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Abstract— Seismic sensors are widely used to monitor human
activities, such as pedestrian motion and detection of intruders
in a secure region. This paper presents a symbolic dynamics-
based method of data-driven pattern classification by extracting
the embedded information from noise-contaminated sensor time
series. In the proposed method, the wavelet transforms of
sensor data are partitioned to construct symbol sequences.
Subsequently, the relevant information is extracted via con-
struction of probabilistic finite state automata (PFSA) from
symbol sequences. The patterns are derived from individual
PFSA and are subsequently classified to make decisions on
target classification. The proposed method has been validated
on field data from seismic sensors to monitor infiltration of
humans, light vehicles, and animals. The results of pattern
classification demonstrate low false-alarm/missed-detection rate
in target detection and high rate of correct target classification.

Index Terms— Personnel detection, time series analysis, fea-
ture extraction, continuous wavelet transform, symbolic dynam-
ics, probabilistic finite state automata, seismic sensor

I. INTRODUCTION

Unattended ground sensors (UGS) are widely used in

industrial monitoring and military operations. Such UGS

are usually lightweight devices that automatically monitor

the activities at a site, and transfer target detection and

classification reports to some higher level processing center.

Commercially available UGS systems make use of multiple

sensing modalities (e.g., acoustic, seismic, passive infrared,

magnetic, electrostatic, and video). Efficacy of UGS systems

is often limited by high false alarm rates because the onboard

data processing algorithms may not be able to correctly

discriminate different types of targets (e.g., humans from

animals) [1]. Acoustic and seismic sensors are the most

common modalities used in UGS systems. In this paper,

seismic sensors are chosen for target detection and classifica-

tion because they are less sensitive to Doppler effects (e.g.,

noise originating from moving vehicles), and atmospheric

and terrain variations, as compared to acoustic sensors [2].

In a target detection and classification problem, the targets

usually include human, vehicles, and animals. Discriminat-
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ing human footstep signals from other targets and noise

sources is a challenging problem, because the signal to

noise ratio (SNR) of footsteps decreases rapidly with the

distance between the sensor and the pedestrian. Furthermore,

the footstep signals vary greatly for different persons and

environments. Recent literature has shown detection of heavy

vehicles that radiate loud signatures [3]. However, the sig-

natures of humans and light vehicles are usually weak and

contaminated with the sensor noise.

Current target detection methods using seismic signals

can be classified into three categories: (i) time domain

methods [4], (ii) frequency domain methods [3], [5], and (iii)

time-frequency domain methods [2], [6]. Generally, time-

domain analysis may not be able to perform very accurate

target detection because of the interfering noise, complicated

signal waveforms, and variations of the terrain [2]. However,

these methods are limited by noise sources that might

generate spikes or intermittent peaks in the data. Recent

research has relied on either frequency-domain or time-

frequency domain methods for target detection and classi-

fication. Specifically, wavelet transform-based methods have

been useful for signal analysis because of their denoising

and time-frequency localization properties.

The work reported here makes use of a wavelet-based fea-

ture extraction method, called Symbolic Dynamic Filtering

(SDF) [7]. In SDF, transformed time series data are parti-

tioned for conversion into symbol sequences. Subsequently,

probabilistic finite-state automata (PFSA) are constructed

from these symbol sequences to compress the pertinent

information into low-dimensional statistical patterns. The

SDF-based feature extraction algorithm mitigates the noise

by using wavelet analysis, captures the essential signatures

from the time-frequency domain of the signals, and generates

low-dimensional feature vectors for pattern classification.

Rao et al. [8] have reported a comparison of SDF with other

statistical pattern tools.

This paper extends the concepts of SDF for analysis of

signals on a two-dimensional domain to facilitate feature ex-

traction directly from the scale-shift wavelet domain without

any need for non-unique conversion to a one-dimensional

sequence. The proposed method is validated on field data

from seismic sensors that monitor the infiltration of humans,

light vehicles and animals for border security.
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II. PROBLEM DESCRIPTION AND FORMULATION

This paper focuses on the problem of detection and

classification of different targets (e.g., humans, animals,

and vehicles), where seismic sensors are used to capture

the respective characteristic signatures. For example, in the

movement of a human or an animal across the ground,

oscillatory motions of the body appendages provide the

respective characteristic signature. The seismic data used in

this analysis were collected by three-axial geophones from a

test field on a wash (i.e., the dry bed of an intermittent creek)

full of small granular gravel. During multiple field tests,

sensor data were collected for several scenarios that consisted

of targets walking along an approximately 150 meters long

trail, and returning along the same trail to the starting point.

Figure 1 illustrates the data collection scenario.

The targets consisted of people (e.g., male and female

humans), animals (e.g., donkeys, mules, and horses), and

all-terrain vehicles (ATVs). The humans walked alone and in

groups with and without backpacks; the animals were led by

their human handlers and they made runs with and without

payloads; and the ATVs moved at different speeds (e.g.,

5 mph and 10 mph). There were three sensor sites, each

equipped with acoustic and seismic sensors. The seismic

sensors were buried six inches deep underneath the soil

surface. All targets passed by the sensor sites at a distance

of approximately 5 meters. Signals from the seismic sensors

were acquired at a sampling frequency of 10 KHz.

The tree structure in Fig. 2 shows how the detection

and classification problem is formulated. In the detection

stage, the pattern classifier detects the presence of a moving

target against the null hypothesis of no target present; in

the classification stage, the pattern classifier discriminates

among different targets. While the detection system should

be robust to reduce the false alarm rates, the classification

system must be sufficiently sensitive to discriminate between

different classes of targets with high fidelity. In this context,

feature extraction plays an important role in target detection

and classification because the performance of the classifier

largely depends on the quality of the extracted features.

In the classification stage, there are multiple classes (i.e.,

humans, animals, and vehicles); and the signature of the vehi-

cles is distinct from those of the other two classes. Therefore,

this problem is formulated into a two-layer classification

procedure. A binary classification is first performed to detect

Start
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Fig. 1. An illustration of the test scenario with three sensor sites
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Fig. 2. Tree structure formulation of the detection & classification problem

the presence of a target and then to identify whether the target

is a vehicle or a human/animal. Upon recognizing the target

as a human/animal, another binary classification is performed

to determine the specific class.

III. SYMBOLIC DYNAMICS AND ENCODING

While the details of SDF have been reported for analysis

of time series data [7][9], this section briefly reviews the

underlying concepts of symbolic dynamic filtering (SDF) for

feature extraction from sensor time series.

A. Transformation of Time Series to Wavelet Domain

This section presents the procedure for generation of

wavelet images from observed sensor time series data for

construction of symbolic representations of the underlying

dynamics. A crucial step in SDF is partitioning of the phase

space for symbol sequence generation. Various partitioning

techniques have been suggested in literature for symbol

generation, and a brief review is given in [9].

In wavelet-based partitioning, a time series is first trans-

formed to the wavelet domain, where wavelet coefficients

are generated at different time shifts and scales. The choice

of the wavelet basis function and wavelet scales depends on

the time-frequency characteristics of individual signals.

For every wavelet, there exists a certain frequency called

the center frequency Fc that has the maximum modulus in the

Fourier transform of the wavelet. The pseudo-frequency fp of

the wavelet at a particular scale α is given by the following

formula:

fp =
Fc

α ∆t
, (1)

where ∆t is the sampling interval, and the scales are calcu-

lated as follows:

αi =
Fc

f i
p ∆t

(2)

where i = 1, 2, ..., and f i
p are the frequencies that are

obtained by choosing the locally dominant frequencies in

the Fourier transform.

Figure 3 shows an illustrative example of transformation

of the time series (Fig. 3(a)) to a (two-dimensional) wavelet

image (Fig. 3(b)). The amplitudes of the wavelet coefficients
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Fig. 3. Symbol image generation via wavelet transform of the sensor time series data and partition of the wavelet surface in ordinate direction

over the scale-shift domain are plotted as a surface. Subse-

quently, symbolization of this wavelet surface leads to the

formation of a symbolic image as shown in Fig. 3(c).

B. Symbolization of Wavelet Surface Profiles

This section presents partitioning of the wavelet surface

profile, as shown in Fig. 3(b), which is generated by the

coefficients over the two-dimensional scale-shift domain, for

construction of the symbolic image in Fig. 3(c). The x − y

coordinates of the wavelet surface profiles denote the shifts

and the scales respectively, and the z-coordinate denotes the

pixel values of wavelet coefficients (i.e., the surface height).

The wavelet surface profiles are partitioned such that

the ordinates between the maximum and minimum of the

coefficients along the z-axis are divided into regions by

different planes parallel to the x − y plane. For example,

if the alphabet is chosen as Σ = {a, b, c, d}, i.e., |Σ| = 4,

then three partitioning planes divide the ordinate (i.e., z-

axis) of the surface profile into four mutually exclusive and

exhaustive regions, as shown in Figure 3 (b). These disjoint

regions form a partition, where each region is labeled with

one symbol from the alphabet Σ. If the intensity of a pixel

is located in a particular region, then it is coded with the

symbol associated with that region. As such, a symbol from

the alphabet Σ is assigned to each pixel corresponding to the

region where its intensity falls. Thus, the two-dimensional

array of symbols, called symbol image, is generated from

the wavelet surface profile, as shown in Figure 3 (c).

The surface profiles are partitioned by using either the

maximum entropy partitioning (MEP) or the uniform parti-

tioning (UP) methods [10]. If the partitioning planes are sep-

arated by equal-sized intervals, then the partition is called the

uniform partitioning (UP). Intuitively, it is more reasonable if

the information-rich regions of a data set are partitioned finer

and those with sparse information are partitioned coarser.

To achieve this objective, the maximum entropy partitioning

(MEP) method has been adopted such that the entropy of the

generated symbols is maximized. In general, the choice of

alphabet size depends on specific data set. The partitioning of

wavelet surface profiles to generate symbolic representations

enables robust feature extraction, and symbolization also

significantly reduces the memory requirements.

For the purpose of pattern classification, the reference data

set is partitioned with alphabet size |Σ| and is subsequently

kept constant. In other words, the structure of the partition

is fixed at the reference condition and this partition serves

as the reference frame for subsequent data analysis [7].

C. Conversion from Symbol Image to State Image

For analysis of (one-dimensional) time series, the states

of a PFSA represent different combinations of blocks of

symbols on the symbol sequence and the edges represent the

transition probabilities between these blocks [7]. Therefore,

for analysis of (one dimensional) time series, the ‘states’ de-

note all possible symbol blocks (i.e., words) within a window

of certain length. Let us now extend the notion of ‘states’

for analysis of wavelet surface profiles via construction of a

‘state image’ from a ‘symbol image’.

Definition 3.1: (State) Let W ⊂ H be a two-dimensional

window of size (ℓ × ℓ) and its size is denoted as |W| = ℓ2.

Then, the state of a symbol block formed by the window W
is defined as the configuration q=SΣ

(

W
)

.

Let the set of all possible states in a window W ⊂ H be

denoted as Q , {q1, q2, ...., q|Q|}, where |Q| is the number

of (finitely many) states. Let us denote Wi,j ⊂ H to be the

window where (i, j) represents the coordinates of the top-left

corner pixel of the window. In this notation, qi,j=SΣ

(

Wi,j

)

denotes the state at pixel (i, j) ∈H. Thus, every pixel (i, j) ∈
H corresponds to a particular state qi,j ∈ Q on the image.

Then, |Q| is bounded above as |Q| ≤ |Σ||W|; the inequality

is due to the fact that some of the states might have zero

probability of occurrence.

Every pixel in the image H is mapped to a state (i.e., a

two-dimensional word or block of symbols), excluding the

pixels that lie at the periphery depending on the window size.

Figure 4 shows an illustrative example of the transformation

of a symbol image to the state image based on a sliding

window W of size (2 × 2). This concept of state formation

facilitates capturing of long range dynamics (i.e., word to

word interactions) on a symbol image.
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Fig. 4. Conversion of the symbol image to the state image

In general, a large number of states would require a high

computational capability and hence might not be feasible for

real-time applications. The number of states, |Q|, increases

with the window size |W| and the alphabet size |Σ|. For

example, if ℓ = 2 and |Σ| = 4, then the total number of

states are |Q| ≤ |Σ|ℓ
2

= 256. Therefore, for computational

efficiency, it is necessary to compress the state set Q to

an effective smaller set O , {o1, o2, ...., o|O|} that enables

mapping of two or more different configurations in a window

W to a single state. State compression must preserve suffi-

cient information as needed for pattern classification, albeit

possibly lossy coding of the wavelet surface profile.

A probabilistic state compression method is employed,

which chooses m most probable symbols from each state

as a representation of that particular state. In this method,

each state consisting of ℓ × ℓ symbols is compressed to a

word of length m < ℓ2 symbols by choosing the top m

symbols that have the highest probability of occurrence. This

procedure reduces the state set Q to an effective set O,

where the total number of compressed states is given as:

|O| = |Σ|m. For example, if |Σ| = 4, |W| = 4 and m = 2,

then the state compression reduces the total number of states

to |O| = |Σ|m = 16 instead of 256.

The choice of |Σ|, ℓ and m depends on specific applica-

tions and noise level as well as the available computational

power, and is made by an appropriate tradeoff between

robustness to noise and capability to detect small changes.

For example, a large alphabet may be noise-sensitive while a

small alphabet may miss the information of signal dynamics.

D. Construction of PFSA and Pattern Classification

A probabilistic finite state automaton (PFSA) is con-

structed such that the states of the PFSA are the elements of

the compressed state set O and the edges are the transition

probabilities between these states. The transition probabilities

are defined as:

℘(ok|ol) =
N(ol, ok)

∑

k′=1,2,...,|O| N(ol, ok′ )
∀ ol, ok ∈ O (3)

where N(ol, ok) is the total count of events when ok occurs

adjacent to ol in the direction of motion. A transition from
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Fig. 5. An example of feature extraction from the state image

the state ol to the state ok occurs if ok lies adjacent to ol in

the positive direction of motion. Subsequently, the counter

moves to the right and to the bottom (row-wise) to cover the

entire state image, and the transition probabilities ℘(ok|ol),
∀ ol, ok ∈ O are computed using Eq. (3). Therefore, for

every state on the state image, all state-to-state transitions

are counted, as shown in Figure 5. For example, the dotted

box in the bottom-right corner contains three adjacent pairs,

implying the transitions o1 → o2, o1 → o3, and o1 →
o4 and the corresponding counter of occurrences N(o1, o2),
N(o1, o3) and N(o1, o4), respectively, are increased by one.

This procedure generates the state-transition probability ma-

trix of the PFSA given as:

Π =







℘(o1|o1) . . . ℘(o|O||o1)
...

. . .
...

℘(o1|o|O|) . . . ℘(o|O||o|O|)






(4)

where Π ≡ [πjk] with πjk = ℘(ok|oj). Note: πjk ≥ 0 ∀j, k

∈ {1, 2, ...|O|} and
∑

k πjk = 1 ∀j ∈ {1, 2, ...|O|}.

In order to extract a low-dimensional feature vector, the

stationary state probability vector p is obtained as the left

eigenvector corresponding to the unity eigenvalue of the

stochastic transition matrix Π. The state probability vectors p

serve as the ‘feature vectors’ and are generated from different

data sets from the corresponding state transition matrices.

These feature vectors are denoted as ‘patterns’ in this paper.

IV. RESULTS OF FIELD DATA ANALYSIS

Field data were collected in the scenario illustrated in

Fig. 1. Multiple data runs were made to collect data sets

of all three classes, i.e., human, vehicle, and animal. Each

data set, sampled at a sampling frequency of 10 kHz, has

2.5 × 105 data points that correspond to 25 seconds of

experimentation time. In order to test the capability of the

proposed algorithm in target detection, another group of data

were collected with no target present. The problem of target

detection is then formulated as a binary pattern classification,

where the no target present data are considered as one class,

and the others with target present (i.e., human, animal, or

vehicle) are considered to belong to the other class. The

data sets, collected by the channel of seismic sensors that are

orthogonal to the ground surface, are used for target detection
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Fig. 6. Examples of seismic sensor measurements (top) and ensemble mean of the feature vectors extracted by SDF of the three classes (bottom)
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Fig. 7. Flow chart of the problem of target detection and classification

and classification. For computational efficiency, the original

seismic data were downsampled by a factor of 10, and only a

part of the entire data points in each data set has been used.

Figure 7 depicts the flow chart of the proposed detection

and classification algorithm that is constructed based on the

theories of symbolic dynamic filtering (SDF) and support

vector machine (SVM) [11]. The proposed algorithm consists

of four steps, namely, signal preprocessing, feature extrac-

tion, detection, and classification, as shown in Fig. 7.

In the signal preprocessing step, the DC component of the

original signal is eliminated, and the signal is normalized

to unit variance. The signal amplitude of a vehicle passing

by far away may be similar to that of a pedestrian passing

by at close distance due to the fact that the SNR decreases

rapidly with the distance between the sensor and the target.

The normalization of all signals to unit variance makes the

pattern classifier independent of the signal amplitude and any

discrimination should be solely texture-dependent.

In the feature extraction step, SDF captures the signatures

of the data, normalized to be zero-mean unit-variance sensor

time-series, for representation as low-dimensional feature

vectors. Based on the spectral analysis of the ensemble of

seismic data at hand, a series of pseudo-frequencies from

the 1-10 Hz bands have been chosen to generate the scales

for wavelet transform, because these bands contain a very

large part of the footstep energy [6]. Upon generation of the

scales, continuous wavelet transforms (CWT) are performed

with db7 mother wavelet since it matches the shape of seis-

mic signals very well. A maximum-entropy wavelet surface

partitioning is then performed. Selection of the alphabet size

|Σ| depends on the characteristics of the signal, where a small

alphabet is robust against noise and environmental variation

and a large alphabet has increased discriminant power for

identifying different objects. The same alphabet is used for

both target detection and classification and the issues of

alphabet size optimization and data set partitioning are not

addressed in this paper. The execution of the code takes less

than 0.5 second for SDF to process a data set of 2.5 × 104

points with the following choice of parameters: alphabet size

|Σ| = 8, number of scales |α| = 5, window length ℓ = 2 and

number of most probable symbol m = 1 (see Section III-C).

Figure 6 shows the normalized seismic sensor signals and

the corresponding feature vectors extracted by SDF of the

three classes of targets.

The next step is to perform pattern classification on the

feature vectors. Three classifiers are needed, as seen in the

flow chart of Fig. 7: one for target detection to decide

whether a target is present or not, and the other two are

for target identification. All classifiers are implemented by

support vector machines (SVMs). The SVM generates a

hyperplane to maximize the margin and to minimize the
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classification errors between feature vectors of the training

data. If the data sets are not linearly separable, the SVM may

allow for some of the training points to be on the wrong side

of the hyperplane through inclusion of slack variables [11].

In this paper, polynomial kernels are used in all three SVMs

since the feature vectors are no longer linearly separable.

In the testing stage, the feature vectors are generated from

SDF with unknown class labels and are then separated by the

hyperplane obtained in the training stage. The SVM yields

a binary output as the class labels of the testing data.

Following Fig. 7, the tested cases are listed below:

1) Detection of target presence against target absence

2) Pairwise classification of target type, i.e., Vehicle vs.

Human/Animal, and Human vs. Animal.

Results of the leave-one-out cross-validation [11] are

summarized in Table I, where the second column describes

the scenarios and the third column shows the classification

results in the format: accuracy
(

# of correct classifications
# of total data sets

)

. The

ground truth is: 50 cases of target present and 18 cases of

no target present. Out of these 50 target-present cases, there

are 9 vehicles, 17 humans, and 24 animals.

The top part of Table I shows the results of target detec-

tion at 100% accuracy. This is followed by the results of

target classification at overall 90.0% accuracy, where a two-

layer classification procedure has been used. Since the total

number of vehicle data sets is small, the result of vehicle

discrimination is slightly low at 88.9% accuracy, which is

expected to improve for larger vehicle data sets. In total, there

are five errors in target classification, where three errors are

from “Vehicle vs. Human/Animal” tests, and the remaining

two errors are from ”Human vs. Animal” test. An error in

the “Human vs. Animal” test is the same as that in “Vehicle

vs. Human/Animal” test, so it is counted only once.

TABLE I

LEAVE-ONE-OUT CROSS-VALIDATION RESULTS

Target Present vs. No Target

Target Detected 100.0% (50/50)Detection

No Target 100.0% (18/18)

Total Detection Rate 100.0% (68/68)

Vehicle vs. Human/Animal

Vehicle Discrimination 88.9% (8/9)

Human/Animal Discrimination 95.1% (39/41)

Subtotal 94.0% (47/50)

Human vs. Animal

Human Discrimination 94.1% (16/17)

Animal Discrimination 91.7% (22/24)

Classification

Subtotal 92.7% (38/41)

Total Classification Rate 90.0% (45/50)

V. SUMMARY, CONCLUSIONS AND FUTURE WORK

This paper presents a symbolic feature extraction method

for target detection and classification, where the features are

extracted as statistical patterns by symbol-based models of

wavelet images that are generated from time series of seismic

sensors. By an appropriate selection of wavelet basis and

scale range, the continuous-wavelet-transformed signal is de-

noised relative to the original time-domain signal. In this

way, the symbolic images generated from wavelet coeffi-

cients capture the signal characteristics with larger fidelity

than those obtained directly from the time-domain signal.

The symbolic images are then modeled using probabilistic

finite state automata (PFSA) that, in turn, generate low-

dimensional statistical patterns, treated as feature vectors.

A distinct advantage of the proposed method is that the

low-dimensional feature vectors can be computed in-situ and

communicated in real time over a limited-bandwidth wireless

sensor network with limited-memory nodes.

The feature extraction method has been validated on a

set of field data for target detection and classification. The

results generated from this set of field data show: (i) absence

of any false alarms and missed detection of targets, and (ii)

high accuracy in discriminating the types of targets.

While there are many research issues that need to resolved

before exploring commercial applications of the proposed

method, the following topics are under active research:

• Optimization of the partition scheme for symbolization;

• Enhancement of target detection and classification per-

formance by fusion of multimodal sensor signals.
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