V. APPLICATION

A. Multi-unit-operation monitored system

For the proposed methodology to be practical, it needs

to be applicable to real-world systems. To this end, the

methodology is applied to the multi-unit-operation system

shown in Fig. 3, which has been derived from an actual

facility application. The unit operations UOi of the system

are labeled by integers 1 through 6. The input ports are

squares marked by I1, I2, and I3, while the output ports

are marked by O1, O2, O3, and O4. The symbols Fi,

i = 1, 2, . . . , 13, stand for material flow, which may be a

discrete item (e.g., container) or fluid (e.g., solution). The

hexagons denote twenty one possible sensors.

Fig. 3. A multi-unit-operation system
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The operations of the system are described below. Input

material, F1, enters the monitored plant via I1 and is

transferred to UO1. The outputs of UO1, F2 and F3, are

then transferred to UO2 and UO4, respectively. Batches of

F3 are stored and processed at UO4, which are eventually

outputted via F5 through O2 after receiving F4 at UO4.

Likewise, at UO2, measurements are taken to characterize

input material, and the output, F6, is transferred to UO3

where it interacts with F7 entering via I3. While UO3 always

outputs F8 to O1, it outputs either F9 to UO5 or F10 to

UO6. Material in UO5 can either be transferred out of the

monitored plant via O3 (i.e., F11) or transferred to UO6 (i.e.,

F12). Materials transferred to UO6 are eventually removed

from the monitored plant via O4 (i.e., F13).

B. Possible sensors for monitored system

A number of sensors may be deployed to monitor the

multi-unit-operation system described above. They are cat-

egorized in Table I along with their possible observations.

TABLE I

POSSIBLE SENSORS FOR CONSIDERED MONITORED SYSTEM

Sensors Discrete event observations (Σ)

s13, s21 low normal

s15, s23 low normal high

s14, s22 low normal high

s12, s16 low normal high
s42, s51
s31, s32
s33, s34 low normal high
s35
s52, s6 transfer no transfer

s41 transfer no transfer

s25 (s11 & s24) normal abnormal

C. Anomaly patterns of operations

While any anomaly pattern can be detected and tracked

by the proposed monitoring system, two anomaly patterns

of operations, which represent actual operations that may

cause undesirable material to exit the system improperly,

are considered. They are described here assuming that the

sensors are perfect.

Anomaly pattern A1:

A normal or high property value is provided by s12 and a low

property indication is provided by s15 and a high property

indication is provided by s16 and then there is an abnormal

event generated by s25 (which compares measurements taken

by s11 and s24). If after three (3) or more instances of these

anomalies have been observed, a high property indication is

provided by s42 but no observation was received from s41,

an alarm is triggered.

Anomaly pattern A2:

A low property indication is provided by s31 and a low or

normal property indication is provided by s33 and a high

property indication is provided by s34. If after three (3) or

more instances of these anomalies have been observed, a

high property indication is provided by s51 is received, an

alarm is triggered.

D. Modeling of monitored system

In the interest of space, the procedure for modeling

the multi-unit-operation system as a DEDS is omitted but

outlined here. Each unit operation is first modeled as an

automaton. With a slight abuse of notations, let UOi, i =
1, 2, . . . , 6 indicate the automata corresponding to the unit

operations in Fig. 3. The technique introduced in [12]

is employed to model the anomaly patterns for detecting

and counting. For each anomaly pattern to be detected, an

automaton is constructed, where a fictitious unobservable

event is executed if the anomaly pattern of operations occur.

Let AP1 and AP2 denote the automata for anomaly patterns

A1 and A2, respectively, and f1 and f2 be their respective

fictitious unobservable events. The global system model is

constructed by combining the unit operation models, UOi,

i = 1, 2, . . . , 6, AP1, and AP2 using the parallel composition

described in [25]1. The state transition probabilities of the

global model is chosen suitable for the simulation study be-

low. In practice, the transition probabilities may be obtained

based on past observations. The goal of the diagnoser in Fig.

1 is to infer (given partial and unreliable observations) the

number of occurrences of f1 and f2, which correspond to the

occurrences of anomaly patterns A1 and A2, respectively.

Notice that only the operations of UOi, i = 1, 2, 4, are

relevant to A1. Similarly, only UOi, i = 3, 5, 6, are relevant

to A2. Hence, the diagnoser for the detecting and keeping

track of the occurrences of the two anomaly patterns can be

constructed modularly.

E. Sensor reliability and cost assumptions

For the purpose of showing the simulation results later

in this section, arbitrary values are selected not only for

probabilities of misdetections, correct classifications, and

misclassifications of available sensors for selection but also

for their costs. These values are indicated in Table II, with the

probability of misclassification for each particular sensor be-

ing equally distributed among all possible misclassifications.

For instance, consider s14. The cost associated with this

sensor is 3, which is relatively low when compared to others.

Likewise, consider that the “true” value of the property

being measured is “high” at a given time instance. Then, the

probability that s14 does not give a reading (misdetection)

is 0.02 and the probabilities for it to read “high” (correct

classification) or another value (misclassification) are 0.94
and 0.04 (which is equally split among “normal” and “low”),

respectively. From the descriptions of the sensors above, s11
and s24 are treated as one and their combined cost and

characteristic are shown in the last row of the table.

F. Performance measure

For each proposed O, the performance measure, βi(O),
was used for finding a solution to the observation platform

1Note that the addition of AP1 and AP2 in the parallel composition does
not change the behavior described by UO1 through UO6. The only effect
is that f1 and f2 are executed if and only if A1 and A2 occur, respectively.

4475



TABLE II

SENSOR RELIABILITY

Sensors Cost Prob. of Prob. of Prob. of
mis- correct mis-

detection classification classification

s13, s21 3 0.03 0.94 0.03

s15, s23 1 0.02 0.94 0.04

s14, s22 3 0.02 0.94 0.04

s12, s16 7 0.02 0.94 0.04
s42, s51
s31, s32
s33, s34 11 0.02 0.94 0.04
s35,

s52, s6 4 0.03 0.97 0

s41 5 0 1 0

s11, s24,
and s25 11 0.03 0.94 0.03
combined

optimization problem. In order to evaluate the on-line perfor-

mance of SWDs for given O and αi, the following statistics

is employed instead:

ANEi(O) =
1

ni

ni
∑

k=1

|k − T̂i(k)|

k
, (18)

where ni is the number of occurrences of the given special

event, fi, at the end of the simulation. Moreover, T̂i(k)
denotes the estimated number of its occurrence just after

the given special event has been executed the kth time. It

is important to point out that, as αi is a selectable design

parameter for SWD, the ANEi(O) reported for a given

observation platform is computed by selecting α for the given

diagnoser according to user observability specifications.

G. Simulation results

To compare and evaluate observation platforms, the ob-

servation platform in Fig. 3, which includes all available

sensors, is considered as the baseline. The cost of the base-

line observation platform is the highest among all possible

observation platforms, while its performance is expected

to be the best. Any observation platform with comparable

performance to the baseline but with significantly lower

cost is considered an improvement. In order to find an

improved observation platform, the algorithm proposed in

Section IV is here used. Based on previous evaluations,

the parameters used for running the observation platform

optimization algorithm are c = 1, c1 = 200, c2 = 200,

ct∗ = 90, β1∗ = 0.08, and β2∗ = 0.1. Note that, typically,

β1(O) and β2(O) are much smaller than the costs in Table

II, and, hence, c1 and c2 have to be much larger than c for

all terms in the loss index (5) comparable. A possible (local)

optimal observation platform found by using the optimization

algorithm described in Section IV consists of the following

sensors:

s15, s16, s22, s41, s31, s34, s51, s52. (19)

Fig. 4 shows the sensor configuration in (19), where sensors

selected (and not used) are crossed out. Note that sensors

s15, s16, s22, and s41 are used for detecting and counting

Fig. 4. Computed (local) optimal sensor configuration

the occurrences of f1, while s31, s34, s51, and s52 are used

for f2. For brevity, the observation platform consisting of

the sensors in (19) is referred to as Observation platform

(19) hereafter. Simulations of the monitored system using the

baseline observation platform (which includes all available

sensors) and Observation platform (19) were conducted using

appropriately chosen false alarm tolerances. Fig. 5 plots the

true and estimated (for both observation platforms simulated)

numbers of occurrences of f1 against the number of event

executions, while Fig. 6 plots those for f2. In both figures,
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Fig. 5. Estimated vs true count of f1 as function of executed events
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Fig. 6. Estimated vs true count of f2 as function of executed events

estimate counts from the baseline observation platform and
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Observation platform (19) follow closely the true anomaly

occurrence counts at each and throughout a large number of

executed events. Table III compares the cost and performance

between these observation platforms, assuming αi’s that

correspondingly minimize their ANEs. From Figs. 5 and

TABLE III

COMPARISON BETWEEN OBSERVATION PLATFORMS

Baseline obs. platform Obs. platform (19)

Cost 121 49
ANE1(S) 0.0437 0.0861
ANE2(S) 0.0635 0.0671

6 and Table III, Observation platform (19) achieves cost

savings of 121−49
121 = 59.5%, while the errors in estimating

the occurrences of f1 and f2 are still reasonably small. The

proposed approach for observation platform optimization

scales well in practice. For example, for the actual facility

considered here consisting of 9504 states, the algorithm takes

about 18 hours to compute off-line a solution in a 64bit

computer with Intel Xeon CPU E5520 running at 2.27 GHz.

VI. CONCLUSIONS

This paper considered the monitoring architecture illus-

trated in Fig. 1, where the monitored plant is modeled as a

stochastic automaton, the sensors are unreliable, and a diag-

noser is used to analyze observations. The sensors and the

diagnoser together are referred to as the observation platform.

A design methodology is proposed to find an observation

platform that best balances cost and the performance of the

diagnoser, while satisfying given observability requirements

and constraints. This methodology adopts a simulation-based

optimization algorithm that uses two greedy heuristics, one

myopic and one that considers the projected performance

of candidate sensors. These heuristics are sequentially exe-

cuted in order to find improved observation platforms. The

proposed methodology can be used to find (local) optimal

observation platforms, although these solutions are not nec-

essarily the global optimum. The proposed methodology was

applied to an observation platform optimization problem

for monitoring a multi-unit-operation system. The results

showed that an optimal/improved observation platform can

be found that may significantly reduce its cost, while still

yielding acceptable performance for counting anomaly pat-

tern occurrences.
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