
  

  

Abstract—In this work the use of an Iterative Learning 
Control (ILC) algorithm to precisely control a highly nonlinear 
Micro-Electro-Mechanical (MEMS) micropositioning stage is 
demonstrated. Vision-based feedback with low sampling rate is 
augmented with estimates from a Kalman Filter to generate a 
high sampling rate estimate of the output. Nonlinearities in the 
system are accounted for using a linear parameter varying 
model based on experimental results. An automatic model 
correction technique based on measurement residual is also 
presented that increases the final estimation accuracy by over 
70 percent. The effectiveness of the approach is demonstrated 
by tracking a 4 Hz sinusoid using 10 Hz camera feedback with 
a resulting RMS error of 0.25 micrometers. 

I. INTRODUCTION 
ICROPOSITIONG stages based on microelectro-
mechanical system (MEMS) technology have shown 

significant potential for a number of complex applications. 
One of the fundamental challenges with MEMS 
development is the difficulty associated with obtaining fast, 
reliable displacement feedback. Unlike with macro-scale 
devices, MEMS are too small to be installed with current 
commercially available displacement sensors. Sensing must 
either be integrated into the mechanism during manufacture, 
or completely external to the device. 

A number of on-chip MEMS sensing methods exist. 
Electrostatic capacitive sensing is capable of potentially 
high-precision, high-sensitivity displacement detection. 
Some stages that use electrostatic actuators can simply use a 
redundant actuator for sensing [1]. Simultaneous actuation 
and displacement sensing in a single electrostatic comb drive 
has also been shown [2]. Sensing can also be accomplished 
with material properties that change based on mechanical 
strain that occur during deflection or thermoelectric effects 
that occur during actuation. For instance, piezoresistivity has 
been used to track a mechanism’s state [3]. It has also been 
proposed that certain devices can simply use the input 
signals for force and displacement control [4]. The 
fundamental problem with all of these methods is that they 
must be calibrated using a different sensing method before 
they can be employed. Furthermore the calibration might be 
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dependent upon factors that change with time or cycles. 
Vision based sensing is one of the simplest, and most 

versatile methods currently in use. The effort in setup and 
calibration is fairly small compared to other methods. Data 
such as displacement and vibrational magnitude can be 
obtained automatically with machine vision algorithms [5]. 
Furthermore multiple devices can be simultaneously 
observed with little or no additional effort.  There are two 
major limitations of vision based control, however. First, 
slow camera frame rates limit the speed at which the 
system’s response can be recorded. Second, real-time vision 
feedback requires complex software that runs at potentially a 
fraction of the camera’s already slow frame rate.  

Many MEMS applications such as high density data 
storage and fiber optical switching involve repetitive motion 
tasks. For such tasks an iterative learning algorithm can be 
used to accurately control the system in the absence of real-
time feedback. However, slow vision feedback may lead to 
poor intersample behavior. This problem was addressed for a 
system with a higher error sampling rate than control 
frequency [6], though this is not the case for many MEMS 
devices.  Another work demonstrated the use of a Kinematic 
Kalman Filter and ILC to control a single-axis macro scale 
mechanism with slow vision feedback [7], however this 
method cannot be directly applied to many MEMS due to 
the required linear model and fast acceleration measurement. 
The primary contribution of this work is to present an 
alternate method for implementing ILC with intersample 
estimation suitable for MEMS control, and demonstrate its 
effectiveness experimentally. This work also presents a 
novel technique for adaptively correcting the system gain 
due to modeling error. 

II. SYSTEM DESIGN 
The system chosen to demonstrate our ILC with 

intersample estimation is a MEMS positioning stage 
developed by the authors. It is a two degree-of-freedom R-θ 
manipulator. The stage was designed to be part of a high 
density array that will be used for precision coordinated 
manipulation tasks. Fig. 1 shows a picture of the fabricated 
prototype with significant features labeled. 

The stage is a 50 µm thick monolithic mechanism 
manufactured using the silicon-on-insulator process found in 
[1]. The design requirements greatly influenced the decision 
to use thermal bimorph microactuators [8]. They offer both 
high force and high displacement properties in a very small 
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package. There are a number of other advantages to the 
actuators. Unlike with electrostatic comb drives, they do not 
require high manufacturing precision.  The thermal actuators 
are also fairly robust to environmental contamination which 
allows the stages to be operated outside of a cleanroom.  
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Fig. 1.  The fabricated micromanipulation system. The thermal actuators 
and other significant features can be seen. 
 

The shape of the actuators in the prototype stage was 
optimized for high force and small footprint. This was 
accomplished by increasing the hot arm to cold arm length 
ratio. The resultant high force output allowed for significant 
displacement amplification in the mechanism. The theta axis 
is linearly amplified by the long length of the output arm. 
The 2000 µm left and right theta actuators are 
antagonistically opposed. Besides allowing both directions 
of movement, it balances the device mechanically, and 
increases stiffness. Both factors decrease parasitic motion in 
unintended directions. A lever was used in the radial 
direction to amplify the displacement from the 3000 µm 
actuator. The center of flexure of the three pivots are in a 
line such that the displacement amplification is 
approximately linear in the displacement range of the device.  

Testing was carried out on the radial axis of the prototype 
stage in air on a probe station with feedback recorded using 
a Pixelink PL-B741F camera mounted to an Infinitube 
system with a 20x objective. This system gives a resolution 
of about 0.35 µm. National Instruments NI Vision Assistant 
was used to automatically obtain displacement information 
from the video using a pattern matching algorithm.  

III. MODELING 
Accurate first-principles models of bimorph actuators are 

very difficult to develop because they demonstrate complex 

and highly nonlinear behavior due to surface heat loss by 
radiation and convection, intra-device heat transfer, and 
temperature dependent thermo-physical properties [9]-[10]. 
Here, standard system identification techniques are used to 
identify the system model.  Swept sine input signals in the 
form ( ) ( )0.5 sinu t A tω= + ,

 where A is the DC offset, 

were applied to the vertical actuation direction. Fig. 2 shows 
the results of the test. The prototype behaves like a first 
order system with a pole at 85 rad/s, however the DC gain of 
the system changes as the voltage increases. This is logical 
since the volumetric heat generation that drives the thermal 
actuators is proportional to the square of the input voltage. 
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Fig. 2.  Scheduled frequency response magnitude response plots showing 
that the gain increases with increase in offset, but the dynamics are constant 

 
The system was modeled as a linear parameter varying 

first-order scalar system given by the differential equation 
),())((85

1 tutugxx β=+&  (1) 
where x is the vertical position of the system, g(u(t)) is the 
nonlinear gain and β is a correction factor that will be 
discussed in Section V.  To identify g(u(t)) a gain curve was 
generated by giving the system a continuously increasing 
voltage input, and dividing the system output by the input 
voltage. Fig. 3 shows the results of 15 gain curve tests. 
Variation in the curves is due to contact resistance that 
changes with trial and contact pad location.  The trail 
varying resistance change can be thought of as a wear 
parameter, and generally decreases with runs.  Though the 
curve varies slightly, a clear trend can be seen. A 6th order 
curve fit derived from the average values of the 15 runs is 
given by  

( )( ) ( ) ( )
( ) ( ) ( )

( )

6 5

4 3 2

0.000144 0.00532

0.0634 0.268 0.00588

0.125 0.0237

g u t u t u t

u t u t u t

u t

= − +

− + +

− +

 (2) 

Fig. 4 shows the displacement error that corresponds to the 
maximum difference between the gain fit and any of the 
individual curves. A correction method for this error will be 
presented in section IV. 
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Fig. 3.  15 experimental gain curves run under different conditions. Some 
variation from one run to the next can be seen. 
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Fig. 4.  This curve shows the maximum displacement error that occurs from 
using the average gain curve fit. 
 

Section V presents a Kalman Filter that will be used to 
estimate the system output in between slow camera frames. 
This requires that the differential equation (1) be converted 
to the sampled state-space representation, 

( ) ( ) ( )
( ) ( )

1 d d

d

x k A x k B v k

y k C x k

+ = +

=
 (3) 

where, 85dt
dA e−= , ( )851 dt

dB e β−= − , 1dC = , dt is the 
sample step size, and  

( ) ( )( ) ( )v k g u k u k .=  (4) 

IV. PROPORTIONAL ILC 
Iterative Learning Control is a performance-enhancing 

feedforward control scheme for systems that repeat the same 
task or trajectory. Before the start of each iteration of the 
trajectory, the ILC algorithm uses the error signal from the 
previous iteration(s) to generate an updated feedforward 
control signal. ILC is an excellent choice for many MEMS 
systems for a number of reasons. MEMS are typically fully 
compliant, frictionless devices. The result is very repeatable 
behavior, which allows for extremely low error with the 

final control signal. This is because trial invariant 
disturbances such as modeling error is easily corrected with 
the algorithm, while trial varying disturbances such as 
measurement noise tend to be averaged out.  Secondly, ILC 
typically runs off-line, which means slow vision processing 
techniques do not impair the effectiveness of the controller.  

The prototype presented in this paper was modeled in 
Section III as a first order system, so a P-type algorithm [11] 
given by 

 )1()()(1 ++=+ kekuku jjj γ  (5) 
tracks the dynamics well. In (5), j is the ILC iteration, and k 
is the time step. The error signal is forward shifted by one 
time step in order to compensate for the usual one-step delay 
in the plant. γ is the proportional learning gain. Higher gains 
lead to faster correction, but are also more likely to cause 
divergence. For the system in question a learning gain of 
between 0.07 and 0.1 works well.  

V. INTERSAMPLE ESTIMATION AND CORRECTION 
In some cases slow feedback might not be enough 

information to control a system. In the case of an ILC 
control system, the error at measurement points might be 
very small, but the lack of control at intersample points 
might lead to large intersample error. In such cases a 
Kalman Filter is able to estimate the system between the 
measurement points and remove trial-varying measurement 
noise such that the ILC can correct for error accurately and 
at a higher rate than measurements are available.  

A. Intersample Estimation 
In order to apply the Kalman Filter [12], Assume a camera 

frame rate fc, and an estimation frequency fi, which should be 
chosen as the desired control frequency. Also assume fi is a 
multiple of fc.  The camera multiplier, N, is fi/fc. The time 
step, dt is simply 1/fi. The system equations follow: 

( ) ( ) ( )1 ( )d dx k A x k B v k w k+ = + +  (6) 
( ) ( ) ( ) .dy k C x k r k= +  (7) 

In these equations w is the modeling noise, r is the 
measurement noise, and k={0,1,2,…}. Note that for the 
experimental system the value of v(k) during each time step 
is deterministic because the gain curve is assumed to be 
known.  Initialize the Kalman Filter as per: 

)]0([)0(ˆ xEx =  (8) 
.))]0(ˆ)0())(0(ˆ)0([()0( xxxxEZ −−= (9) 

For each time step, k, apply 
ˆ ˆ( 1 | ) ( | ) ( )d dx k k A x k k B v k+ = +  (10) 

QAkZAkM T
dd +=+ )()1(  (11) 

to propagate to the next time step.  In (11), Q is the modeling 
covariance which is based on the measurement noise. 
Depending on the time step one of two things comes next. If 
k is a multiple of N, correct the estimate with a measurement 
using: 

1
( 1) ( 1) ( 1)T T

d d dF k M k C C M k C R
−

⎡ ⎤+ = + + +⎣ ⎦  (12) 
=++ )1|1(ˆ kkx  

[ ])|1(ˆ)1()1()|1(ˆ kkxCkykFkkx dm +−++++  (13) 
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.)1())1(()1( ++−=+ kMCkFIkZ d  (14) 
Where R is the measurement covariance. If k is not a 
multiple of Ns, use  

)|1(ˆ)1|1(ˆ kkxkkx +=++  (15) 
)1()1( +=+ kMkZ  (16) 

instead. Continue to propagate and update until an estimate 
at the final time step is obtained. 

The Kalman Filter estimates the state at k using 
measurement data up to time k only. Since the ILC system 
runs after all measurements have been collected, it is 
possible to use a Kalman Smoother to use measurement 
information up the final time step, kf to generate a more 
accurate estimate [7]. The estimate )|(ˆ fkkx  can be 
obtained using recursively using 

1)1()()( −+= kMAkZkS T
k  (18) 
[ ])|1(ˆ)|1(ˆ)()|(ˆ)|(ˆ kkxkkxkSkkxkkx ff +−++=
 

(19) 

In these equations k={kf-1,kf-2,…,0}. 

B. Estimation and Gain Correction 
As seen in Fig. 4, there is some error associated with 

using an average gain curve. As previously discussed this is 
due to varying contact resistance.  Because the estimator 
must propagate numerous times before updating with a 
measurement, small errors in the gain have a significant 
effect on the estimation accuracy.   
Since the error is approximately first-order, it can be 
corrected for using a modification factor on the input gain. 
The value of correction factor, β was determined using a 
numerical search algorithm based on the measurement 
residual. The residual is defined by  

.)1|(ˆ)()(~ −−= kkxCkyky dm  (20) 
The sign on the average residual indicates whether the 
estimator is underestimating or overestimating the system. 
For a set of data, an iterative numerical search given by  

,
1

,( )
n ave

n n
n ave

y
g u

β β α+ = +
%

 
(21)

will find a value of β that reduces the average residual. In 
this equation ߙ is the learning gain and n is the search 
iteration.  The search algorithm is executed iteratively during 
each ILC iteration after collecting the output from the 
previous iteration and before generating a new input.  The β 
search iteration index, n should not be confused with the ILC 
iteration index, j.   

During the first ILC iteration (j=1), β1=1. Otherwise β1 is 
the final β from the previous ILC iteration.  After collecting 
data the system is estimated with βn.  aveny ,

~  and ,n aveu  can 
be calculated from the estimate.  Afterward (21) is used to 
generate βn+1.  This process is repeated until the residual 
drops below a pre-defined value, or a maximum number of 
search iterations is reached. After the final estimation with 
the final correction factor, the ILC updates the control 
information for the next run. 
The  value  of   in (21) is related to speed of ߙ

convergence/divergence.  A larger ߙ  may  cause  faster 

convergence,  but  also  may  cause  divergence.    This 
parameter can be tuned for better performance. 

VI. EXPERIMENTAL RESULTS 
An ILC system requires that the timing of input and 

output signals is extremely accurate and repeatable. 
Triggering camera frames using the digital counter on the 
same DAQ board that is controlling the system allows for 
very precise timings. It was found that the camera used in 
the experiments was only able reliably trigger at 10 Hz with 
the maximum area of interest (AOI). As with many CMOS 
cameras it can run at higher frame rates with a decreased 
AOI. An AOI suitable for observing one device tip allows 
for a frame rate of up to 125 Hz. For this paper it is assumed 
that feedback is only available at 10 Hz, because this control 
method will be applied to an array of stages, which will 
require the full AOI to observe. However, since only one 
mechanism is being observed currently, measurements at 
100 Hz are used in order to observe the intersample 
behavior. The 100 Hz measurements are only used for 
determining error and not used in the estimator, gain 
correction, or ILC. 

A. ILC Tracking Without Intersample Estimation 
10 Hz feedback with a proportional ILC is acceptable and 

accurate if the reference signal is slow enough that 
intersample dynamics are insignificant. An experiment was 
carried out to show that the system is able to accurately track 
a slowly changing reference. The reference used was a 4 
second half-sinusoid with an amplitude of 30 µm. A learning 
gain of 0.1 was used in the ILC algorithm. Fig. 5 shows the 
system and output after 15 iterations. Fig. 6 shows that the 
RMS error decreases nearly monotonically with ILC 
iterations. The final RMS error calculated at 10 Hz was 0.40 
µm, while the RMS error calculated at 100 Hz was 0.79 µm. 
The modest increase shows that intersample error is present, 
but is a fairly negligible effect. This behavior becomes more 
significant with a faster signal.  
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Fig. 5.  ILC with 10 Hz feedback alone is able to track a slow half-sinusoid 
accurately with minimal intersample behavior. 
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Fig.6.  The RMS error of the system decreases sharply with ILC iterations. 

 
Fig. 7 shows a 4 Hz offset sine wave that was used as a 

reference for the remaining tests. The same proportional ILC 
system was used to attempt to track the new reference. Fig. 8 
shows the 10 Hz reference and the output of the system after 
10 ILC iterations. The distortion in the reference due to slow 
measurements has caused very poor intersample behavior. 
Fig. 9 shows the error at 10 Hz and 100 Hz. The 10 Hz error 
is very low, signifying that the tracking near updates is good.  
However, intersample tracking is poor. The RMS error of 
1.3 µm is primarily due to the first update point which is 
before control information is available. The 100 Hz RMS 
error, by contrast is 6.4 µm. Spikes of up to 13.8 µm are 
seen. It is obvious that proportional ILC alone is not 
sufficient to track this reference. 
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Fig. 7.  The 4 Hz sinusoidal reference that will be used as a benchmark to 
compare the ILC controllers. Note the high degree of distortion at 10 Hz. 

 

B. ILC Tracking With Intersample Estimation  
Next the same reference is tracked using the estimator 

developed in Section V with and without gain correction. 
First, 15 iterations were run with intersample estimation and 
an ILC learning rate of 0.07 without gain correction. Fig. 10 
shows the estimated and measured system. Overall the 
estimate is fairly good. The filter overestimates the output of 
the system at some of the peaks of the sine waves. Fig. 12 
shows the total error between the system and the reference, 
as well as the error between only the estimator and the 

system. The total RMS error is 0.658 µm, and the RMS 
estimator error is 0.620 µm. 
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Fig. 8.  The P-type ILC with 10 Hz feedback tracks the 4Hz signal poorly. 
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Fig. 9.  Error graph for ILC without intersample estimation showing that 
error is very low at update points, but very high between updates. 

 
Next a test was carried out with the same estimator and 

ILC algorithm, but with adaptive gain correction provided 
by (21). For each ILC iteration the numerical search for the 
modification factor was continued until the magnitude of the 
average residual was less than 0.005 µm. Fig. 11 shows the 
estimated and measured system. Very little deviation of the 
system from the estimate can be seen in this graph. Fig. 13 
shows the shows the total error and estimator error. The total 
RMS error is 0.252 µm and the RMS estimator error is 0.176 
µm. The effectiveness of the gain correction is apparent, as 
the RMS estimator error is improved by 72% and the total 
RMS error is improved by 61%.  Fig. 13 shows that most of 
the error while tracking the sinusoid is due to estimator 
rather than the ILC. A more advanced model correction 
technique would likely improve the error even further. 

VII. CONCLUSIONS 
In this work a method for controlling a MEMS device 

using a combination of Iterative learning Control and a 
Kalman Filter is presented. The effectiveness of the 
estimator is demonstrated by tracking a fast sinusoidal 
reference with and without the estimator. A method for 
adaptive model correction is also presented that improves 
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the estimation accuracy by correcting the linear parameter 
varying model. Future work will include applying this 
control method to arrays of MEMS stages in order to 
perform precise coordinated motion tasks. 
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Fig. 10.  The P-type ILC with intersample estimation and without adaptive 
gain correction. The filter overestimates some of the peaks. 
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Fig. 11.  The P-type ILC with intersample estimation and adaptive gain 
correction. Note the improved tracking. 
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Fig. 12.  The proportional ILC with intersample estimation and without 
adaptive gain correction. 
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Fig. 13.  The proportional ILC with intersample estimation and adaptive 
gain correction. 
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