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Abstract— Lur’e systems represent feedback interconnections
of a Linear Time-Invariant system with a nonlinear operator.
The Zames-Falb criterion is a powerful tool to determine the
stability of a Lur’e system when the nonlinear operator is
defined by a monotonic, odd and single-valued function. The
article provides a generalization of the Zames-Falb criterion
for the analysis of stability of a Lur’e system for nonlinear
static operators that are “approximately” monotonic and odd.
This result extends the standard Zames-Falb criterion with an
additional notion of “robustness”.

I. Introduction
In this work, we derive a generalized form of the Zames-

Falb multiplier for the analysis of stability of Lur’e systems
[1]. Lur’e systems are given by the feedback interconnection
of a linear time-invariant system G with a nonlinear block
∆ (see Figure 1). A large number of real systems have
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Fig. 1. A Lur’e system

this structure. Recent examples are provided by Atomic
Force Microscopes [2],[3] and other Microelectromechanical
systems [4], [5], [6]. Many studies have targeted the problem
of “absolute stability”, where the global asymptotic stability
of the origin is sought with respect to a class of nonlinear
operators, and thus provide a robust notion of stability.
Classical results include the Popov (see [7]) and the circle
criteria (see [8] and [9]) that provide sufficient conditions
for global asymptotic stability when the nonlinearity is
restricted to be time-invariant and time varying respectively.
A relatively new approach involving only input-output maps
is given by the Integral Quadratic Constraint (IQC) methods
pioneered in [10]. In this approach, a quadratic constraint
is used to characterize the nonlinearity playing the role of
the sector condition used in the other classical absolute
stability criteria. Since the sector relations can be derived
via special IQC conditions, such an approach provides a

unifying theoretical framework. Furthermore, it provides
the powerful capability of seamlessly integrating different
characterizations of the nonlinearity, as well. The main
limitation to the general applicability of this technique is
given by the necessity of identifying an IQC that properly
characterizes the nonlinearity of interest. For example, the
adoption of “standard” IQC’s such as those definining the
circle or the Popov criteria can lead to conservative results.
Indeed, the sector conditions to which they are equivalent
could include a class of nonlinearities that is too broad.
On the other hand, an IQC such as the Zames-Falb one,
is satisfied by nonlinearities with very strict characteristics
(odd symmetry and monotonicity), but it does not provide
any notion of “robustness” in the case of uncertainties in the
knowledge of the nonlinearity. In this paper we introduce
a natural generalization of the Zames-Falb multiplier that
bridges the gap between the circle criterion condition and the
standard Zames-Falb one. The paper is structured as follows:
in Section II we derive an IQC that is satisfied by a class of
nonlinearities that are approximatively odd and monotonic;
in Section III we use such a result in order to provide a
stability criterion; finally Section IV shows the utility and
limits of our techniques through numerical examples.

Notation

R : set of real numbers
C : set of complex numbers
L2 : set of square integrable functions on R
L2e : set of functions on R that are square integrable on any
compact set.

II. Generalized Zames-FalbMultiplier

We introduce the class of quasi-monotonic-and-odd func-
tions that will be used to formulate a stability criterion.

Definition 1: Let n : R → R be a single-valued function.
We say that n is a quasi-monotonic-and-odd function with
spread D < 1 and skeleton n : R → R if there exists a
function δ : R→ R such that
• n(y) = n(y)[1 + δ(y)]
• n(y) is monotonic non-decreasing and odd
• |δ(y)| ≤ D < 1 for every y ∈ R.

A graphical representation of a quasi-monotonic-and-odd
function is given in Figure 2.
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Fig. 2. A quasi-monotonic-and-odd function n(y) is contained in an
“envelope” of a monotonic and odd function n(y).

We introduce the main technical result of the paper.
Theorem 2.1 (Generalized Zames-Falb multiplier): Let

n : R → R be a quasi-monotonic-and-odd function with
spread D < 1 and skeleton n. Assume that
• yn(y) ≥ 0 for every y
• y(t) ∈ L2 implies n(y(t)) ∈ L2
• h(t) is a absolutely integrable function such that

‖h(t)‖1 ≤
(

1 − D
1 + D

)2

. (1)

Then, for every y(t) ∈ L2, we have that∫ +∞

−∞

n(y(t))
[
y(t) −

∫ +∞

−∞

h(τ)y(t + τ)dτ
]

dt ≥ 0 (2)

Proof: The derivation follows the line of [11] for
exactly monotonic and odd nonlinearities, but the additional
degree of freedom given by the presence of the uncertainty
D introduces technical complications that need to be taken
into account.
Define the potential function

P(y) :=
∫ y

0
n(y′)dy′. (3)

Observe that∫ b

a
n(y′)dy′ = (4)

= P(b) − P(a) ≤
{

(b − a) supa≤y′≤b n(y′) if a ≤ b
(a − b) supb≤y′≤a −n(y′) if a > b.

(5)

Observe that, since n(y)y ≥ 0, it holds that

n(y)(1 − Dsgn(y)) ≤ n(y) ≤ n(y)(1 + Dsgn(y)). (6)

Since n(y) is monotonic non-decreasing and 0 ≤ D < 1, we
have that

sup
a≤y′≤b

n(y′) ≤ n(b)[1 + Dsgn(b)] if a ≤ b (7)

sup
b≤y′≤a

−n(y′) ≤ −n(b)[1 − Dsgn(b)] if a > b. (8)

Since n is odd , we have that

sup
a≤y′≤b

n(y′) ≤ −n(−b)[1 + Dsgn(b)] if a ≤ b (9)

sup
b≤y′≤a

−n(y′) ≤ n(−b)[1 − Dsgn(b)] if a > b. (10)

Using the last four relations, the fact that n(b)b ≥ 0 and
0 ≤ D < 1, we get the following bounds in terms of n(b)
and n(−b)

sup
a≤y′≤b

n(y′) ≤ n(b)
1 + Dsgn(b)
1 − Dsgn(b)

(11)

sup
b≤y′≤a

−n(y′) ≤ −n(b)
1 − Dsgn(b)
1 + Dsgn(b)

(12)

sup
a≤y′≤b

n(y′) ≤ −n(−b)
1 + Dsgn(b)
1 − Dsgn(b)

(13)

sup
b≤y′≤a

−n(y′) ≤ n(−b)
1 − Dsgn(b)
1 + Dsgn(b)

. (14)

Plugging the two relations (11) and (12) in (4) we get

P(b) − P(a) ≤ n(b)(b − a)
1 + Dsgn(b)
1 − Dsgn(b)

if a ≤ b (15)

P(b) − P(a) ≤ n(b)(b − a)
1 − Dsgn(b)
1 + Dsgn(b)

if a > b, (16)

or, more succintly,

P(b) − P(a) ≤ n(b)(b − a)
1 + Dsgn[b(b − a)]
1 − Dsgn[b(b − a)]

. (17)

Using the other two relations (13) and (14) we find

P(b) − P(a) ≤ −n(−b)(b − a)
1 + Dsgn[b(b − a)]
1 − Dsgn[b(b − a)]

. (18)

For every y(t) ∈ L2(−∞,+∞), P(y(t)) is Lebesgue-integrable
since, from (17) with b = y(t) and a = 0, we have

0 ≤ P(y(t)) ≤ y(t)n(y(t))
1 + D
1 − D

. (19)

Analogously, from (18) with b = −y(t) and a = 0, we find
that P(−y(t)) is Lebesgue-integrable

0 ≤ P(−y(t)) ≤ y(t)n(y(t))
1 + D
1 − D

. (20)

Fix y(t) ∈ L2(−∞,+∞). Now, let b = y(t) and a = y(t + τ).
We obtain

P(y(t)) − P(y(t + τ)) ≤ n(y(t))[y(t) − y(t + τ)]
1

q(t)
(21)

where
1 − D
1 + D

≤ q(t) :=
1 − Dsgn[y(t)(y(t) − y(t + τ))]
1 + Dsgn[y(t)(y(t) − y(t + τ))]

≤
1 + D
1 − D

is a bounded signal that can assume only positive values.
From (19) and the fact that q(t) > 0, we have

q(t)[P(y(t)) − P(y(t + τ))] ≤ n(y(t))[y(t) − y(t + τ)].

Integrating both sides of the above inequality, we obtain∫ ∞

−∞

q(t)P(y(t))dt −
∫ ∞

−∞

q(t)P(y(t + τ))dt ≤∫ ∞

−∞

n(t)[y(t) − y(t + τ)]dt.

1991



Observe that
1 − D
1 + D

∫ ∞

−∞

P(y(t))dt ≤
∫ ∞

−∞

q(t)P(y(t))dt (22)

−
1 + D
1 − D

∫ ∞

−∞

P(y(t))dt ≤ −
∫ ∞

−∞

q(t)P(y(t + τ))dt. (23)

Then, we can write

−
4D

(1 − D)2

∫ ∞

−∞

n(y(t))y(t)dt = (24)

−

(
1 + D
1 − D

−
1 − D
1 + D

) ∫ ∞

−∞

(
1 + D
1 − D

)
n(y(t))y(t)dt ≤ (25)

−

(
1 + D
1 − D

−
1 − D
1 + D

) ∫ ∞

−∞

P(y(t))dt ≤ (26)

≤
1 − D
1 + D

∫ ∞

−∞

P(y(t))dt −
1 + D
1 − D

∫ ∞

−∞

P(y(t + τ))dt ≤ (27)

≤

∫ ∞

−∞

q(t)[P(y(t)) − P(y(t + τ))]dt ≤ (28)

≤

∫ ∞

−∞

n(t)[y(t) − y(t + τ)]dt. (29)

Thus, we get∫ ∞

−∞

n(y(t))y(t + τ)dt ≤
(1 + D)2

(1 − D)2

∫ ∞

−∞

n(y(t))y(t)dt. (30)

Proceeding in a similar way, using (20), we would find

−

∫ ∞

−∞

n(y(t))y(t + τ)dt ≤
(1 + D)2

(1 − D)2

∫ ∞

−∞

n(y(t))y(t)dt. (31)

Thus, we have an inequality involving the absolute value∣∣∣∣∣∫ ∞

−∞

n(y(t))y(t + τ)dt
∣∣∣∣∣ ≤ (1 + D)2

(1 − D)2

∫ ∞

−∞

n(y(t))y(t)dt. (32)

Let us evaluate∫ ∞

−∞

dt
∫ ∞

−∞

dτh(τ)y(t + τ)n(y(t)) = (33)∫ ∞

−∞

dτh(τ)
∫ ∞

−∞

dty(t + τ)n(y(t)) ≤ (34)∫ ∞

−∞

dτ|h(τ)|
(1 + D)2

(1 − D)2

∫ ∞

−∞

dty(t)n(y(t)) ≤ (35)∫ ∞

−∞

n(y(t))y(t)dt. (36)

This proves the assertion.

III. Stability Criterion via IQC’s

We provide the definition of well-posedness and (input-
output) stability of a Lur’e interconnection.

Definition 2: Consider a Lur’e system where the linear
part G is defined by a transfer function G(s) and the nonlinear
part is given by a nonlinear operator ∆ : L2e → L2e. The
interconnection, as represented in Figure 1 is described by
the relations {

e = y − G(u)
r = u − ∆(y) (37)

which define a map M : L2e × L2e → L2e × L2e from the
signals (u, y) to the L2e signals (e, r). We say that the Lur’e

interconnection is well-posed if M is invertible. We say that
the Lur’e interconnection is stable if the restriction of M on
L2 is bounded.

The IQC framework for the stability analysis of Lur’e
systems allows the expression of many absolute stability
criteria in terms of a single unifying theory [10].
The fundamental result provided in [10] is reported for the
sake of completeness.

Theorem 3.1 (Megretski-Rantzer Theorem): Consider a
linear system G defined by a stable transfer function G(s)
and an operator ∆ : L2e → L2e bounded on its restriction on
L2. Let Π(iω) : iR → C2×2 be a measurable and hermitian
function. Let v := ∆(y) for any y ∈ L2 and let ŷ(iω) and
v̂(iω) be the Fourier transform of y(t) and v(t) respectively.
Assume that
• for every τ ∈ [0, 1] the feedback interconnection of G

and τ∆ is well-posed
• for every τ ∈ [0, 1] and for every y ∈ L2∫ (

ŷ(iω)
τv̂(iω)

)∗
Π(iω)

(
ŷ(iω)
τv̂(iω)

)
dω ≥ 0 (38)

• there exists ε > 0 such that(
G(iω)

1

)∗
Π(iω)

(
G(iω)

1

)
≤ −εG(iω)∗G(iω). (39)

Then, the feedback interconnection of G and ∆ is stable.
We formulate the following criterion
Theorem 3.2 (Generalized Zames-Falb): Consider a

Lur’e system given by the the interconnection of a LTI
system G, described by a stable transfer function G(s),
and a nonlinear operator ∆ : L2e → L2e defined as
∆(y) = v, where v(t) := n(y(t)) for every t ∈ R and n is
quasi-monotonic-and-odd function. Assume that
• the feedback inteconnection of G and τ∆ is well-posed

for every τ ∈ [0, 1]
• yn(y) ≥ 0
• y(t) ∈ L2 implies n(y(t)) ∈ L2
• ∆ is bounded in its restriction on L2
• there exists ε > 0 and a summable function h(t) such

that

‖h‖1 ≤
(

1 − D
1 + D

)2

(40)

Real{G(iω)[1 + H(iω)]} ≤ −εG∗(iω)G(iω) (41)

where H(iω) is the Fourier transform of h(t).
Then, the Lur’e system is stable.

Proof: Denote the Fourier transform of y(t) and v(t) as
ŷ(iω) and v̂(iω) respectively. Define

Π(iω) :=
1
2

(
0 1 − H(iω)

1 − H(iω)∗ 0

)
. (42)

Then, the condition defined in (38) is equivalent to

τ

2

∫ +∞

−∞

[ŷ(iω)∗(1 − H(iω))v̂(iω)+ (43)

+ ŷ(iω)(1 − H(iω)∗)v̂(iω)∗]dω ≥ 0 (44)
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Fig. 3. (a) Nyquist plot of the transfer function G(s) = −
10(s+0.25)s

s3+2s2+2s+1
; (b)

representation of the feedback nonlinearity

Using the Parseval theorem, Equation (43) becomes

τ

∫ +∞

−∞

n(y(t))
[
y(t) −

∫ +∞

−∞

h(σ)y(t + σ)dσ
]

dt ≥ 0 (45)

that is satisfied because of Theorem 2.1. Finally, Equation
(39) is met by hypothesis. Thus, we can apply Theorem 3.1
and conclude the stability of the interconnection.
When D = 0, we find as a special case the standard Zames-
Falb multiplier. Also, observe how the circle criterion (but
in a formulation limited to time-invariant nonlinearities) can
be obtained by using H(iω) = 0.

IV. Numerical Examples

Condition (41) can be checked by solving a linear matrix
inequality as proved in [12], however, we make use of
an analytically tractable example, just for the purpose of
showing the use of the generalized Zames-Falb stability
criterion.
Consider a Lur’e system defined as the positive feedback
interconnection of a linear time-invariant operator described
by a transfer function (Nyquist plot in Figure 3a)

G(s) = −
10(s + 0.25)s

s3 + 2s2 + 2s + 1
(46)

and the nonlinear function represented in (3)

n(y) := K arctan(y)[1 + D sin(5y + φ)] (47)

with K ≥ 0, D ∈ [0, 0.05] and φ ∈ [−π, π]. Nonlinearities of
this kind are common in many applications, such as when
interference fringes disturb the measurement obtained using
photodiodes ([13] and [14]). Consider H(s) = 0.75/(s+1) and
observe that its impulse response h(t) satisfies ‖h(t)‖1 < 0.75.
Observe that

Real{[1 − H∗(iω)]G(iω)} =

= −|1 − H∗(iω)|2Real
{ iω
−ω2 + iω + 1

}
=

= −
ω2|1 − H∗(iω)|2

ω4 − ω2 + 1
≤ −ε

ω2[0.252 + ω2]
ω6 + 1

= −ε |G(iω)|2,

that is satisfied for some ε > 0 sufficiently small. The
generalized Zames-Falb condition holds for

0.75 <
(

1 − D
1 + D

)2

⇒ D ≤
1 −
√

0.75

1 +
√

0.75
' 0.0718, (48)

that defines for G(s) the maximum deviation D of n(y)
from the monotonic function n(y) = K arctan(y) that can
be tolerated keeping the interconnection stable. Thus, the
generalized Zames-Falb criterion guarantees stability for
any K > 0 with a relative tolerance on the nonlinearity n of
about 7%. The quasi-monotonic-and-odd nonlinearity has a
spread of 5%, thus the stability is ensured.
The circle criterion guarantees stability for K < Kc ' 2.858,
while the Popov criterion guarantees stability for
K < K p ' 2.97. The standard Zames-Falb criterion
guarantees stability for any K > 0, but it can not be applied
for D , 0.

V. Conclusions
In this paper, we have derived a generalization of the

Zames-Falb multiplier for the stability analysis of Lur’e
systems. The standard Zames-Falb multiplier allows for a
formulation of a stability criterion when the feedback non-
linearity is strictly odd and monotonic. The new formulation
takes into account possible deviations from the odd and
monotonic behavior introducing a notion of robustness in
the criterion.
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