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Abstract— Here we consider a state-constrained stochastic
linear quadratic control problem. This problem has linear
dynamics and a quadratic cost, and states are required to
satisfy a probabilistic constraint. In this paper, the joint prob-
abilistic constraint in the model is converted to a conservative
deterministic one using multi-dimensional Chebyshev bound.
A maximum volume inscribed ellipsoid problem is solved to
obtain this probability bound. We then design an optimal
affine controller for the resulting problem. The convexity of
the Chebyshev bound-constrained problem is proved and a
practical algorithm is developed. Two numerical examples show
that the algorithm is reliable even when the disturbances are
large and the problem horizon grows to as long as 20 stages. It
is also shown that the approach proposed in this paper can be
used to reformulate some classical problems such as tracking
problems.

I. INTRODUCTION

In this paper we consider a probability constrained

discrete-time stochastic linear-quadratic control problem with

additive, zero mean and finite second moment disturbances.

Unconstrained discrete-time stochastic LQ control has been

extensively studied over the last half-century, and it is well-

known that there exists a closed form optimal solution

which can be expressed in terms of the discrete-time alge-

braic Riccati equations, provided the system is controllable

and observable (see [1] and references therein). However,

constrained problems present unique challenges that are

generally not addressed by classical methods.

Recently, probability constrained linear quadratic control

has been a very active research area in the control community

(e.g., see [2], [3], [4] and [5]), as it is a natural extension of

the constrained deterministic linear quadratic control. Prob-

ability constrained optimization problems were first studied

by Charnes, Cooper, and Symonds [6], Miller and Wagner

[7] and Prekopa [8]. Hard, robust constraints (see [9]) can

be viewed as probability constraints that must hold with

probability 1. Interestingly, sometimes a small relaxation

of this probability requirement can lead to a significant

improvement in the achievable objective function value.

Currently there are two main-stream approaches dealing with

probability constraints: probabilistic approximation (see [10],

[11] and [12]) and sampling (see [13] and [14]). However,

existing results primarily deal with scalar cases. A special

case is addressed in [15], where the multi-dimensional addi-

tive disturbances have diagonal covariance matrices. To the

authors’ knowledge, no practical methods exist for general

multi-dimensional probability constraints.

In deterministic LQR problems, open-loop and closed loop

strategies are equivalent. So, in finite horizon problems, an

optimal control sequence can be computed by solving a con-

strained quadratic program, even when inequality constraints

on states and controls are present. In a stochastic setting,

performance can be improved by utilizing a closed loop

controller. That is, knowledge of past disturbances can be

incorporated into the control actions taken at each time pe-

riod. Here we consider the design of closed loop controllers

that minimize an LQR cost subject to a probability constraint

on the system’s states.

The main purpose of this paper is to derive a tractable

approximation of the state-constrained stochastic LQR prob-

lem, and develop an algorithm for computing an optimal

affine controller for this approximation. We summarize an

algorithm that is practical and can be implemented with

conventional optimization solvers. Moreover, the controllers

produced by this algorithm are guaranteed to be feasible with

respect to the probability constraints in the state-constrained

stochastic LQR problem.

The rest of the paper is organized as follows: In sec-

tion II, we formulate the state-constrained stochastic LQR

model. In section III, we propose an inner approximation of

the probabilistic state constraints using a multi-dimensional

Chebyshev bound. In section IV, we specify a convex pro-

gram that can be solved to compute an optimal causal, affine

controller for the approximated state-constrained stochastic

LQR problem. We also summarize the algorithm framework

for the approximate problem. In section V, two numerical

examples are shown to demonstrate the reliability of the

approach, by comparing our approach with the certainty

equivalent model. Finally, conclusions and a discussion of

future work are given in section VI.

II. PROBLEM FORMULATION

The probabilistic state constrained stochastic LQR model

is formulated as:

minimize: E[
∑N−1

k=0 (xT
k Qxk + uT

k Ruk) + xT
NQNxN ]

subject to: xk+1 = Axk + Buk + wk for k = 0, . . . , N−1

P (T1x1 + · · · + TNxN ≤ b) ≥ α
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We call this problem (P1). In this formulation, we assume

the initial state vector x0 is known. N is the problem

horizon,xk ∈ Rn is the system state at time k, uk ∈ Rn

the control applies at time k and wk ∈ Rn is the random

disturbance applied to the system at time k. The wk are stage-

wise independent with zero mean and covariance matrices

Σk. QN is a terminal cost matrix. The constraint is a

probabilistic constraint on the states over the entire problem

horizon. The formulation can be used in places where there

is a need for more precise modeling of tolerance levels.

For example, in a portfolio selection problem one may be

willing to take some risk of losing money but requiring

the chance of big losses to be small. Another example

is in supply chain management. A company may want to

adopt a more aggressive strategy and determine that back-

orders(unsatisfied demands) is acceptable in some degree.

One can also use it to model energy related problems like

economic dispatch problems and energy-efficient-building

control problems.

In this paper, we aim to develop an algorithm for com-

puting closed-loop controllers. Probabilistic constraints are

generally intractable components in an optimization problem

[12]. Exact evaluation of a probabilistic constraint requires

multi-dimensional integration. Even in some special cases

where there exist analytical solutions for the integrals, we

may not know the needed density function. So rather than

solve this problem exactly, we will replace the probability

constraint with an inner approximation. A controller that

is feasible for this approximation will be guaranteed to be

feasible for the original probability constraint. Our goal is

to find a reliable and fast way to solve this problem. First

we rewrite the system dynamics in matrix form. Since the

system dynamics are linear, after some algebra, we get:

X = Fx0 + HU + GW

where

X =




x1

...

xN



, U =




u0

...

uN−1



, W =




w0

...

wN−1





The block matrices F, H and G (note that for convenience

the indices start with 0) are given by:

F =




f0

...

fN−1



 , H =





h0

h1 h0

...
. . .

hN−1 hN−2 . . . h0





G =





g0

g1 g0

...
. . .

gN−1 gN−2 . . . g0





fk = Ak+1, hk = AkB, and gk = Ak.

k = 0, 1, . . . , N − 1.

Observse that W has zero mean and its block covariance

matrix Σ is given by:

Σ =




Σ0

. . .

ΣN−1





Our next step is to reformulate (P1) with this new notation.

Let the diagonal N ×N block matrices Q and R be defined

as follows:

Q =





Q

. . .

Q

QN




, R =




R

. . .

R





Using the notation above, we can rewrite (P1) as a more

compact form.

minimize: E[X T QX + UT RU ] + xT
0 Qx0

subject to: P (TX ≤ b) ≥ α
(1)

where T is a matrix constructed by concatenating the ma-

trices T1, . . . , TN . In the next section, we will replace the

probabilistic state constraint in (1) by a multi-dimensional

Chebyshev inequality.

III. APPROXIMATION OF THE PROBABILISTIC

CONSTRAINT

In this section we present a conservative approximation

for the probabilistic constraint in (1), using the multi-

dimensional Chebyshev inequality. Before we derive the

main result of this paper, we mention that there exist sev-

eral approaches to tackle scalar chance constraints, namely

Bernstein approximations and scenario approximation. The

goal for this section is to derive a method to approximate

multidimensional chance constraints, which serves as the

foundation of our control algorithm in the later sections. The

following theorem provides a multi-dimensional Chebyshev

inequality [16]:

Theorem 1: Let z be a random vector in Rd and S a subset

of Rd defined by a collection of linear inequalities. If P ∈ Sd,

q ∈ Rd and r ∈ R are chosen so that

{z ∈ Rd | zT Pz + 2qT z + r ≤ 1}

is an inscribed ellipsoid of set S, then we have

1 − E[zT Pz + 2qT z + r] ≤ P(z ∈ S)
Proof: Let f(z) = zT Pz + 2qz + r, then f(z) ≥ 0

for z ∈ S and f(z) ≥ 1 for any z ∈ Sc, where Sc is the

complement of S. Let ISc(.) be the indicator function on

Sc, then

f(z) ≥ ISc(z)

Therefore,

E[f(z)] ≥ E[ISc(z)] = P(z ∈ Sc)

which is the same as

1 − E[zT Pz + 2qz + r] ≤ P(z ∈ S)
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Note that

E[zT Pz + 2qz + r] = Tr(PE[zzT ]) + 2qT E[z] + r

The underlying probability distribution of z does not affect

the nature of the bound. In other words, the bound is valid

for any distribution, or an ambiguous distribution (see [12]

and [17] for example), as long as its first and second moment

coincide with the given ones.

Theorem 1 gives a lower bound on the probability that z

falls into S, or an upper bound on the probability that z falls

outside. Now we consider how to use it to approximate the

probabilistic constraint. Observe that the constraint on the

system states

TX ≤ b

can be rewritten as

T
[
H G

] [
U
W

]
≤ b − TFx0

Let

z =

[
U
W

]
, b̂ = b − TFx0

and

T̂ = T
[
H G

]

The state constraint simply becomes

T̂ z ≤ b̂ (2)

Now we can then substitute the probabilistic constraint with

E[zT Pz + 2qT z + r] ≤ 1 − α

where P , q and r are the parameters for an inscribed ellipsoid

of the convex set defined by (2).

Theorem 1 does not mention the way for selecting the

inscribed ellipsoid. Of course there are many possible ways

to choose the ellipsoid and as one can expect, the quality of

the bound largely relies on the choice of the ellipsoid. It is

not clear how to optimally choose one, since the ellipsoid

that provides the sharpest bound will be dependent upon the

first and second moments of z. One reasonable choice is

to use the maximum volume inscribed ellipsoid (see [16]).

This ellipsoid can be easily computed using conventional

semidefinite programming (SDP) solvers.

Let S be the polyhedron defined by the linear inequalities:

{T̂iz ≤ b̂i, i = 1, ...,m.} (3)

The maximum volume inscribed ellipsoid of S is given by

{Bu + d | ‖u‖2 ≤ 1}

where B ∈ Sd, and d ∈ Rd are obtained from the following

log-det program:

maximize: log detB

subject to: ‖BT̂i

T
‖2 + T̂id ≤ b̂i for i = 1, ...,m

(4)

Using the affine mapping z = Bu + d, we can obtain the

formulation of the maximum volume inscribed ellipsoid in

terms of z.

{z| zT Pz + 2qT z + r ≤ 1}

where the transformation is given by

P = (BBT )−1, q = −Pd and r = dT Pd (5)

The approach to replace the probabilistic constraint has

been shown. One issue is that originally T̂ z ≤ b̂ may be

unbounded, so the maximum volume inscribed ellipsoid is

not applicable. This issue can be addressed by adding box

constraints to the control and the disturbances.

−M ≤ U ≤ M,−M ≤ W ≤ M

where M is sufficiently large.

IV. AFFINE CLOSED-LOOP CONTROLLER DESIGN

We consider the following closed-loop control law

ui = ūi +

i−1∑

j=0

K(i,j)wj , i = 0, 1, ..., N − 1.

where K(i,j) are constant gain matrices. This approach is

similar in spirit to [18]. Also, note that this control law is an

affine function of past disturbances instead of past states.

Given the structure of the G, H, and K matrices in our

problem, it is always possible to recover the disturbances

w0, . . . , wt−1 from the states x0, . . . , xt. So, this control law

can be equivalently implemented as a state feedback control

law.

This control consists of a constant component and a linear

combination of the uncertainties. To be consistent, it is more

convenient to write them in the following form

U = U + KW

where K is the gain matrix given by

K =





0
K(1,0) 0
K(2,0) K(2,1)

...
. . .

. . .

K(N−1,0) . . . K(N−1,N−2) 0





As it can be seen, the gain matrix K is strictly block lower

triangular due to the causality of the control law. We leave

K to be a variable of the optimization problem.

To summarize, recall that our aim is to minimize

E[X T QX + UT RU ],

where

X = Fx0 + HU + (G + HK)W,

U = U + KW,

z =

[
U
W

]
,

Tr(PE[zzT ]) + 2qT E[z] + r ≤ 1 − α,
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and the optimization variables are the vector U and the

strictly block lower triangular matrix K. Directly in terms

of these optimization variables we can write this problem as

(P2):

minimize:

[
x0

U

]T [
FT QF FT QH

HT QF HT QH + R

] [
x0

U

]

+Tr(KT (HT QH + R)KΣ + 2KT HT QGΣ)

subject to: U
T
P11U + 2qT

1 U
+Tr(KT P11KΣ + 2KT P12Σ)
≤ 1 − α − r − Tr(P22Σ)

Here we have partitioned P and q as

P =

[
P11 P12

PT
12 P22

]
q =

[
q1

q2

]

If the problem is solved then we obtained the optimal

control policy expressed as a constant term plus a linear term

associated with the disturbances. The problem (P2) turns out

to be a convex quadratic program with respect to (Ū , K).
Theorem 2: (P2) is a convex quadratic program.

Proof: First we look at the objective. The objective is

expressed as a sum of quadratic two terms, one exclusively

in terms of the variable U and the other exclusively in

terms of the variable K. Since Q and R are both positive

semidefinite, the term in U is convex. The term in K is

convex if Tr(KT (HT QH + R)KΣ) is convex. Since any

positive semidefinite matrix can be expressed as a finite

nonnegative linear combination of matrices of the type ββT

([19]), we have

Tr(KT (HT QH + R)KΣ)

= Tr(KT (HT QH + R)K

t∑

i=1

βiβi
T )

=

t∑

i=1

(Kβi)
T (HT QH + R)(Kβi)

which is a non-negative linear combination of convex func-

tions of Kβi. So this term is convex in K and therefore the

objective is convex.

Now we prove the constraint is also convex. As with the

objective, the left hand side of the constraint is expressed

as a sum of quadratic two terms, one exclusively in terms

of the variable U and the other exclusively in terms of the

variable K. Since P11 is positive semidefinite, the term in

U is convex. The term in K is convex if Tr(KT P11KΣ)
is convex. Using the same analysis for the objective here,

we conclude that Tr(KT P11KΣ) is a non-negative linear

combination of convex functions. Hence, the constraint is a

convex quadratic constraint.

We showed the approach to replace the probabilistic

constraint and designed a causal affine control law for the

resulting problem. We further proved that the this control law

can be computed by solving a convex program. For complete-

ness, the algorithm that used to solve (P1) is summarized in

Table I.

TABLE I

THE ALGORITHM

Step 1: Compute F, H, G, Σ, Q and R.

Step 2: Construct T̂ , b̂ and the set S using (2).

Step 3: Solve the maximum volume inscribed ellipsoid problem (4)

and obtain B and d.

Step 4: Use the transformation (5) to get P , q and r.

Step 5: Solve (P2) for U and K.

V. NUMERICAL EXAMPLES

In this section we choose two state-constrained stochastic

LQR problems with 2 states and 2 control inputs, showing

the reliability of the approach. We compare our approach

with the certainty equivalent approach only, which replaces

random variables with their expected values. There ex-

ist classic results for similarly formulated stochastic MPC

problems. [5] proposed a fast algorithm for problems with

scalar probabilistic constraints. In [15], the authors devel-

oped a framework to solve problems with joint probabilistic

constraints. However, it only deals with disturbances with

diagonal covariance matrices. Our goal here is to show a

practical way to tackle stochastic MPC with joint probability

constraints on states. All the examples are implemented in

Matlab, using Yalmip [20] and SDPT3 [21].

We adapted an example from [5]. The system dynamics

and disturbance parameters are given by

A =

[
1.02 −0.1
0.1 0.98

]
, B =

[
0.5 0
0.05 0.5

]
,

Q =

[
10 0
0 10

]
, R =

[
5 0
0 5

]
, QN =

[
50 0
0 50

]

The initial system state and the uniform box state constraint

are given by

x0 =

[
10
10

]
,

[
0
0

]
≤ xk ≤

[
30
30

]

The disturbance vectors are multi-dimensional normal and

i.i.d..

wk ~N

([
0
0

]
,

[
0.81 −0.648

−0.648 0.81

])

The probability requirement α is set to be 0.8. The trajec-

tories of our model and the certainty equivalent model are

shown in the following figures.
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Fig. 1. 2D trajectories for the 20-stage case
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Fig. 2. state trajectories for the 20-stage case

First we test our approach on problems with box state

constraints. Figure 1(a) contains the trajectories of the state-

constrained stochastic LQR problem with a horizon con-

taining 20 periods solved using our approach. Figure 1(b)

is those solved using the certainty equivalent model. The

simulation is repeated 50 times. As we can see, our model,

which uses Chebyshev bound successfully keeps the trajecto-

ries within the red dotted boundary box, which represents the

state constraints. The trajectories of the certainty equivalent

fall out of the boundaries quickly as the controller acts risky

towards the origin, where the cost is minimized. Figure 2

gives the trajectories in detail by showing them state-by-

state. Figure 2(a) and Figure 2(b) are the state trajectories

for our model and Figure 2(c) and Figure 2(d) are those for

the certainty equivalent model.

We also test our approach on a 10-stage tracking problem.

The trajectory we are trying to track is given by

yk =

[
5 sin(0.2k)
5 cos(0.2k)

]

The feasible trajectory region is defined by manipulating the

upper and lower bounds of the states

yk − 5 ≤ xk ≤ yk + 5

The distribution of the i.i.d. disturbances is different in this

example

wk ~N

([
0
0

]
,

[
0.12 0
0 0.12

])

The simulation results are shown below.
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Fig. 3. 2D trajectories for the 10-stage tracking case
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Fig. 4. State trajectories for the 10-stage tracking case

Figure 3(a) shows the trajectories of the 10-stage tracking

problem using our approach and Figure 3(b) shows those

solved using the certainty equivalent model. Figure 4(a)

and Figure 4(b) are the state trajectories for our model

and Figure 4(c) and Figure 4(d) are those for the certainty

equivalent model. This example gives an alternative way to

formulate the tracking problem other than using penalties.

We can see that our approach performs robustly against

the uncertainty and stays in the desired trajectory region

(between the red dotted curves) while the certainty equivalent

approach disregards the risk of violating the constraints and

behaves very aggressively.

The running time comparison between the Chebyshev

approach and the certainty equivalent approach is shown

in Table II. The testing environment is Windows x86 on

a PC with Intel Core 2 duo T9550 2.66Ghz and 3 gig

ram. We also include the running time for obtaining the

maximum volume ellipsoids(MaxV). The result shows that

using the Chebyshev approach, the probability constrained

problem can be efficiently approximated. The solver time

of our approach is longer than the CE one since the algo-

rithm additionally computes the optimal linear disturbance

feedback. We noticed that as the problem size grows the

solver time of MaxV grows very fast due to the complexity

of the maximum volume ellipsoid algorithm. Fortunately, the

ellipsoids can be calculated off-line.

TABLE II

AVERAGE RUNNING TIME (IN SECS)

Problem Type MaxV Chebyshev CE

10-stage
Yalmip 11.8310 0.6230 0.5100

Solver 5.7430 0.6410 0.004

20-stage
Yalmip 7.536 0.7890 0.2080

Solver 244.835 3.4970 0.0200

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to approximate

probabilistic constraints using the multi-dimensional Cheby-

shev bound and the maximum volume inscribed ellipsoid.
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We also designed an optimal causal affine controller for

the approximate problem and proved the convexity of it.

A practical algorithm is summarized to solve the problem

which can be developed using general quadratic program

solvers. This approach also can be used as a subroutine in

a model predictive control algorithm for state-constrained

stochastic LQR problems.

The results derived in this paper can also be applied

to solve other problems coupled with joint probabilistic

constraints. For example, a noisy input can be modeled using

joint probabilistic constraints, which can be replaced by a

convex deterministic one with our approximation approach.

Also, the causal affine controller can be extended to nonlinear

controller if one can choose qualified basis functions of the

disturbances to replace the affine disturbance structure.
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