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Abstract— Optical observations of Earth-orbiting particles
are singular in that multiple observations are required to
determine the state of the object. It is generally uncertain,
however, whether two arbitrary singular observations are of the
same object, and solving this problem can be computationally
intensive. In this paper, we propose a technique of correlating
multiple singular observations and providing an initial estimate
of the observed object’s state by means of probability distri-
butions in state space, provided the distributions have high-
codimension.

I. Introduction

Situational awareness of Earth-orbiting particles such as
active satellites and space debris is highly important for
future human activities in space. Presently, over 300,000
particles have been estimated to exist, and over 80,000
observations are made per day [11]. Observations are made
either by radar or optical sensors. For optical observations,
which are usually made for objects in medium Earth orbit
(MEO) and geostationary orbit (GEO), only the angles and
angular rates of the track can be determined. That is, the
range and range-rate remain largely unknown. Therefore,
optical observations are singular in that in order to determine
the orbit of the observed object, multiple observations must
be combined. In other words, a singular observation is
consistent with an infinite number of states. It is generally
uncertain, however, whether two arbitrary tracks are of the
same object. This is the crux of the too short arc (TSA)
correlation problem, and the solution can be computation-
ally intensive. Milani et al. have proposed a solution for
heliocentric orbits where each track is expressed in a 4-
dimensional quantity called the attributable vector, and by
placing a few physical constraints, they restrict the range
and range-rate to a region called the admissible region [7].
Discretized points on the admissible region are referred to
as Virtual Debris (VD) particles. Tommei et al. expanded
this method to Earth orbiting objects [12]. Maruskin et al.
introduced another method that uses maps of the admissible
region in Delaunay orbit element space [6]. Outside of the
realm of astrodynamics, this problem has been considered
in multiple target tracking using bearing only sensors, such
as multiple hypothesis tracking [5], [10]. However, these
techniques require a priori information or a reference state,
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a Gaussian assumption on the error distribution, or great
computational power.

In this paper, we propose a technique of correlating
multiple singular observations and simultaneously providing
an initial estimate of the observed object’s state by means of
probability distribution functions (pdf’s) in state space. We
first generalize the concept of admissible regions to an n-
dimensional state space with only m < n independent observ-
able variables. Each observation is expressed as a pdf in state
space, which is physically an n − m dimensional manifold
embedded in n-space. Note that this pdf is generated from
physical constraints on the system and does not require us to
assume any particular distribution (Section II). The region of
intersection between multiple pdf’s gives a state estimate that
is consistent with all observations. When we expect that the
uncertainty is dominant only in a few coordinate directions,
as is true for optical observation data, we find that the pdf’s
can be well approximated as having a high codimension
with respect to the state space. Then, the likelihood that two
pdf’s of unrelated observations intersect is very low (Section
III). An example of our method is discussed in the end,
where we correlate simulated optical observations of objects
in MEO and GEO. It demonstrates the ability of our method
to correlate observations and provide an initial state estimate
without any a priori information. (Section IV).

II. The Generalized Admissible Region

We generalize the idea of the admissible region for a
system with n state variables X but where only m < n
independent observable variables and c parameters are
available [3], [6], [7], [12]. Per observation, the system is
underdetermined.

Definition 2.1: A singular observation is one that is
consistent with an infinite number of states.

Definition 2.2: An attributable vector X is an m + c
dimensional vector that contains all observable variables
and parameters for a given singular observation.

Suppose there exists a one-to-one transformation T (τ, t0) that
maps the observable variable space at time t0 to the state
space at time τ:

T (τ, t0) : 〈x(t0),X(t0)〉 → 〈X(τ)〉, (1)

where x = (x1, x2, . . . , xn−m)T is an n − m dimensional
vector of undetermined observation variables. To linearize
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this transformation, we find matrix Φ(τ, t0) such that:

Φ(τ, t0) =
∂X(τ)
∂x(t0)

. (2)

Then, to first order we have

δX(τ) = Φ(τ, t0)δx(t0), (3)

where δ denotes a small deviation from some reference point.
For some attributable vector X, we can assume different

particular values of x to complete the state description.
However, it is often the case that not all of these states are
relevant for any given application.

Definition 2.3: Given some set of criteria C, the
admissible region A is a closed compact set in the n − m
dimensional undetermined observation variable space such
that all of the physically relevant states are contained within
the interior of this region.

Definition 2.4: A probability distribution function (pdf)
FX(x) may be assigned to an attributable vector X such that
the probability p that the observed object exists in region
B ⊂ A is

p =

∫
B

FX(x)dx1dx2 . . . dxn−m. (4)

Note that
∫

A FX(x)dx1dx2 . . . dxn−m = 1.

Corollary 2.1: The map of the admissible region to the
full state space can be regarded as an n − m dimensional
manifold embedded in an n dimensional space, assuming the
errors in the observable variables and parameters are much
smaller than the uncertainty in the undetermined observation
variable. One example is an optical observation where the
angle and angle-rates of the observed object are more well-
observed than range and range-rate [6]. Consequently, the
map of FX(x) to the state space T (τ, t0) ◦ FX(x) is also an
n − m dimensional distribution.

III. Combining Probability Distributions

We now consider how to relate pdfs from multiple
singular observations, and in the event that they do, compute
a state estimate via Bayes’ theorem. For this, we first discuss
the spatial relationship between multiple pdf’s in state space.

Definition 3.1: A singular observation is consistent with
some region V in state space if:∫

V
{T (τ, t0) ◦ FX(x)} dX1dX2 . . . dXn > 0, (5)

where T (τ, t0) maps the pdf from time t0 to τ.

Note that, in general, to map a pdf, one must solve
the Fokker-Planck differential equations. For deterministic
Hamiltonian systems, however, the total time derivative of
a pdf is constant, independent of whether the potential field
is time invariant. As a consequence, T (τ, t0) = T (τ, t0) [8].

Definition 3.2: An observation and an object are related
over V if the observation is consistent with the same region
V in state space as the object resides in. Similarly, two
observations are related over V if they are consistent with
the same region V in state space.

Definition 3.3: Let P be a probability measure, and event
EO(V, τ) be one where some object O of interest exists in
region V in state space at time τ. Then, we define some pdf
gO(X, τ) such that:

P[EO(V, τ)] =

∫
V

gO(X, τ)dX1dX2 . . . dXn. (6)

Similarly, let event E{r}(V, τ) be one where some observation
information series {r} is consistent with region V assuming
all information has been dynamically evolved to a common
epoch τ. Then, we define some pdf f{r}(X, τ) such that:

P[E{r}(V, τ)] =

∫
V

f{r}(X, τ)dX1dX2 . . . dXn. (7)

Both f and g can originate from admissible region maps
T (τ, t0) ◦ FX(x) or be generated a priori. We will drop the
τ notation unless we want to emphasize the epoch time.

Lemma 3.1: Suppose f and g are manifolds embedded in
an n-dimensional state space such that

dim( f ) + dim(g) < n. (8)

Then the probability that f and g will intersect randomly is
0.

Proof : This is a direct result of the theory of general
position [2]. �

Corollary 3.1: For an object O and information series {r}
that satisfies (8), if event xOr is one where {r} is related to O,
the conditional probability

P[xOr |EO(V)] =

∫
V

f{r}(X)dX1dX2 . . . dXn (9)

for any choice of V .
Proof : From Lemma 3.1 and given O exists in region

V , if both {r} and O lie in any V they are most likely
related. That is, whether {r} and O are related depends only
on whether {r} is consistent with V . Thus, P[xOr |EO(V)]
= P[E{r}(V)] =

∫
V f{r}(V)dX1dX2 . . . dXn. �

Corollary 3.2: For an object O and information series {r}
that satisfies (8), if the two are related then∫

f{r}(X)gO(X)dX1dX2 . . . dXn > 0, (10)

where the integral is taken over the entire state space. The
converse is almost always true.

Proof : If the pdf’s intersect at X=q, then the integral of
f · g over any ε-ball centered at q must be non-zero. The
converse is a consequence of Lemma 3.1.
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Now, from Corollary 2.1, the pdf’s are locally homeomor-
phic to Rn−m, where n is the dimension of the state space and
m is the dimension of the observable variable space. Then,
we can describe points near some X∗ on f as follows:

X = X∗ + s1v1 + s2v2 + · · · + sn−mvn−m, (11)

where {v} are some independent bases of Rn−m, and s j ∈ R
for j = 1, 2, . . . , n − m. Similarly on g,

Y = Y∗ + t1u1 + t2u2 + · · · + tn−mun−m. (12)

Then, locally, the intersection of the manifolds is described
as:

X = Y (13)
⇔ z = M s, (14)

where

M =

 v1 v2 · · · vn−m −u1 · · · −un−m

 (15)

s =
[

s1 s2 · · · sn−m t1 · · · tn−m

]T
(16)

z = X∗ − Y∗. (17)

For f and g that satisfy (8), M cannot be inverted since M
is not full rank. By taking the pseudoinverse we find:

s̃ = (MT M)−1MT z (18)

= M̃ z. (19)

For the two pdf’s to intersect at s = s̃, it is necessary that
z have components of 0 in the direction of the null-space
bases of M̃. This condition acts as constraints on the local
orientation of the manifolds that must be met for them to
intentionally intersect. For instance, if M̃ is rank 2(n − m),
then ker(M̃) = n − {2(n − m)} = 2m − n, so there are 2m − n
constraints on z. If M̃ is rank 2(n − m) − 1, then one pair
of bases (u j, vk) is linearly dependent. This dependency
creates 1 constraint for M̃ in addition to the 2m − n + 1
constraints for z for a total of 2m−n + 2 constraints on (18).
In conclusion, at a local level, more and more constraints
must be met for f and g to intersect.

Proposition 3.1: For two pdf’s that satisfy (8) and inter-
sect, the local dimension d× of the intersection is:

d× = 2(n − m) − rank(M̃). (20)

Proof : At the intersection of the local Euclidian space
equivalents of pdf’s f and g, the two spaces must share bases.
Therefore, d× is the number of dependent column pairs in
M. Note that min(rank(M̃)) = n − m ⇒ max(d×) = n − m,
since we assumed {v} and {u} both spanned Rn−m. �

Theorem 3.1: Given object O and observation {r} are
related, we can define some pdf:

hO(X, τ) =
f{r}(X, τ)gO(X, τ)∫

f{r}(X, τ)gO(X, τ)dX1dX2 . . . dXn
(21)

such that

P[EO(V, τ)|xOr ] =

∫
V

hO(X, τ)dX1dX2 . . . dXn, (22)

where the integral in (21) is taken over the entire state space.
Proof : Apply Bayes’ theorem with (9) [9]. Note that

from (10), (21) is well defined. �

If (8) is true, then by solving for h we correlate prior informa-
tion regarding O with the new information {r} and find where
in the state space O is likely to exist. P[EO(V) ∩ E{r}(V)]
includes cases when xOr does not hold in its universal set,
which we know are trivial from Lemma 3.1. Therefore, we’d
like to add xOr as a condition to filter out such trivial cases.
Now, as long as h is well defined, then from Corollary 3.2
the condition xOr is almost always valid. On the contrary, if h
is not defined, then we conclude O and {r} were most likely
unrelated. Finally, if more observations become available, we
let h from the previous step be the new g. The process can
be repeated as necessary.

For ease of computation, we discretize the state space
into uniform subspaces.

Definition 3.4: A bin is a unit of discretization. Each bin
is assigned an index vector i = (i1, i2, . . . , in)T ∈ Nn such
that i j = 1, 2, . . . ,M j for some j = 1, 2, . . . , n, where M =

(M1,M2 . . . ,Mn) ∈ Nn prescribes the maximum index in each
coordinate direction. Then,

i j =

 floor
[
M j(X j − X j,min)/(X j,max − X j,min) + 1

]
(23a)

M j (23b)

where (23a) is when X j , X j,max, (23b) is when X j =

X j,max. X j,max and X j,min are the maximum and minimum
possible values of X in the j-direction as determined by
the discretization, respectively. Furthermore, the index scaled
state space X̄ is defined such that:

X̄ = KX + k, (24)

where K is some diagonal matrix and k ∈ Rn such that

i = floor(X̄). (25)
Corollary 3.3: A singular observation is consistent with

some bin i if (5) is true for when V = i; i.e. when V
occupies the same region as i. An observation and an object
O are related if the observation is consistent with the same
bin as the object resides in. Two observations are related if
they are consistent with the same bin.

Corollary 3.4: Let event EO(i, τ) be one where object O
resides in bin i at time τ. Then, we define some pdf g′

O
(i, τ)

such that:

P[EO(i, τ)] = g′
O

(i, τ) =

∫
V=i

gO(X, τ)dX1dX2 . . . dXn. (26)

Similarly, let event E{r}(i, τ) be one where information series
{r} is consistent with bin i. Then, we define some pdf f ′

{r}(i, τ)
such that:

P[E{r}(i, τ)] = f ′{r}(i, τ) =

∫
V=i

f{r}(X, τ)dX1dX2 . . . dXn. (27)
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Fig. 1. Projections of probability distributions when correlating observations of the same object (top) and a different object (bottom). Length units in
Earth radii, time units in hours, mass units in kilograms.

Finally, we define some pdf h′
O

(i, τ) such that:

P[EO(i, τ)|xOr ] = h′
O

(i, τ) =
f ′
{r}(i, τ)g′

O
(i, τ)

Σj f ′
{r}(j, τ)g′

O
(j, τ)

. (28)

Proof : These are the discretized equivalents of Definition
3.3 and Theorem 3.1. �

IV. Examples

In this section, we discuss correlation and initial orbit
determination results for optical observation simulations of
mainly MEO and GEO objects [13]. The purpose of this
example is to show that our method is capable of correlating
observations of multiple objects and obtaining an initial state
estimates of these objects without a priori information or
assumption of a particular statistical distribution, and that
the computational load is moderate.

We extracted 8 objects from the two-line element (TLE)
catalog, which contains orbital information for all known and
tracked Earth-orbiting objects, to obtain a sample set [1]:

• 3 objects in GEO,
• 1 object in a Molniya orbit,
• 2 object in an eccentric MEO orbit,
• 1 object in a circular MEO orbit, and
• 1 GPS satellite.

We further generated one random object in the MEO region
that is not included in the TLE catalog for a total of 9 objects.
The orbital parameters of each object is given in Appendix
I.

We simulated 3 batches of zero-error observations of right
ascension (α), declination (δ), and their time derivatives for
all 9 objects. Thus X = (α, δ, α̇, δ̇, h,Θ, φ), where (Θ, φ) is the
angular position and h is the altitude of the observation point.
We then generated admissible regions for each observations
based on criterion set C in Fujimoto, et al. [3]. The unde-
termined observation variables are x = (ρ, ρ̇), or topocentric
range and range-rate. Again, the error-free approximation is
good since the state uncertainty due to observation error
is much less than that due to the uncertainty in range
and range-rate [6]. Each batch was separated temporally by
approximately 10 hours. We assumed no a priori information
regarding the observed objects, and thus used a uniform
initial pdf. We chose the Poincaré orbital element space
X = (L, l,G, g,H, h) as our state space variables since they
are the non-singular canonical counterpart to the equinoctial
orbit elements. They can be naturally grouped into two by
their coordinate-momenta symplectic pairs [6], [13]. The
non-singular property assures that the mapping function
T (τ, t0) is well defined everywhere. The symplectic paring is
useful when projecting 6-dimensional distributions onto 2-
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TABLE I
List of all 3-observation series that resulted in h > 0 using a uniform initial pdf (left) and the TLE as the initial pdf (right).

Uniform Preconditioned
{r} Overlap bins Contains true state {r} Overlap bins Contains true state

GEO1-GEO1-GEO1 4 YES GEO1-GEO1-GEO1 2 YES
GEO2-GEO2-GEO2 3 YES GEO2-GEO2-GEO2 2 YES
GEO3-GEO3-GEO3 6 YES GEO3-GEO3-GEO3 2 YES
MOL1-MOL1-MOL1 1 YES MOL1-MOL1-MOL1 1 YES
EM1-EM1-EM1 2 YES EM1-EM1-EM1 1 YES
EM2-EM2-EM2 9 YES EM2-EM2-EM2 1 YES
CM1-CM1-CM1 5 YES CM1-CM1-CM1 1 YES
GPS1-GPS1-GPS1 7 YES GPS1-GPS1-GPS1 1 YES
RAN1-RAN1-RAN1 8 YES

dimensional subspaces for visualization. Refer to Appendix
II for the definition of Poincaré variables. We implemented
two-body dynamics for this example:

X(t) = (L0, l0 + µ2/L2
0,G0, g0,H0, h0), (29)

where subscript 0 denotes the state at time t0. Since two-
body dynamics is non-dissipative, from Definition 3.1, prop-
agating the admissible region is equivalent to propagating
the state space. As a consequence, admissible regions can
be propagated linearly via matrix Φ(τ, t0) in order to reduce
computational burden [4].

Per observation, an admissible region was computed and
mapped linearly to the discretized Poincaré space. The dis-
cretization was such that:

Xmin = (4.4621, 0,−5.0241, . . .

−5.0241,−5.0241,−5.0241)T (30)

Xmax = (12.6206, 6.2832, 5.0241, . . .

5.0241, 5.0241, 5.0241)T , (31)

and M = (100, 77, 123, 123, 123, 123)T for a total of 1.7624×
1012 bins. These values were chosen so that the algorithm de-
tects all objects in the TLE catalog with reasonable memory
burden; future work is to choose the discretization resolution
more optimally in order to improve correlation and state
estimation accuracy.

Fig. 1 is a graphical representation of the process ex-
plained in Section III for two observations. The red and
green regions each represent a pdf based on an admissible
region that has been dynamically evolved to a common epoch
(i.e. pdf’s f and g). The propagation has “shredded” the red
pdf in the L-l plane [6]. The blue region is the combined
distribution (i.e. pdf h). The yellow asterisk is the true state
of the observed object. Note that although these distributions
are plotted on 2-dimensional subspaces, the correlation was
conducted in the full 6-dimensional Poicaré space. When
correlating two observations of the same object, we see that
h > 0 for a very small region of the state space; for this
particular example, h > 0 for 11 bins. Furthermore, the true
state is included in the region in state space where h > 0.
Therefore, the state estimate is good. On the other hand,
when two observations are of different objects, h = 0 for the

entire state space. This result allows us to conclude that the
two observations are unrelated.

Our correlation process performed well for all 93 = 729
combinations of 3-observation series: all related observations
resulted in h > 0 for a region of no more than 9 bins
that contained the true state, and all unrelated observations
produced h = 0 for the entire state space. On a dual-
core Intel Xeon workstation running MATLAB, each linear
admissible region map Φ(τ, t0) took 20 to 40 minutes. This
time is orders of magnitude less than the direct non-linear
map T (τ, t0), which took several days. In addition, since each
subspace map is independent of each other, the process can
be parallelized easily. With the same setup, each correlation
run took approximately 10 minutes.

If we wish to further reduce the region over h > 0 as
well as reduce computation time, we can assume a priori
that all observed objects were included in either the TLE
catalog or some debris distribution model instead of the
uniform distribution assumption we made for this example.
Then, the admissible region maps are “pre-conditioned” to
exclude unrealistic objects. We ran a test case where we pre-
conditioned the admissible regions using the TLE catalog
object distribution. The orbit of all objects extracted from
the TLE catalog were determined to within 2 bins. The
randomly generated object, however, did not correlate with
the TLE data. Although its orbit could not be estimated,
the algorithm succeeds in suggesting that this object has yet
to be catalogued. Correlation times were reduced to 1 to 2
minutes. All correlation results are summarized in TABLE I.

V. Conclusions
In this paper, we discussed methods of correlating multiple

singular observations as well as providing initial state esti-
mates using pdf’s in state space with high codimension. We
outlined the algorithm that incorporates Bayes’ rule in both
continuous and discretized space. An application to optical
observations of MEO and GEO objects demonstrated how
our method accurately solves for an initial state estimate in
a reasonable time frame.

Future work will incorporate real-world observation data
with noise and error. This task will entail optimizing the
discretization resolution that better matches the distribution
of debris objects in Earth-orbit. We also plan on investigating
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analytical arguments regarding the relative angular position
of two observations and the number of intersections the 2
associated pdf’s could have.

Appendix I
Orbital Parameters for Objects in the Example

The classical and Poincaré orbital elements of all 9 objects
in our simulation sample set are listed below. Earth radius is
denoted as rE.
• GEO

1) (a [rE], e, i [rad],Ω [rad], ω [rad],M [rad])
= (6.6102, 0.0003, 0.0002, 3.1274, 2.3294, 5.7226),
(L [rE

2/hour], l [rad],G [rE/hour1/2], g [rE/hour1/2],
H [rE/hour1/2], h [rE/hour1/2])
= (11.4721, 4.8962, 0.0006, 0.0006,−0.0000,−0.0006)

2) (6.6109, 0.0003, 0.0009, 5.9501, 2.9681, 5.8729),
(11.4727, 2.2247,−0.0005,−0.0009, 0.0010, 0.0029)

3) (6.6109, 0.0001, 0.0001, 3.0902, 4.2464, 6.1176),
(11.4727, 0.8879,−0.0003, 0.0001,−0.0000,−0.0002)

• Molniya
1) (4.1971, 0.7154, 1.1204, 0.8126, 5.1137, 0.1671),

(9.1414, 6.0934, 0.8200, 2.1991,−1.9501, 1.8469)
• Eccentric MEO

1) (3.6573, 0.7123, 0.3106, 1.0976, 1.6080, 5.9942),
(8.5333, 2.4166,−0.9526,−2.0447,−0.6739, 0.3451)

2) (4.1472, 0.5529, 1.2347, 5.5811, 2.4137, 4.8996),
(9.0868, 0.3281,−1.7237,−0.2444, 2.0573, 2.4323)

• Circular MEO
1) (3.9994, 0.0006, 1.1284, 4.9148, 4.2128, 2.9461),

(8.9234, 5.7905,−0.0005,−0.0017, 3.1297, 0.6421)
• GPS satellite

1) (4.1645, 0.0048, 0.9599, 2.7242, 3.6934, 2.5851),
(9.1057, 2.7195,−0.0019, 0.0143,−1.1296,−2.5474)

• Random Uncatalogued MEO object
1) (4.5000, 0.3000, 0.7854, 1.5708, 1.5708, 1.5708),

(9.4655, 4.7124,−0.0000,−0.9338,−2.2999, 0.0000)

Appendix II
Definition of Poincaré Orbital Elements

The Poincaré orbital elements are defined here in terms of
a transformation from the topocentric spherical coordinates.
The transformation is performed in several steps. First, from
topocentric spherical coordinates to geocentric Cartesian
coordinates:

T1 : 〈ρ, ρ̇,X〉 → 〈x, y, z, ẋ, ẏ, ż〉,

then to orbital elements [13]:

T2 : 〈x, y, z, ẋ, ẏ, ż〉 → 〈a, e, i,Ω, ω,M〉,

where a is the semi-major axis, e is the eccentricity, i ∈
[0, π] is the inclination, Ω ∈ [−π, π] is the longitude of the
ascending node, ω ∈ [−π, π] is the argument of periapsis,
and M ∈ [−π, π] is the mean anomaly. Finally, we transform
the orbital elements to Poincaré variables:

T3 : 〈a, e, i,Ω, ω,M〉 → 〈L, l,G, g,H, h〉,

which are defined as:

l = Ω + ω + M L =
√
µa

g =

√
2L

(
1 −
√

1 − e2
)

cos(ω + Ω) G = −g tan(ω + Ω)

h =

√
2L
√

1 − e2 (1 − cos i) cos Ω H = −h tan Ω,

where µ is the standard gravitational parameter.
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