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Abstract— This research introduces a novel method for con-
structing a switched feedback control system to be used for
an autonomous agent. The state space is partitioned into sets
of states where a specific control is applied. Each partition
is represented by nodes of a digraph where the success of
the control in traversing the partitions is represented by a
connecting edge. Using the concept of capture sets in the field
of differential games, it is shown that a set of states included
in a particular partition is capable of reaching the target set
if the eigenvalues of the adjacency matrix representing the
digraph are all zero and none of the partitions are invariant.
The advantage of this method is that it is possible to assign finite
horizon controls to each partition that are easier to calculate
than infinite horizon methods, but still maintain the infinite
horizon guarantee of reaching the target. An example is given
to illustrate the implementation of the proposed controller.

I. INTRODUCTION

One challenge in the autonomous control field is guiding
an agent through a state space with physical obstacles. The
agent must both identify and provide guidance around these
obstacles to reach a specified target in finite time. Pursuit-
evasion scenarios without explicit physical obstacles are
similar in that the obstacles now become an opposing agent’s
dynamic capabilities and strategy. However, they differ in
that an opposing agent’s strategy may not be measured with a
sensor, and has to be predicted based on what is known about
the dynamic capabilities from the output states. Fortunately,
using parameter estimation and filtering techniques, the dy-
namic capabilities can be measured, but all possible actions
of the opposing agent need to be taken into consideration.
The control presented here takes an obstacle avoidance
approach to pursuit-evasion by forming a switched control
over state partitions. Here, “obstacles” are the inability to
transition from one partition to the next.

Classic solutions to pursuit-evasion implement Bellman
optimality by solving the infinite horizon Hamilton-Jacobi-
Bellman (HJB) [1] and Hamilton-Jacobi-Isaacs (HJI) [2]
equations to obtain the agent controls using a Value function
approach. Calculating the Value function [2]–[5] effectively
exhausts all possible open-loop controls, because the solution
iteration begins at the set of target states and expands
outward. If a descending gradient in the Value exists along
trajectories to the target, then the agent will succeed in
target capture. However, there are several disadvantages to
these methods such as the curse of dimensionality, and
states that are farthest from the target take the longest
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to calculate. Solutions such as the Fast Marching Semi-
Lagrangian (FMSL) methods [3] seek to alleviate this burden
by reducing the set of states involved in the calculations to
those where the value has not yet converged. Methods using
extremal aiming techniques have a front-based propagation
making them faster for short distances, but must identify
and compensate for discontinuities that develop as the front
propagates as seen in [6]. Other difficulties arise, because
the opposing agents’ strategies must be known in order to
calculate the infinite horizon solution. This is not an entirely
unreasonable requirement for many scenarios, but it is still
not practical to re-calculate the controls for games when the
opposing agent’s strategy is learned.

Methods using a finite prediction horizon tend to offer
fewer computations as a solution technique. These types
of solutions appear in work such as [7]. A good method
for finding solutions to probabilistic differential games with
observational uncertainty using a one-step Nash approach
was proposed in [8]. Finite horizon approaches are very
attractive for their quick computational aspects and incor-
porating observations. However, [9] shows that even with
perfect observations assigned to both agents, a finite horizon
is not enough to successfully guide the agent to the target set.
It is possible for the controller to produce trajectories that
may either enter a stable equilibrium or form a limit cycle
outside of the target set. In systems where the finite step
objective is evaluated repeatedly with learning, methods do
exist to evaluate their temporal performance [10]. However,
these strategies may still converge to an equilibrium that is
not in the target set.

This work seeks to increase the structural complexity
of a finite controller in order to reduce the computational
load to process the control. First, an intuitive method of
assigning finite horizon objectives over partitions of the
state space is given. Using a graph theoretical approach, the
trajectory may then be evaluated over the infinite horizon
for target reachability. The opposing agent dynamics are
then estimated using the FMSL method in select partitions,
reducing computational time. This gives the controller more
flexibility in adapting to various scenarios and opponents.

II. PROBLEM FORMULATION

The system consists of two agents. One agent has a known
set of dynamic capabilities whose strategy will be designed
before the onset of the game. The other agent is considered a
disturbance where their strategy is unknown and the dynamic
capabilities are not known until the game begins at t = 0+. A
solution of the system is a trajectory, w = (x, u, d), where
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w ∈ W is the set of valid trajectories. The state, x, is a
member of the compact state space X ⊂ Rn. The control of
the known agent, u, is a finite set U ⊂ N, and the disturbance
input, d, caused by the disturbing agent is a finite set D ⊂ N.
It is assumed that both u and d are mappings to compact
subsets in R.

Each trajectory in W must satisfy the dynamic equations

ẋ = f(x, u, d) = fA(x, u) + fD(x, d)

for all time, t ∈ R+, from some initial state, xt0 = x0. In this
formulation, the dynamics of the agents are exogenous and
separable. State evolutions for a particular control strategy,
u(·), and disturbance, d(·), are found using

xtf = O[f(x, u, d), x0, tf ] (1)

where O is an operator that integrates f(x, u, d) over the
interval, [t0, tf ].

The switched control should form a trajectory in W such
that xt>t∗ ∈ T for some t0 < t∗ <∞ where T ⊂ X . T is
termed the target set for the known agent and is positively
invariant such that a trajectory never leaves upon entry. The
game terminates when the state has entered the target set, a
stable equilibrium point, or limit cycle.

III. CONTROL LAW

The control law used in this formulation has the canonical
feedback form

u =M(x) (2)

It is desired that the function,M(x), form a valid trajectory
from a maximal number of initial states to reach target T in
a finite time.

A. Switched Feedback Structure

The control law considered is of the form

M(x) = mT I (3)

where m is a vector of q feedback controls

m =
[
m1(x) m2(x) · · · mq(x)

]T
(4)

and membership of a control to a particular set of states is
governed by

I =
[
1(x ∈ σ1) 1(x ∈ σ2) · · · 1(x ∈ σq)

]T
(5)

where 1() is the indicator function and σ1, . . . , σq are
partitions of states.

B. State Partitions

The state partitions are a cover of the state space, X , that
are identified by a set of symbols

Σ := {σ0, σ1, σ2, . . . , σq}

where q corresponds to the number of partitions in the state
space, each of which has an associated feedback control

mq(x). The subscript of the partition label is referred to as
the degree. It is required that the cover satisfy

X =

q⋃
k=0

σk

where the partitions are open along borders of higher degree
partitions and closed along boundaries of lower degree
partitions. The only stipulation placed on the assignment of
states to partitions is that σ0 = T .

IV. CAPTURE SET

The main objective of this method is to identify the states
using the switched control of Eqn. 3 that are capable of
traversing to the target set in finite time.

Definition 1: The capture set includes all the states that
satisfy

CF (d(·),M(x)) :=
{
x0 ∈ X|(x, u, d) ∈ W,

u =M(x), xt>t∗ ∈ T , t0 < t∗ <∞
}

where xt is found using the operator, O[f(x, u, d), x0, t].
The capture set consists of all the initial states where there

is a valid trajectory that terminates in the target set. This
condition is usually a rather cumbersome task to evaluate
using infinite horizon solutions. However, the rest of this
paper is dedicated to showing that adding more complexity to
the structure of the control through intuitive methods reduces
the calculation time of the capture set.

A. Properties of the Adjacency Matrix

From a graph theoretical perspective, the partitions, Σ,
form the nodes of a digraph where edges occur if

∃(w ∈ W, t̄) s.t. xt ∈ σk, xt̄ ∈ σj 6=k, t < t̄ <∞.

This defines a single transition, and there may be multiple
such transitions of a given trajectory that form a path. In
this formulation, a loop edge occurs when the agent tries to
transition, fails, and remains in the same partition.

The digraph is represented as a square adjacency matrix,
A, that is populated according to the rule,

aij =

{
0, if there is no edge from node i to j
1, if there is an edge from node i to j

In terms of state partitions, the diagonal of the matrix
refers to failed attempts at transitioning. Everywhere else
corresponds to a successful transition. Furthermore, it is well
known that the matrix, Aq , contains a count of how many
paths of length q exist from node i to j [11].

B. Inclusion of a Partition in the Capture Set

From Def. 1, an initial state that is to be included in the
capture set must satisfy:

1) The trajectory, w, must be valid in the sense that
(x, u, d) ∈W with u =M(x).

2) The trajectory must reach the target from the initial
state in finite time.
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By definition, if an edge exists between two node partitions,
then the trajectory is valid. However, the question of reaching
the target in finite time is still open. By partitioning similar
states in the state space, a whole subset of states may be
evaluated. Therefore, the capture set for a switched feedback
controller can be formulated in terms of the partitions.

Theorem 1: Assume a switched feedback law, M(x), is
given to an agent and the opposing agent uses a control, d(·).
Set Ā =

∑q
k=1A

k. If

1) A has all 0 eigenvalues,
2) The entry, Āi1 > 0 for i > 1, and
3) for all entries, Āj1 = 0, j > 1, then, Āij = 0,∀i.

then partition, σi ∈ CF (d(·),M(x)).
Proof: A matrix is nilpotent if and only if it has all

0 eigenvalues (for proof, see [12]). This means there is an
integer,

∃k ∈ {1, . . . , q} s.t. Ak = 0

For higher powers,

Aj = AkAj−k, j > k

such that

Aj = 0,∀j > k

Because, Ak determines how many paths of length k exist
between two partitions, the zero eigenvalue guarantees that
all paths from any node to another node are finite in the
number of segments composing the path. There are no cycles
or loops that the system can be caught in. Since the number
of segments of every path is finite, then this guarantees
that all trajectories across the partitions will stay in a final
partition in a finite amount of time.

To show that the final partition can only be the target set
(σ0), consider a finite path of the digraph that terminates in
any partition σj 6=0. Termination in a partition implies positive
invariance because it never leaves that set of states upon
entry. There are two modes by which this will occur: (a) the
trajectory started in σj or (b) the trajectory traversed into σj
from another partition. If (a) is true, then Āi1 = 0, 1 < j = i
which contradicts condition 2. Likewise, if (b) is true, then
Āj1 = 0, 1 < j 6= i and Āij ≥ 1, which contradicts condition
3. Therefore, if the conditions 1-3 hold, then the trajectory
is guaranteed to terminate in σ0.

This theorem presents the sufficient conditions to show
that a given partition is in the capture set. The conditions
presented here are restrictive in that they require all trajecto-
ries to traverse a finite number of partitions. It is quite trivial
to contrive a case where some partitions will result in a cyclic
path, but the trajectory remains in the part of the graph where
paths are finite and terminating in σ0. However, for pursuit-
evasion scenarios, this is not desirable and the restriction is
easy to impose. Furthermore, requiring that the trajectories
are finite allows for a quick calculation of the capture set.

V. IMPLEMENTATION

The major result of the previous section is that the problem
of ensuring that a trajectory reaches the target set may
be decomposed into simpler subproblems. Each localized
subproblem involves finding a control law to apply to a
partition that guides the trajectory to another partition such
that Thm. 1 holds. This section presents the methodology
used to construct such a controller. The procedure begins
by establishing a control law for the case of no disturbance
(fD(x, d) = 0). Then, a technique is presented to find all
the states capable of being captured by the opposing agent
when fD(x, d) > 0. Essentially, obstacles are identified as
conditions that prevent Thm. 1 from being satisfied.

A. Control with no Disturbance

The first step in constructing the switched feedback con-
troller is to assume that the opposing agent’s dynamics are
zero, fD(x, d) = 0. For pursuit-evasion, this implies that the
opposing agent is immobile. Then, the goal is to find both a
set of partitions, Σ, and a corresponding control vector, m,
to apply to Eqn. 3 that guide the state to the target set. In the
context of the game, this would be calculated off-line. The
algorithm presented below is one method that may be used
to find the switched controller, and it is beneficial because it
utilizes simple finite horizon controls.

In this procedure, it is assumed that the control assigned
to any of the partitions is of the form

mq(x) = arg min
u∈U

vq(x, u, d).

The function being minimized, vq(x, u, d), is a member of a
finite library of controls V available for the agent. In practice,
such a library would consist of functions that maximize the
capabilities of the agent. For example choices could include:
“close in on a target fast as possible” or “operate with little
sound output”. The last assumption is that the state space
may be reasonably approximated as a discrete grid, X̄ , so
that the following algorithm has a finite number of states to
calculate.

Algorithm 1: Constructing the switched objective system
proceeds as follows:

1) INITIALIZE σ0 = T , X̂ = X̄\σ0, fD(x, d) = 0, and
q = 0.

2) SET q = q + 1.
3) SELECT a function vq(x, u, d) ∈ V to minimize with

the control mq(x) over the domain, X̂ . If q = 1,
vq(x, u, d) = 0,∀x ∈ σ0 and must be positive definite
and increasing with ‖x‖2 for x /∈ σ0.

4) CALCULATE the reachability of the states by inte-
grating the trajectories from the initial states X̂ using
the operator in Eqn. 11.

5) SET σq :=
{
x0 ∈ X̂|∃xt

∗ ∈
⋃q−1

p=0 σp, t0 < t∗ <∞
}

6) SET X̂ = X̄\
⋃q

p=0 σp.

1There are several methods of integrating the vector field to determine
find the state trajectories. For simple planar cases, the authors use a visual
inspection.
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7) REPEAT from step 2 until X̂ = ∅ or σq =
{∅| ∀vq(x, u, d) ∈ V}.

8) SET σq = X̂ if σq = ∅ in step 7.
Upon termination of the algorithm, the set of partitions, Σ,

and control vector m will be realized. By the nature of the
algorithm, the partition and control combination will produce
the largest capture set possible given the library, V . All of the
states that are not grouped into a partition capable of reaching
the target set are grouped into σq , which is an invariant set.

Proposition 1: The output partition set of Alg. 1, Σ, and
control vector, m result in a digraph with a strictly lower
triangular adjacency matrix.

Proof: Suppose a trajectory starting from σk, travels to
a partition σj≥k. Then from step 5, the state would not be
included in σk, and is a contradiction.

Strictly lower triangular matrices are all nilpotent, and
since no trajectory travels into the invariant set, σq , the states
in all the other partitions are in the capture set for the agent.
This initial mapping is a good starting point from which the
final control mapping may be refined and calculated on-line.

B. Inclusion of the Opposing Agent Dynamics

Assume a pre-existing partition and control mapping, Σ
and m. When the opposing agent dynamics are included
such that fD(x, d) > 0, then one of the following scenarios
may occur:

1) Stagnation, the opposing agent is able to turn a parti-
tion σk into an invariant set.

2) Cyclic Partition Response, the opposing agent gener-
ates a cyclic path on the digraph.

3) Traversal to an Invariant Partition, the opposing agent
steers the trajectory away from the target.

4) Aid in Desired Path, the opposing agent helps reach
the target.

Response 4 is trivial in the sense that nothing has to be
done on the part of the agent to counteract the opposing
control disturbance. Such a scenario would occur if both
agents have a similar target and were required to cooperate.
Responses 1-3 are a result of the opposing agent seeking
to disrupt the state from reaching the target. Response 1 is
a result of the opposing agent having just enough strength
to keep the trajectory still (though there may be movement
within the partition). Two equally matched players at tug-
of-war would fall into this category. This is visualized with
a digraph by placing a 1 in the diagonal of the adjacency
matrix. Response 2 is a result of the opposing agent being
able to steer the state such that the strategies of the agents
result in a cyclic strategy response. Such a scenario occurs
when an evasive maneuver is made and a chase has to renew
again. An example of this may be found in [9]. There are a
variety of adjacency matrices that could result in this form.
Response 3 is when the opposing agent is able to form a new
path on the digraph that leads away from the target. This type
of situation occurs when the adjacency matrix is not strictly
lower triangular, and the paths in the upper triangular region
lead to an invariant set. In pursuit-evasion, an evader that is
faster than the pursuer would result in this type of response.

In this work, only Response 3 is considered. One possible
solution to Responses 1 and 2 may be found in [13]. To
guard against the opposing agent traversing another path
on the digraph away from the target, all the states from
which it is possible to deviate to an undesired partition
must be identified. This is rather troublesome, particularly
if the strategy of the opposing agent is unknown. The
authors, therefore, assume that the disturbance caused by the
opposing agent is a worst-case scenario. By enforcing this
assumption, any deviation on the part of the opposing agent
is only beneficial for the agent receiving the control.

A very useful tool for calculating this set is the Fast
Marching Semi-Lagrangian (FMSL) method discussed in [3].
The FMSL solution generates a value function where, under
certain assumptions on the running cost, it is possible to
identify the states where the opposing agent can deviate from
a path.

Proposition 2: Assume an invariant set D, a control law
u(x) = M(x) and the value, V (x), is the solution to the
partial differential equation (Dynamic Programming Princi-
ple)

0 = min
d∈D

[g(x, u, d) + 〈Vx(x), ẋ〉] (6)

subject to the boundary condition

V (x) = 0, ∀x ∈ D (7)

and the constraints

g(x, u, d) =

{
0, ∀x ∈ D
(0,∞), otherwise

(8)

then, the opposing agent is able to guide the state to the set
D from an initial state x0 ∈ X when V (x) < ∞ in finite
time.

The proof follows from the fact that the running cost,
g(x, u, d), is finite and accrues at every point not in D. Since
D is assumed invariant, if the trajectory never enters, then
V (x) will tend toward infinity. In practice, D will be set
as all the bordering partitions of σk to which the opposing
agent would seek to travel.

Once the set of states that lead into D for a partition
has been calculated, then the digraph is updated and the
adjacency matrix is analyzed to determine if it satisfies Thm.
1. If the theorem holds, then no further action has to be
taken because there is an alternate path to the target set.
In the case that the digraph fails to satisfy the theorem,
then a new partition, σq+1, is created and a new control
mq+1(x) is applied until V is exhausted. In general, the
process is iterative in that it needs to be conducted for all of
the partitions. However, partitions close to the state may be
calculated first and those far away (in terms of paths on the
digraph) may be ignored temporarily. In situations when the
dynamics of the opposing agent are a small disturbance, then
the controller is generally very efficient to calculate because
the set of states for which the opposing agent may disrupt
is small.

4807



Fig. 1: Initial partitioning scheme of the Homicidal Chauf-
feur. The shaded region is the assumed region where the
evader can traverse to an undesired partition.

VI. ILLUSTRATIVE EXAMPLE

The classic pursuit-evasion Homicidal Chauffeur game is
used to show applications when the switched control scheme
is beneficial and when it is not. The premise of the game is
that a faster pursuer is trying to capture a slower but more
agile evader. In the original formulation, time-optimality, an
infinite horizon solution to the HJI equation is used by both
agents to determine the optimal actions. Furthermore, the
agents were awarded perfect information of each other before
the onset of the game.

In this example, the pursuer is to receive the switched
control and a restriction will be placed that no information
is known about the evader until the onset of the game at
time t = 0+. Therefore, it is desired to quickly calculate
the control mapping. The parameters of the game will be
adjusted to see the impact on the calculation time.

A. Problem Formulation

The agents move on the plane with the following dynamics
in reduced form [2]:

ẋ1 = −vpx2

r
u+ ve sin(d) (9)

ẋ2 =
vpx1

r
u− vp + ve cos(d) (10)

where x1 and x2 are the horizontal and vertical relative
position of the evader with respect to the pursuer’s forward
heading. The parameters vp and ve are the speeds of the
pursuer and evader. The parameter, r, is the pursuer turn
radius. The inputs u ∈ [−1, 1] and d ∈ [0, 2π) are the
steering controls provided to the the pursuer and evader,
respectively. The bounds on the pursuer control represent
the sharpest possible turn to the right or left and the evader
is able to choose an instantaneous direction. The game
terminates when the evader enters into a ball around the
pursuer of radius, l.

T = {x ∈ X,
√
x2

1 + x2
2 < l}

B. Construction of the Control Law

Following the procedure discussed previously, the evading
(disturbance) agent is temporarily assumed to have no dy-
namic control while an initial control mapping is constructed.
Using Algorithm 1, the partitions shown in Fig. 1 are

σ0 = T
σ1 = X\{σ0 ∪ σ2}

σ2 =

{
x ∈ X,

√
(x1 ± r)2 + x2

2 < r − l
}

and assigned the following switched control vector:

m(x) =

[
minu∈U ‖xt+∆t‖
maxu∈U ‖xt+∆t‖

]
(11)

The strategy here is to have the pursuer minimize the distance
to the evader in σ1. However, when the evader is located
in the turning radius, σ2, the pursuer must first increase
the distance before reducing the separation distance. The
adjacency matrix of this scenario is

A =

0 0 0
1 0 0
0 1 0


Because it is strictly lower triangular, Thm. 1 is satisfied,
and in this case C(d,M(x)) = X .

Having established an initial control before the scenario,
the evader is no longer assumed to remain still at t > 0+.
Here, the interest is in finding the states where the evader
can cause a transition from σ1 to σ2. In this case, the evader
seeks to make σ2 an invariant set by always remaining within
the turning radius of the pursuer. The calculation proceeds
by setting D = σ2 and invoking Proposition 2 using the
FMSL method [3]. These states are shown in Fig. 1 by the
shaded region around σ2. When the evader is able to secure
the transition, the adjacency matrix becomes,

A =

0 0 0
1 0 1
0 1 0


which does not satisfy the criteria of Thm. 1. To remedy this,
the shaded region is labeled as a new partition, σ3, and for
this case the control vector is assigned

m(x) =

minu∈U ‖xt+∆t‖
maxu∈U ‖xt+∆t‖
maxu∈U ‖xt+∆t‖

 (12)

to prevent entry into σ2. It can be verified that the adjacency
matrix of this new partition-control scheme satisfies Thm. 1.

C. Results

In the following set of trials an array of simulations was
conducted to show the effect of the agent parameters on the
efficiency of the control calculation. It is well known that
the size of the shaded region of Fig. 1 is a function of the
speed ratio, γ = ve

vp
, and turning radius, r, of the pursuer

[2]. In particular, when the inequality,

l

r
>
√

1− γ2 + sin−1 γ − 1 (13)

is satisfied, it is possible for the pursuer to catch the evader.
As the parameters approach this line, the size of the set where
the evader is able to transition to σ2 increases. This directly
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Fig. 2: The effect of calculation time on vehicle parameters
for the Homicidal Chauffeur game.

impacts the number of calculations needed to find the control,
affecting efficiency.

In the simulations, the speed ratio, γ, was evaluated on
the interval [0, 1], and the turning radius, r, was evaluated
on the interval [0.5, 3]. The parameters of the speed ratio
were chosen such that the analytical solution given by Eqn.
13 would remain valid. When γ > 1, there is no effect in
the size of the calculation because the evader may secure an
undesired transition from any initial state. The turning radius
interval was chosen to give a good array of data from which
to compare to the analytical solution. All calculations were
performed on a FitPC2 mobile platform with Intel Atom 1.10
GHz processor and 1GB of RAM.

Figure 2 shows the time trial results for a 51 × 51 grid
of nodes (X̄) in an approximation of the state space2. The
dashed line represents Eqn. 13 as an equality. The result
shows two regions emerging in the time trials. The darker
region corresponds to parameters where it is possible for the
evader to escape, and it is possible for the evader to enter into
the pursuer’s turning radius from all states. All the grid nodes
are used in the FMSL calculation, causing a major increase in
the calculation time. The lower bound of this region follows
the inequality boundary well. On the lower side of the dashed
line, the calculation time is greatly reduced. This region
corresponds to parameters where the evader is not capable of
steering the trajectory into the pursuer turning radius from all
initial states. The efficiency of the controller increases in this
region because the pursuing agent can establish the correct
control with fewer nodes in a small amount of time (usually
< 1s). In between the light and dark region is a narrower gray
transition region that takes the general trend of the dashed
line. The gray color band spans a very large interval on the
time color scale from 20% of the bottom increasing to 20%
from the top which corresponds to a very sharp change in
efficiency for a narrow change in the parameter space.

Several observations may be made regarding using the
controller in a time efficient manner. Mainly, the controller

2Qualitatively, alternate grid sizes will produce similar results relative to
the parameter domain.

performs better when the disturbance has a smaller impact
on the trajectory. This is because much of the state space
may be removed from the calculation. In comparison, tra-
ditional methods use the entire state state space by default.
This means the calculation time would be the same for all
parameters and equal the time seen in the top right corner
of Fig. 2. For the case where the parameters of the agents
are close to the narrow gray region, then there is very little
warning of a sharp increase in calculation time. However,
the time is bounded by the time needed to calculate the
control for all states. Furthermore, because the control front
propagates outward from the current position, the known
agent has the advantage of having the control propagate in
front of its desired motion.

VII. DISCUSSION AND CONCLUSIONS

This work provides a methodology by which a control
law is partitioned into regions of the state space. The
requirement of designing the control law so that an agent
may capture the target set from a given partition is readily
evaluated using Thm. 1. As a result, several benefits emerge.
The partitions and control laws may be constructed using
a more intuitive approach. Because the opposing agent’s
strategy is not known, the assumed worst-case scenario may
now be evaluated on the borders of the partitions rather
than the entire state space. As illustrated by the Homicidal
Chauffeur scenario, cases where the opposing agent distur-
bance deviates from the worst-case strategy results in faster
calculations. This allows for controllers to be constructed
during a game for scenarios where the agent is unaware of
the opponent until the game starts.
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