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Abstract— This work addresses the influences of global and
local cues on the synchronization of Kuramoto oscillators
coupled by nonlinear interactions. We first give a condition
under which the network can be globally synchronized. This
condition is more general than existing results and it is one of
the first analytical results that ensure global synchronization
of a general coupling structure when phase differences may be
outside of the interval [−π

2
,

π

2
]. Then we prove that the influence

of global cues on the synchronization rate is always favorable,
whereas the influence of local cues depends on the oscillators’
relative phases (phases defined with reference to the phase of
the global cue): if all the relative phases are within the interval
[−π

2
,

π

2
], the local cue either has no influence or increases the

synchronization rate; otherwise the local cue may increase or
decrease the synchronization rate. Finally, simulation results
are given to illustrate the theoretical results.

I. INTRODUCTION

Synchronization phenomena in large populations of inter-

acting elements are commonplace in science and engineering.

In recent years, synchronization phenomena in oscillating

dynamical systems have been studied in mobile autonomous

agents, biological networks, distributed computing and com-

munication networks.

Synchronization in coupled oscillating systems arises from

external alignment adjustment and mutual interaction among

constituent oscillators. Therefore, the interplay of global and

local cues (or, alternatively, the interplay of external cues

and local coupling) is a recurring feature in the achievement

of synchronization. For example, in mammalian circadian

systems, the circadian pacemaker is located in the suprachi-

asmatic nucleus (SCN), in which about 20,000 neuronal

oscillators produce a 24-h rhythm utilizing intercellular in-

terplays among individual oscillators while at the same time

receiving a global driving signal such as the sunlight via

the retinal input [1]. In engineering applications, such as the

coordination of groups of mobile autonomous agents (e.g.,

UAV-unmanned aerial vehicles and MANET-mobile ad hoc

networks), the signal from central resources (e.g., leader node
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for UAV and satellite for MANET) acts as the global cue

and the interplay between the follower nodes acts as the

local cue, both of which are essential to the synchronization

of the collective motion [2], [3]. Therefore, studying the

influences of global and local cues in the achievement of

synchronization is not only important in scientific research,

but also of crucial importance in engineering applications.

The Kuramoto model was first proposed in 1975 to model

the synchronization of chemical oscillators coupled in an all-

to-all manner [4]. Since it is rich enough to display a large

variety of synchronization patterns and sufficiently flexible to

be adapted to many different contexts, yet simple enough to

be mathematically tractable, the Kuramoto model is widely

used and is regarded as the most representative model of

coupled phase oscillators [5]. Recently, the Kuramoto model

has received more attention in the control community, and

results have been obtained on the synchronization conditions,

both for the original all-to-all coupling topology and for

generalized coupling topologies [6], [7], [8], [9], [10].

However, existing studies on the synchronization of the

Kuramoto model of nonlinearly coupled oscillators are usu-

ally based on a special coupling structure, such as the ring

structure [11], or all-to-all structure [6], [10]. Moreover,

most of the existing results only consider synchronization

conditions or stability of the synchronization manifold, while

research on the synchronization rate is very sparse.

This work addresses the global synchronization of Ku-

ramoto oscillator networks. We prove that synchronization

can be achieved when the relative phases (phases defined

with reference to the phase of the global cue, i.e., the

phase deviations from the phase of the global cue) are

within (−π, π). This condition is much less conservative

than existing synchronization conditions, which require that

the phase difference between any two oscillators is within

[−π
2 , π

2 ]. It is one of the first analytical results that prove the

achievement of global synchronization for a general coupling

structure even when phase differences are outside [−π
2 , π

2 ].
We also analyze the influences of global and local cues on

the synchronization rate, on which sparse results have been

obtained in the existing literature.

II. PROBLEM FORMULATION

Suppose the overall network is composed of N oscillators,

which will henceforth be referred to as ’nodes’. Each of the
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N oscillator nodes receives alignment/entrainment informa-

tion from an external global cue.

We denote the phase dynamics of the global cue as

ϕ̇0 = w0, ϕ0(0) = φ0 (1)

and the phase dynamics of the isolated oscillator nodes as

ϕ̇i = wi, ϕi(0) = φi, i = 1, 2, . . . , N (2)

where ϕ0 and ϕi (i = 1, 2, . . . , N) are the phases of

the global cue and the oscillator nodes, and wi (i =
0, 1, 2, . . . , N) and φi (i = 0, 1, 2, . . . , N) are their natural

frequencies and initial values, respectively.

After taking into consideration the influences of global

cues (alignment/entrainment information from global cues)

and local cues (interplay between different nodes), the overall

dynamics of the oscillator network can be rewritten as

ϕ̇i = wi +
∑

1≤j≤N,j 6=i

ai,j sin (ϕj − ϕi) + gi sin (ϕ0 − ϕi)

(3)

for 1 ≤ i ≤ N , where ai,j sin (ϕj − ϕi) is the interplay

between node i and node j, ai,j denotes the strength of the

interplay. gi sin(ϕ0 −ϕi) denotes the influence of the global

cue and gi > 0 denotes its strength.

Assumption 1: In the remainder of the paper, ai,j (1 ≤
i, j ≤ N) are assumed to be non-negative and identical

to aj,i, i.e., the coupling between pairs of oscillators are

symmetric.

Next, based on Assumption 1, we study the influences of

global cues, gi (1 ≤ i ≤ N), and local cues, ai,j (1 ≤ i, j ≤
N), on synchronization conditions and synchronization rates.

It is noteworthy that ai,j = 0 represents the scenario that

oscillator i is not influenced by oscillator j, and we do not

make any restrictions on ai,j except non-negativity, thus the

structure of the coupling is quite general.

For convenience in the analysis, we first transform (3) into

a rotating reference frame via the transformations ϕi = w0t+
θi and ϕ0 = w0t + φ0:

θ̇i = wi − w0 +
∑

1≤j≤N, j 6=i

ai,j sin (θj − θi) + gi sin(φ0 − θi)

(4)

where 1 ≤ i ≤ N . The constant φ0 in (4) can be removed

by substituting θi − φ0 with ξi:

ξ̇i = wi − w0 +
∑

1≤j≤N, j 6=i

ai,j sin (ξj − ξi) − gi sin(ξi)

(5)

Since

ξi = θi−φ0 = w0t+θi−(w0t+φ0) = ϕi−ϕ0, 1 ≤ i ≤ N

ξi is the relative phase of the ith oscillator with respect to

the phase of the global cue and, thus, will be referred to as

the relative phase.

So far, by studying the properties of system (5), we can

obtain the roles of global and local cues in the synchroniza-

tion of inter-connected Kuramoto oscillator networks:

• Synchronization: If all ξi asymptotically converge to 0,

then we have ξ1 = ξ2 = . . . = ξN when time goes to

infinity, i.e., ultimately we have θ1 = θ2 = . . . = θN ,

which leads to ϕ1 = ϕ2 = . . . = ϕN , meaning that all

the nodes are synchronized.

• Exponential bound on synchronization rate: The syn-

chronization rate is determined by the rate at which ξi

decays to 0, namely, it can be measured by the maximal

value α (α > 0) satisfying

‖ξ(t)‖ ≤ Ce−αt‖ξ(0)‖ (6)

where ‖ • ‖ is the Euclidean norm and C is a constant.

It follows that α measures the exponential bound on the

synchronization rate of (5): a larger α leads to a faster

synchronization rate.

Assigning arbitrary orientation to each interaction, we can

get the N×M incidence matrix B (M is the number of non-

zero ai,j (1 ≤ i ≤ N, j < i), i.e., the number of interaction

edges) of the interaction graph [12]: Bi,j = 1 if edge j enters

node i, Bi,j = −1 if edge j leaves node i, and Bi,j = 0
otherwise. Then using graph theory, (5) can be written in a

more compact matrix form:

ξ̇ = Ω − G sin ξ − BW sin
(

BT ξ
)

(7)

where

ξT =
[

ξ1 ξ2 . . . ξN

]T
(8)

ΩT =
[

w1 − w0 w2 − w0 . . . wN − w0

]T
(9)

G = diag(g1, g2, . . . , gN ), W = diag(ν1, µ2, . . . , νM ) (10)

and νi (1 ≤ i ≤ M) are the strengths of interaction, i.e.,

they are a permutation of non-zero ai,j (1 ≤ i ≤ N, j < i).
diag(•) denotes a diagonal matrix with elements (•) on the

diagonal.

In the following, based on the derived model (7), we will

analyze the influences of global cues, gi (1 ≤ i ≤ N), and

local cues, ai,j (1 ≤ i, j ≤ N), on synchronization rates.

III. MAIN RESULTS

Assumption 2: We assume all the oscillators have identi-

cal natural frequencies, i.e., w1 = w2 = . . . = wN = w0.

Using Assumption 2, (7) reduces to:

ξ̇ = −G sin ξ − BW sin
(

BT ξ
)

(11)

where ξi denotes the relative phase of node i with reference

to the phase of the global cue, and BT ξ is an M × 1 vector

composed of elements in the form of ξm − ξn (1 ≤ m,n ≤
N). In this section, we will analyze the influences of global

and local cues on the synchronization rate. To this end,

we first give a synchronization condition. In fact, we will

prove that the oscillators can be synchronized even when

the relative phases are outside [−π
2 , π

2 ]. This condition is

less conservative than existing results, which require that

all phase differences (including ξi representing the phase

differences between oscillator nodes and the global cue) must

be within the interval [−π
2 , π

2 ] [6], [7], [11].

For ease in comparison with existing results, we divide the

problem into two subproblems: synchronization rate when
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all the relative phases ξi (1 ≤ i ≤ N) are within [−π
2 , π

2 ]
and synchronization rate when the maximal/minimal relative

phase is within (−π, π) but outside [−π
2 , π

2 ].

A. Synchronization rate when all the relative phases are

within the interval [−π
2 , π

2 ]

To study the synchronization rate, we first consider the

condition under which synchronization can be ensured. Fol-

lowing the idea of [7], we have the following theorem:

Theorem 1: For the oscillator network formulated by (11),

if all the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−π
2 , π

2 ], then the oscillator network will always

synchronize.

Proof: Construct a Lyapunov function as

V =
1

2
ξT ξ (12)

where V is a non-negative function and will be zero if and

only if all ξi (1 ≤ i ≤ N) are zero, meaning that all the

oscillators are synchronized to the global cue.

Differentiating V along trajectories of (11) yields

V̇ = ξT ξ̇ = −ξT
(

G sin ξ + BW sin(BT ξ)
)

= −ξT GS1ξ − ξT BWS2B
T ξ

(13)

where S1 and S2 are given by

S1 = diag

{

sin ξ1

ξ1
,

sin ξ2

ξ2
, . . . ,

sin ξN

ξN

}

, (14)

S2 = diag

{

sin(BT ξ)1
(BT ξ)1

,
sin(BT ξ)2
(BT ξ)2

, . . . ,
sin(BT ξ)M

(BT ξ)M

}

(15)

with (BT ξ)i (1 ≤ i ≤ M) denoting the ith element of M×1
dimensional vector BT ξ.

Note that (BT ξ)i (1 ≤ i ≤ M) are in the form of ξm −
ξn (1 ≤ m,n ≤ N) and thus satisfy −π ≤ (BT ξ)i ≤ π if

relative phases ξi (1 ≤ i ≤ N) are restricted to the interval

[−π
2 , π

2 ]. Considering the fact that in the interval [−π, π],
the sinc function satisfies

sinc(x) ,
sinx

x
≥ 0

with the equality holding if and only if x = ±π, it follows

that S1 is positive definite and S2 is positive semi-definite,

and thus V̇ is always negative if ξ is non-zero. Therefore

V will decay to zero exponentially, meaning that ξ will

converge to zero and all the oscillators are synchronized.

Based on a similar derivation, we can get the synchroniza-

tion rate of the oscillator network:

Theorem 2: For the oscillator network formulated in (11),

when the relative phases are within the interval [−ε, ε] with

0 ≤ ε ≤ π
2 , the synchronization rate is no worse than

α = gmin
sin ε

ε
(16)

where gmin is determined by

gmin = min{g1, g2, . . . , gN} (17)

Proof: Similar to the proof of Theorem 1, we can get

V̇ ≤ −λmin(GS1)ξ
T ξ − λmin(BWS2B

T )ξT ξ

= −λmin(G)λmin(S1)ξ
T ξ − λmin(BWS2B

T )ξT ξ
(18)

where λmin(•) denotes the minimal eigenvalue of matrix (•).
According to the definition of G in (10), we have

λmin(G) = gmin (19)

with gmin defined in (17).

Since sinc is an odd function and monotonic in the interval

[0, π], we know

min
x,−ε≤x≤ε

sinx

x
=

sin ε

ε
(20)

holds for any ε satisfying 0 ≤ ε ≤ π
2 , which leads to

λmin(S1) =
sin ε

ε
(21)

From the proof of Theorem 1, BWS2B
T is a positive

semi-definite matrix when all the relative phases ξi (1 ≤
i ≤ N) are in the interval [−π

2 , π
2 ]. Because W and S2 are

diagonal matrices, it can be easily proven that all row sums of

BWS2B
T are equal to zero. According to consensus theory,

it follows that BWS2B
T always has a zero eigenvalue, i.e.,

λmin(BWS2B
T ) = 0 (22)

Combining (18), (19), (21) and (22) yields

V̇ ≤ −2α
ξT ξ

2
= −2αV (23)

with α defined in (16), which further means that

V (t) ≤ C2e−2αtV (0) ⇒ ‖ξ(t)‖ ≤ Ce−αt‖ξ(0)‖ (24)

holds for some positive constant C. Thus the synchronization

rate is no worse than α in (16).

Remark 1: Although the results are derived using Lya-

punov analysis, they are not conservative. As shown in [13],

when there is no global cue, i.e., g1 = g2 = . . . = gN =
gmin = 0, the network may not synchronize even when the

relative phases ξi (1 ≤ i ≤ N) are in the interval [−π
2 , π

2 ]. So

the derived lower bound on the synchronization rate, which

is zero if there is no global cue, is attainable.

Remark 2: Since S2 is positive semi-definite when the

relative phases ξi (1 ≤ i ≤ N) are in the interval [−π
2 , π

2 ],
which leads to ξT BS2B

T ξ ≥ 0, the local cue will either

increase the synchronization rate (when ξT BS2B
T ξ > 0)

or have no influence on the synchronization rate (when

ξT BS2B
T ξ = 0).

B. Synchronization rate when the maximal/minimal relative

phase is within the interval (−π, π) but outside [−π
2 , π

2 ]

In this section, we analyze the synchronization condition

and synchronization rate of oscillator networks when the

maximal/minimal relative phase is outside [−π
2 , π

2 ]. We first

derive synchronization conditions under which the whole

oscillator network can be synchronized. It is one of the
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first analytical results that prove the achievement of global

synchronization for a general coupling structure even when

phase differences are outside [−π
2 , π

2 ]. We also analyze

influences of global and local cues on the synchronization

rate. In fact, we will prove that a stronger global cue always

leads to a faster synchronization rate, whereas a stronger

local cue may increase or decrease the synchronization rate,

depending on the topology of local cues. Theorem 3 gives a

synchronization condition:

Theorem 3: For the oscillator network formulated in (11),

if we denote λmax(•) as the maximal eigenvalue, then

1) when the relative phases ξi (1 ≤ i ≤ N) are within

the interval [−ε, ε] with π
2 ≤ ε ≤ ε̃, where ε̃ is the

solution to

2ε̃ cos (2ε̃) = sin(2ε̃),
π

2
< ε̃ < π (25)

and can be solved numerically, then the network will

be synchronized if the following inequality is satisfied:

gmin > (− cos ε)λmax(BWBT ) (26)

2) when the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−ε, ε] with ε̃ < ε < π, the network will be

synchronized if the following inequality is satisfied:

gmin >

(

−
ε sin(2ε̃)

2ε̃ sin ε

)

λmax(BWBT ) (27)

Proof: Using the same Lyapunov function as in Theo-

rem 1, we have

V̇ = −ξT GS1ξ − ξT BWS2B
T ξ

≤ −λmin(GS1)ξ
T ξ − ξT BWS2B

T ξ

= −λmin(G)λmin(S1)ξ
T ξ − ξT BWS2B

T ξ

(28)

where S1 and S2 are given in (14) and (15), respectively.

When the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−ε, ε] with π
2 ≤ ε ≤ ε̃, (BT ξ)i (1 ≤ i ≤ M),

which are in the form of ξm−ξn (1 ≤ m,n ≤ N), are within

the interval [−2ε, 2ε]. Making use of the fact that sin x
x

and
sin(2x)

2x
are monotonically decreasing when x ∈ [0, ε] for

π
2 ≤ ε ≤ ε̃ (which can be proven using the first derivative

test [14]), we have

V̇ ≤ −
(

gmin
sin ε

ε
+ sin(2ε)

2ε
λmax(BWBT )

)

ξT ξ (29)

According to the Lyapunov theory, a sufficient condition to

guarantee convergence of ξ is

gmin
sin ε

ε
+

sin(2ε)

2ε
λmax(BWBT ) > 0

which equates to (26) using trigonometric identities.

When the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−ε, ε] with ε̃ < ε < π, sin 2x
2x

is monotonically

decreasing in the interval x ∈ [0, ε̃] and monotonically in-

creasing in the interval x ∈ [ε̃, π]. sin x
x

is still monotonically

decreasing in the interval x ∈ [0, ε] for ε̃ < ε < π. Thus,

based on a similar derivation to the π
2 ≤ ε ≤ ε̃ case, we can

get

V̇ ≤ −

(

gmin
sin ε

ε
+

sin 2ε̃

2ε̃
λmax(BWBT )

)

ξT ξ (30)

A sufficient condition to guarantee convergence of ξ is

gmin
sin ε

ε
+

sin 2ε̃

2ε̃
λmax(BWBT ) > 0

which is equivalent to (27) after some trigonometric manip-

ulations. Thus the theorem is proven.

Remark 3: A numerical solution to (25) yields ε̃ =
2.2467. Moreover, since the parameters on the right hand

sides of (26) and (27) are all known, the conditions in (26)

and (27) can easily be verified.

Remark 4: Theorem 3 shows that the oscillator network

can be exponentially synchronized even when relative phases

are greater than π
2 . Considering the fact that ’relative phases’

defined with reference to the phase of the global cue in

this paper is only a subset of ’phase differences’ defined

as the phase discrepancies between any two oscillators in

the literature, our result is less conservative than existing

synchronization conditions which require that all phase dif-

ferences must be within the interval [−π
2 , π

2 ].
Remark 5: It is worthwhile to mention that all the eigen-

values of BWBT are non-negative [12], which means that

λmax(BWBT ) > 0.

When the conditions in Theorem 3 can be satisfied, i.e., the

oscillator network can be synchronized, we can also analyze

the synchronization rate of the oscillator network. The results

are detailed in Theorem 4.

Theorem 4: For the oscillator network formulated in (11),

if the synchronization conditions in (26) or (27) are satisfied,

then the rate of synchronization can be bounded as follows:

1) when the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−ε, ε] with π
2 ≤ ε ≤ ε̃, the synchronization

rate is no worse than

α1 = gmin
sin ε

ε
+

sin(2ε)

2ε
λmax(BWBT ) (31)

2) when the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−ε, ε] with ε̃ < ε < π, the synchronization

rate is no worse than

α2 = gmin
sin ε

ε
+

sin(2ε̃)

2ε̃
λmax(BWBT ) (32)

Proof: Following the direction of the proof in Theorem

3, we have

V̇ ≤ −2α1V (33)

when the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−ε, ε] for π
2 ≤ ε ≤ ε̃, and

V̇ ≤ −2α2V (34)

when the relative phases ξi (1 ≤ i ≤ N) are within the

interval [−ε, ε] with ε̃ < ε < π. Thus the relative phases will

converge to zero (meaning that the phases of all oscillators

will become identical to the phase of the global cue) with a

rate no worse than α1 (in the π
2 ≤ ε ≤ ε̃ case) or α2 (in the

ε̃ < ε < π case), which completes the proof.

Remark 6: From (31) and (32), it is clear that a stronger

global cue leads to a faster synchronization rate. However,

since S2 in (28) can be positive semi-definite, negative

semi-definite or indefinite when the relative phases ξi (1 ≤
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i ≤ N) are within the interval [−ε, ε] for π
2 ≤ ε < π,

ξT BWS2B
T ξ can be positive, negative or zero, thus the

local cue may increase, decrease or have no influence on

the synchronization rate. This conclusion is confirmed by

numerical simulations in Sec. IV.

IV. SIMULATION RESULTS

In this section, simulation results are given to illustrate

the analytical results. We consider an oscillator network

composed of N = 9 inter-connected oscillators, and each os-

cillator receives alignment/entrainment information from the

global cue. The strengths of the global cues, g1, g2, . . . , gN ,

are set to an identical positive value and the strengths of the

local cues, ai,j(1 ≤ i, j ≤ N), are randomly chosen from the

interval [0, 1]. We use the synchronization index to measure

the degree of synchrony [15], [16]:

SI =

∣

∣

∣

∣

∣

1

N

N
∑

i=0

ejϕi

∣

∣

∣

∣

∣

SI ∈ [0, 1] reflects the degree of synchrony and will

approach 1 as the network is perfectly synchronized, and

0 if the phases are randomly distributed [15].

In order to show the influences of global and local cues

on the rate of synchronization, we simulated the oscillator

network under different strengths of global and local cues.

For convenience in notation, we use m × g (m = 1, 2, . . .)
to represent the situation that the strength of the global cue

is made m times larger than the original one. Similarly, we

use n × ai,j (n = 1, 2, . . .) to represent the situation that

the strengths of local cues are made n times larger than

the original ones. Synchronization is defined to be achieved

when the SI exceeds 0.99.

We first simulated the oscillator network when all the

initial relative phases were set uniformly distributed in

[−π
2 , π

2 ]. The evolution of the 9 oscillators’ relative phases

is illustrated in Fig 1. It can be seen that all the relative

phases converge to zero. Hence the oscillator network is

synchronized. With a fixed strength of the local cue, the times

to synchronization under different strengths of global cues

are given in Fig. 2. It is clear that the synchronization rate

increases with an increase in the global cue. To show the

influences of local cues on the synchronization rate, we also

simulated the network under a fixed global cue and different

strengths of local cues. The times to synchronization are

given in Fig. 3. It can be seen that when all the relative

phases are within the interval [−π
2 , π

2 ], a stronger local cue

is favorable to synchronization.

When the maximal/minimal relative phase is outside

[−π
2 , π

2 ] but is in (−π, π), the evolution of the 9 oscillators’

relative phases is illustrated in Fig. 4. All relative phases

converge to zero or an integral multiple of 2π, which is

equivalent to zero in the rotating reference framework. Hence

the oscillator network is synchronized. The times to syn-

chronization under a fixed local cue and different strengths

of global cues are given in Fig. 5, which illustrates that

the synchronization rate increases with an increase in the
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global cue. The times to synchronization under a fixed global

cue and different strengths of local cues are given in Fig.

6. We can see that with an increase in the local cue, the

synchronization rate may be increased or decreased, which

confirms the theoretical results in Sec. III-B.
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Fig. 5. Times to synchronization under different strengths of global cues
and a fixed local cue (with the maximal/minimal relative phase outside
[−π

2
, π

2
]).

V. CONCLUSIONS

The influences of global and local cues on the synchro-

nization rate of the Kuramoto model of sinusoidally inter-

connected oscillators are analyzed. First a global synchro-

nization condition is proposed. It is one of the first conditions

that ensure global synchronization of a general coupling

structure when phase differences may be outside of the in-

terval [−π
2 , π

2 ]. Then, it is proven analytically that a stronger

global cue always leads to a faster synchronization rate

whereas a stronger local cue has no influence or increases

the synchronization rate when the relative phases are within

the interval [−π
2 , π

2 ], and it may increase or decrease the

synchronization rate when the relative phases cannot be

bounded by that interval. Simulations results are given to

illustrate the analytical results.
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Fig. 6. Times to synchronization under different strengths of local cues
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