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Abstract— In this paper we focus on comparing three candi-
date approaches to the optimal placement of sensors for state
estimation-based continuous health monitoring of structures.
The first aims to minimize the static estimation error of the
structure deflections, using the linear stiffness matrix derived
from a finite element model. The second approach aims to
maximize the observability of the derived linear state space
model. The third approach aims to minimize the dynamic
estimation error of the deflections using a Linear Quadratic
Estimator. Both nonlinear mixed-integer and relaxed convex
optimization formulations are presented. A simple search-based
optimization implementation for each of the three approaches
is demonstrated on a model of the long-span New Carquinez
Bridge in California.

I. INTRODUCTION

The deterioration of our national infrastructure is driving

the need for objective information associated with infras-

tructure health management, and has motivated infrastruc-

ture owners to begin adopting continuous and autonomous

monitoring of their assets through the use of permanent

monitoring systems [1]. These structural health monitoring

(SHM) systems are designed to generate quantitative mea-

surements that empower objective and cost-effective eval-

uation of bridge conditions. Ultimately, a structural health

monitoring system needs to address the following question

unequivocally:

”Is the structure OK?”

The answer needs to be expressed in terms of simple

actionable choices, e.g., using three levels (1) Green (OK),

(2) Yellow (Warning: inspect specific places on the structure

for corrective maintenance), or (3) Red (Shutdown/evacuate

the structure immediately).

For predictive maintenance (yellow flag), as contrasted

with scheduled maintenance, the goal is to use sensor read-

ings together with mathematical models of the bridge to pre-

dict the health of the bridge and generate real-time actionable

maintenance protocols. It can be expected that only doing

required inspection (in a predictive fashion) will be much less

expensive than performing scheduled, and often unnecessary,

inspection. This approach will involve the use of sensing (for

stress, deformation, corrosion, etc.), wireless communication,

advanced structural modeling, system identification, grid

computing, embedded software, decision science, and other
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Fig. 1. Flow of information & typical number of variables for bridge health
monitoring.

relevant tools. More specifically, the system will require the

efficient integration of sensor technology, optimal sensor

placement, wireless sensor networking, structural system

identification, distributed simulation, and data management

within a network. For bridge health monitoring a typical flow

of information and data sizes for estimation are shown in

Fig. 1. A high-fidelity physics-based model of the bridge

is developed using finite elements, based on the as-built

drawings. The bridge model is used for a number of pur-

poses: (a) to compute the optimal sensor placement, which

is used when instrumenting the bridge, (b) to generate the

reduced order pseudo-inverse model (estimator) to estimate

loads (unknown inputs), (c) in the full-order feed-forward

model to estimate the strains at modeled elements, and finally

(d) in load capacity and fatigue models to estimate the current

health of the bridge.

An important task in implementing a structural health

monitoring system is determining the optimal number and

locations of the sensors. There is extensive literature on opti-

mal sensor placement (OSP) in aerospace structures [2], pro-

cess control industry [3], [4], nuclear power plants [5], and

bridges [6], [7]. The studies range from heuristic approaches
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based on engineering judgment to systematic optimization

approaches based on mathematical system models. There

are two distinct aspects of health monitoring that influence

OSP: detecting damage as early as possible, and determining

fatigue levels even before damage occurs. The first approach

can be posed as model identification: to detect changes in

behavior of the structure as an indicator of damage. The latter

approach can be posed as state estimation: by estimating the

state of the structure (i.e. the displacements in case of a

static system, and displacements and velocities in case of a

dynamic system), it is possible to estimate the stresses and

strains of the structure over time, or compute the accumulated

fatigue. The majority of publications on OSP for SHM focus

on the model identification approach.

In this paper we focus on OSP for state estimation-based

continuous SHM of structures using three approaches, of

increasing computational complexity. The first method aims

to minimize the static estimation error of the structure deflec-

tions, using the linear stiffness matrix derived from a finite

element (FE) model. The second approach aims to maximize

the observability Gramian of the derived linear state space

model. The third approach aims directly at minimizing the

dynamic estimation error of the deflections using a Linear

Quadratic Estimator (LQE). Each method is evaluated using

a finite element model of the long-span New Carquinez

Bridge in California.

The paper is organized as follows. In Section II a generic

bridge model is introduced. Each of the OSP approaches

(static estimation, observability and dynamic estimation) is

defined in Sections III, IV and V respectively. Finally, the

results are presented in Section VI and the conclusions

appear in Section VII.

II. BRIDGE MODEL

The OSP methods described in this paper are applied to a

model of the New Carquinez Bridge, which is a long span

suspension bridge, managed by Caltrans (California DOT).

The bridge connects the Solano and Contra Costa Counties,

is located between Vallejo (on the North side) and Crockett

(on the South side) in California, and has a length of 1056
m (3465 ft), with a main span of 728 m (2389 ft).

A simplified 2D finite element model of the bridge has

been created that includes the anchors, towers, and deck,

with a total of 270 nodes. Figure 2 shows the 2D model,

with the heavy dots indicating a potential sensor selection.

It is assumed that there are 80 potential sensor locations, all

on the roadbed nodes of the bridge.

For the examples below the model inputs and outputs are

limited to the vertical motion of the bridge deck. For the

loads considered here, the bridge operates within the linear

regime. Based on the finite element model locally linear

static and dynamic models are constructed.

A. Static linear model

Assuming the dynamics are sufficiently fast, the structure

can be approximated by:

δ = Gf, G ∈ Rn×p (1)

where G is the flexibility matrix, δ the deflection, and f the

vertical forces on the roadbed. The forces f are assumed to

be independent random variables:

f ∈ N (0, Vf ). (2)

We assume that we can measure any of the roadbed deflec-

tions:

y = Csδ + w, w ∈ N (0, Vw) (3)

where w is the measurement noise, Cs is the sensor output

matrix and y is the measured output.

B. Dynamic linear model

Assuming the dynamics are relevant, the structure can be

approximated by:

Mδ̈ + Cδ̇ + Kδ = Hf,

M, C,K ∈ Rn×n, H ∈ Rn×p,
(4)

where M is the mass matrix, C the damping matrix, K the

stiffness matrix, δ the deflection, H the input matrix, and f

the vertical forces exerted on the roadbed. We assume that

we can potentially measure any of the roadbed deflections.

Equation (4) can be rewritten in standard state-space form:






ẋ = Ax + Bf

δ = Cδx

y = Cdx + w

(5)

where:

x =

[

δ

δ̇

]

(6)

A =

[

0 I

−M−1K −M−1C

]

(7)

B = M−1H (8)

Cδ =
[

I 0
]

(9)

Cd =
[

Cs 0
]

(10)

f ∈ N (0, Vf ) (11)

w ∈ N (0, Vw) (12)

and w is measurement noise, x is the state vector, and y is

the measured output vector.

III. STATIC ESTIMATION

Using the static linear model (see Section II-A), the max-

imum a posteriori (MAP) estimate [8] of f from measured

data y, see (3), gives:

f̂ =
(

V −1

f + GT CT
s V −1

w CsG
)

−1

GT CT
s V −1

w y, (13)

with the associated covariance matrix:

cov f̂ =
(

V −1

f + GT CT
s V −1

w CsG
)

−1

. (14)

With x̂ = Gf̂ , then the covariance matrix of the state

estimate is:

cov x̂ = G (cov f̂) GT =

G
(

V −1

f + GT CT
s V −1

w CsG
)

−1

GT .
(15)
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Fig. 2. A schematic of the New Carquinez Bridge 2D model with potential sensor locations.

Introducing θ as the vector of sensor selections, where a

value of 1 means that the corresponding output is selected

for sensing, and 0 means that it is not selected, the static

estimation-based optimal sensor selection problem can be

posed as the standard optimization problem:

min
θ

φ(cov x̂(θ))

s.t.

{

θi ∈ {0, 1}

1
T θ = m

(16)

where m is the number of sensors, 1 is a vector of ones and

φ(X) is a measure of the covariance size, such as Tr(X),
||X|| or log det(X), and Cs,i is defined as the i’th row of

Cs:

cov x̂(θ) = G
(

V −1

f + GT Hs(θ)G
)

−1

GT ,

Hs(θ) =
∑m

i=1
θiC

T
s,iV

−1

w Cs,i,
(17)

which is a mixed-integer optimization problem.

A. Solving the mixed-integer optimization problem

The optimization problem described by (16) requires an

exhaustive search to find the global optimum, but a local

optimum can be found using a simple search algorithm:

1) Initialize. Start with an empty set of selected sensors.

2) Add most relevant sensor. Test adding each unse-

lected sensor to the set of selected sensors, one at a

time, and keep the one giving the lowest cost function

value.

3) Remove redundant sensor, if any. Test removing each

of the selected sensors, one at a time, and remove

the least important one if the resulting set hasn’t been

selected before.

4) Go back to step 2 until the maximum number of

sensors is reached, or a sufficiently low cost function

value is achieved.

This approach is applied to the static simplified model, and

can also be applied to the next two approaches (see Sections

IV and V). Note that the maximum number of sensors m

can be set to the maximum number of sensors that can be

reasonably afforded. Also note that if certain locations are

unsuitable for placing sensors, they can simply be removed

from the set of potential sensor locations. Some locations

may be unsuitable for placing sensors due to the harsh

environment, inaccessibility, etc. The optimization results

may provide further guidance in reducing the number of

sensors by evaluating the achieved cost function value as

a function of the number of sensors.

B. Solving the relaxed convex optimization problem

Approximate solutions to (16) can be obtained via re-

laxation to a convex optimization problem [9]. Convex

optimization problems are readily solved using available

software and computational methods [10]. Equation (16) can

be converted to a relaxed sensor selection problem as the

following standard optimization problem:

min
θ

φ(cov x̂(θ))

s.t. 0 ≤ θi ≤ 1, 1
T θ = m.

(18)

Choosing φ(X) = Tr(X), (18) can be converted to the

convex optimization problem:

min
Q,θ

Tr(Q)

s.t.



















[

Q G

GT V −1

f + GT Hs(θ)G

]

≥ 0

0 ≤ θi ≤ 1,

1
T θ = m.

(19)

The constraint θi ∈ {0, 1} is relaxed to allow θi to take

any value between 0 and 1. Once the optimum is found,

an approximate solution must be generated by rounding the

values to either 0 or 1, see [9]. The resulting optimal value

of φ is a lower bound on the mixed integer problem in (16).

In principle, the above optimization problem can be solved

using standard convex optimization tools. However, even

for small finite element models the resulting problem size

requires special handling, which is still under development.

For now, we refer to the approach in Section III-A as an

upper bound on the solution that can be achieved with the

convex optimization approach.

IV. OBSERVABILITY GRAMIAN

In the case of dynamic estimation, the goal is to estimate

the deflections from the selected sensor measurements. An

important system property in this context is the observability

of the system state [11], which indicates to what extend the

state can be reconstructed from the output signal. We solve

the optimization problem:

min
θ

Tr(P−1)

s.t.

{

AT P + PA +
∑

i θiC
T
d,iCd,i = 0,

PT = P ≥ 0,

(20)

where P is the observability Gramian matrix (for a stable

system). This problem can be solved using the search method

discussed in Section III-A.
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Note that the above optimization problem is not linear or

quadratic in the parameters (P and θi), and as a consequence

cannot be readily solved using convex optimization tools. By

introducing Q such that:

P−1 ≤ Q ⇔ (21)
[

Q I

I P

]

≥ 0 (22)

the problem can be rewritten as the equivalent convex

optimization in P , Q and θ, formulated as:

min
θ

Tr(Q)

s.t.







































AT P + PA +
∑

i θiC
T
d,iCd,i = 0,

P ≥ 0,
[

Q I

I P

]

≥ 0,

0 ≤ θi ≤ 1,

1
T θ = m.

(23)

V. DYNAMIC ESTIMATION

As an alternative to observability, the sensor selection

problem can be directly posed as finding the set of sensors

that yields the best dynamic estimator performance. Using

the linear dynamic model in (5) we can construct a Linear

Quadratic Estimator (LQE):

˙̂x = (A − LCd)x̂ + Ly (24)

δ̂ = Cδx̂ (25)

where:

0 = AP + PAT − PHd(θ)P + BVfBT ,

Hd(θ) =
∑m

i=1
θiC

T
d,iV

−1

w Cd,i,

L = P (
∑

i θiCd)
T

V −1

w .

(26)

P , the solution to the Algebraic Riccati Equation (26), is

equal to the covariance of the state estimation error, so

cov(δ − δ̂) = CδPCT
δ . (27)

As a result, the dynamic estimation-based sensor placement

problem can be posed as:

min
θ

φ(CδPCT
δ )

s.t.










AP + PAT − PHd(θ)P + BVfBT = 0

θi ∈ {0, 1}

1
T θ = m.

(28)

Note that (26) is not linear or quadratic in the parameters (P

and θi). By introducing:

S = P−1 (29)

(26) can be converted to an equivalent Algebraic Riccati

Equation (ARE):

0 = AT S + SA − Hd(θ) + SBVfBT S, (30)

which is quadratic in the parameters. This in turn can be

rewritten as a Linear Matrix Inequality (LMI) [12], which is

linear in the parameters (S and θi):
[

AT S + SA − Hd(θ) SB

BT S −V −1

f

]

≥ 0,

S ≥ 0.

(31)

The sensor placement can be formulated as minimization

of the estimation error covariance matrix defined in (27),

leading to the following optimization problem:

min
S,θ

Tr(CδS
−1CT

δ )

s.t.







[

AT S + SA − Hd(θ) SB

BT S −V −1

f ,

]

≥ 0,

S ≥ 0.

(32)

This can be rewritten as the convex optimization problem in

the variables S, Q and θ:

min
S,Q,θ

Tr(Q)

s.t.



































[

AT S + SA − Hd(θ) SB

BT S −V −1

f

]

≥ 0,
[

Q Cδ

CT
δ S

]

≥ 0,

0 ≤ θi ≤ 1,

1
T θ = m.

(33)

VI. RESULTS

The sensor selections have been determined for the sim-

plified 2D model of the New Carquinez Bridge discussed in

Section II. For each sensor placement approach the results

are shown in a plot with two subplots. In the top sub-plot

(cost function value graph, or cost graph, not to be confused

with monetary cost) shows the cost function value (vertical

axis) as a function of the number of selected sensors (hori-

zontal axis). The bottom sub-plot (sensor location graph) is

a schematic depiction of the location of the selected sensors

(horizontal axis) as a function of the number of selected

sensors (vertical axis). For a given number of sensors, the

dots on the corresponding (imaginary) horizontal line show

location of the sensors. By definition the number of dots

(sensors) on a horizontal line equals the sensor count value.

Note that in all three methods the cost function is some

direct or indirect measure of the estimation error. Therefore,

the cost graph is very helpful in selecting the number of

sensors to use, as it shows how much the cost function value

is decreased by adding another sensor (moving to the right

in the top sub-plot), while the sensor location graph shows

which sensors are added or moved as more sensors are used

(moving up in the bottom sub-plot). Note that the cost for

each OSP approach is defined differently, and should not be

compared between figures. In all plots the case of 12 selected

sensors is highlighted.

Figure 3 shows the results for the static estimation-based

OSP problem (16), Figure 4 shows the results for the

observability-based OSP problem (20), and Figure 5 shows

the results for the static estimation-based OSP problem
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Fig. 3. Sensor selection result from the static estimation method.

(28). Each of the figures show a similar pattern: all three

methods show a significant decline in cost function value

when selecting from 1 up to 20 sensors, and they all show

sensor locations that are spread out along the length of the

bridge, although not uniformly.
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Fig. 4. Sensor selection result from the observability method.

Note that the static estimation OSP problem in (16)

involves an n × n matrix inverse, which is implemented

efficiently using Gaussian elimination. The observability

OSP problem in (20) involves solving a 2n × 2n Lyaponuv

equation. Finally, the dynamic estimation OSP problem in

(28) involves solving a 2n× 2n Algebraic Riccati Equation.

The time to compute each of the cases on an Intel-based

computer (Intel Core Duo, 2.16GHz) is shown in Table I.
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Fig. 5. Sensor selection result from the dynamic estimation method.

TABLE I

COMPUTATION TIME FOR 40 SENSORS.

Approach Time (mm:ss)

Static estimation 00:32

Observability 09:45

Dynamic estimation 56:20

As expected the static estimation-based approach is the

fastest. The observability-based approach is about 18 times

slower, and the dynamic estimation-based approach another

6 times slower (more than 100 times slower than the first

method).

VII. CONCLUSIONS

We have proposed and compared three approaches to the

Optimal Sensor Placement (OSP) for estimation-based health

monitoring of civil structures: based on minimizing the static

displacement estimation error, minimizing the inverse of

the observability, and minimizing the dynamic displacement

estimation error respectively. Each of these approaches leads

to a nonlinear mixed-integer optimization problem for which

a locally optimal solution can be found using an iterative

search algorithm. Each of these approaches can also be

relaxed to a convex optimization problem, for which a global

optimal solution can be found. However, the solution to the

relaxed problem must be approximated to generate a discrete

sensor selection. Specialized software is required to handle

the convex optimization in case of the large model orders

anticipated.

Each of the approaches is implemented and applied to a

simple 2D model of the long-span New Carquinez Bridge

in California. The dynamic estimation error as a function of

sensor count shows a similar performance of all the methods,

see Fig. 6. In addition, the resulting sensor placement solu-

tions are similar for each of these approaches, but certainly
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not identical. While by far the most computationally inten-

sive, the dynamic estimation-based OSP approach captures

the actual sensor placement problem for state estimation-

based health monitoring. Note that the results are based

on a small model (270 nodes); structural health monitoring

of large structures requires detailed finite element models

that are significantly larger (>10,000 nodes), which signifi-

cantly increases the required computation time. More study

is needed to determine if, e.g., the more computationally

efficient observability-based or static estimation OSP ap-

proaches yield sufficiently good results.

The next goal is to apply OSP to detailed 3D finite

element-based bridge models, and, as a practical application,

use the generated results for efficiently instrumenting the

New Carquinez Bridge [13]. This involves implementing the

optimization algorithms using specialized efficient convex

solvers, and integrating model-reduction techniques into the

approach. In order to assess fatigue, the most common

method is the so-called “Rain Flow Counting” [14], [15]

which requires strain estimates rather than deflection. Esti-

mating strain may very well place sensors at entirely different

locations than those shown here for deflection.

If the methods can solve OSP of the larger models in

reasonable time, they can be extended to include additional

requirements, such as robustness to sensor failure: place n

sensors such that the worst case cost function value of the

cases with up to m sensor failures is minimized, leading to

a min-max optimization problem.

We plan to integrate the most suitable OSP method into

a software tool that can generate an optimized sensor place-

ment plan based on a detailed finite element model, and plan

to publish on these efforts in the future.
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