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Abstract— For a Plug-in Hybrid-Electric Vehicle (PHEV) a
close to linear battery depletion profile is near optimal in terms
of fuel economy, given that the driven Distance Until Charge
(DUC) is known. However the intended driven distance until
charge is not always known. We propose a pattern recognition
method to predict the DUC based on the key-on time and day
observations and the on-board stored data in vehicle. We review
the energy management strategy and we show a fuel economy
improvement despite prediction errors.

I. INTRODUCTION

A Plug-in Hybrid-Electric Vehicle (PHEV) is a mix be-

tween a regular Hybrid Electric Vehicle (HEV) and a Battery

Electric Vehicle (BEV). Contrary to the HEV which aims

at keeping a nominal fixed State of Charge (SOC) for its

battery, the PHEV has a bigger battery with extra capacity to

store energy that will be consumed during driving and then

recharged from the electric grid when the vehicle reaches

a charging station (e.g. overnight). The base strategy of a

PHEV has two modes of operations shown in Fig. 1: Charge

Depletion (CD) mode and Charge Sustaining (CS) mode.

During the CD operating mode, the vehicle propulsion is

relying primarily on the electric drivetrain using the energy

stored in the battery. In this mode, the PHEV runs like a

BEV. When the battery SOC reaches a pre-defined level (e.g.,

30%), the CS mode starts. In this mode, the PHEV runs like

a HEV, both the battery and the engine provide the required

propulsion energy while the SOC is kept constant. The solid

red line in Fig. 1 shows the base energy management strategy

of a PHEV that depicts SOC versus the driven distance and

the two operating modes. In the figure, the vehicle switches

from CD to CS mode at around 30% SOC level and keeps

the battery energy within a few percentage points of this

level.

However, this strategy is not optimal in terms of fuel

consumption and if the distance that will be traveled until

the next charge is known in advance, the battery depletion

profile (rate of usage) can be adapted in order to improve

Fuel Economy (FE). It was shown that a close to linear

battery depletion profile for a PHEV such as the dotted

blue line in Fig. 1, is near optimal in terms of FE, given

that the driven distance is known [1], [2]. In this case, the

engine works in a more efficient region and a better fuel

economy can be achieved. Gong et al. [3] found a global

optimal SOC profile for a given speed profile by solving an

optimization based on a dynamic programming. However,
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it is hard to implement such an algorithm on a real world

drive cycle since the future speed profile is unknown. Gong

et al. [4] used the GPS information and a neural network

to model the trip, based on the past driving history. They

used a model to construct a near optimal solution through

dynamic programming; however, this method requires sig-

nificant computation. Tulpule et al. [5] proposed a simple

method where the SOC is depleted linearly with the traveled

distance given that the Distance Until (the next) Charge

(DUC) is known. They called this strategy the blended mode

for which the depletion rate is slower. The authors showed

that the blended strategy has better net energy consumption

compared with the CD-CS strategy. Karbowski et al. [6]

defined the total energy loss of the engine and battery to

obtain a global optimal strategy for different speed profiles

and driving cycles and then they proposed a real-time rule-

based controller. They also observed that the DUC is an

important factor to determine the SOC depletion strategy

such that the energy losses are minimized and the engine

is forced to operate in the most efficient operating points.

While it is impossible to know the intended DUC be-

forehand, a combination of statistical estimation based on

pattern recognition and optional driver input will allow the

vehicle to estimate the DUC. Although there are several

papers for route prediction and travel time prediction [7],

[8], [9], there is no publication regarding prediction of DUC

to our best knowledge. In this paper, we propose a method to

estimate the DUC based on multiple estimators and historical

data consisting of Time Of Day (TOD) and Day Of Week

(DOW) of the first key-on after each charge. Each one

of the estimators use a different subset of historical data,

called filtered training sets, to provide a DUC prediction. All

estimators use the Recursive Least Square (RLS) estimation

method [10] which is easily implementable using existing

computational power in a vehicle. The difference between

the estimators is that they use a different subset of the

historical data to predict the DUC value. Our initial study

using Weka [11], showed that there is only a minor difference

between the RLS method results and other methods such as

support vector machine, k-nearest neighbor, neural network,

and rule based pattern recognition methods for this particular

problem. Therefore, we choose the RLS for its simplicity and

ease of implementation.

We propose a method to predict the final DUC by using

the predictions from the estimators. This final prediction will

be used by the energy management of the PHEV to obtain a

depletion profile such as the dotted blue line in Fig. 1. We as-

sociate a metric called Quality of Prediction (QoP) to each of
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Fig. 1. The solid red graph shows the SOC for the base energy management
strategy with CD and CS modes. The dotted blue graph shows the SOC for
the proposed method called DUC.

the predictions provided by the estimators. The final DUC is

the average of predictions with a QoP higher than a computed

level called normal QoP. Under some conditions, the overall

estimator would not give any estimation due to a low QoP

of most of the estimators. We will see in Section IV that the

proposed method is quite effective in estimating DUC based

on TOD and DOW observations. For route prediction, from

the trip observation and destination intent, Simmons et al. [8]

used hidden Markov chain that allowed them to incorporate

TOD, DOW, and speed into their estimator. Their results

showed that only speed is a significant help in boosting their

prediction accuracy. However, our result for distance until

charge prediction (that may consist of several trips) shows

that DOW and TOD in conjunction with multiple predictors

can predict DUC accurate enough for our purpose.

This paper is organized as follows. In Section II, we briefly

present the overall system. In Section III, we review the

data collection plan used for this project and in Section IV

we focus on the proposed prediction method. In section V

we briefly review the energy management strategy and we

investigate the fuel economy impact of DUC strategy on a

PHEV by comparing the base case with the ideal case that

the driver enters DUC manually through HMI and the case

that DUC is predicted and necessarily a prediction error is

present.

II. SYSTEM OVERVIEW

The Prediction System is part of the whole DUC system

and it is responsible for providing an estimation or prediction

of an intended DUC. One of the sub-systems is The Energy

Management Controls, that controls the engine, the electrical

motor, the battery, and other powertrain components so that

they work seamlessly together to propel the vehicle. These

control systems decide when to turn the electrical motor

on or off depending on the present power demand and

the battery SOC. One of the control systems is the Trip-

based Energy Management control (TEMC). This system

is responsible for controlling the actual battery depletion to

obtain a target depletion profile, e.g., dotted line in Fig. 1

which is based on the DUC value.

Fig. 2. This figure shows the structure of the overall estimator that predicts
DUC based on DOW and TOD observation and the training set.

III. DATA COLLECTION

We used data loggers from Davis called CarChip

(http://www.carchip.com/) to gather data. The device powers

itself from the OBD II port and starts logging the vehicle

speed as soon as the vehicle is used. Fig. 3 shows the scatter

plot of the DUC for 4 users where the value of recorded

DUCs are bined. The range between 0 to 100 miles is divided

into 10 bins and any DUC value more than 100 miles is also

represented by the last bin. In the figures, day 1 to 7 represent

Monday to Sunday respectively but for better visualization,

a random number drawn from a uniform distribution in

the interval [−0.25,0.25] is added to the number assigned

to days. For example any DOW between 0.75 and 1.25

represents Monday in Fig. 3. Note that discretizing DUC

is just for the visualization and not for the prediction since

our initial studies with Weka showed that the discretization

error lead to bad DUC predictions even if we increase the

number of bins (for this reason we did not use a discrete

prediction method such as support vector machine).

IV. DUC ESTIMATION

We divide the collected data for each driver into two sets: a

training set and a test set. For each driver, the test set contains

16 samples randomly selected from the collected data and

the rest form the training set. The training set is used for

prediction and the test set is used to determine how good

the prediction is. Alternatively, we could use other methods

such as folding to provide test and training sets.

Fig. 2 shows the structure of the overall estimator. The

objective is to estimate yi, i ∈ {1, · · · ,16}, the i-th DUC in

the test set for each driver, where the corresponding estimate

is denoted by ŷi. The estimate ŷi is based on the observation

xi, i ∈ {1, · · · ,16}, its DOW and TOD, and the training set

data (x j,y j), j ∈ {1, · · · ,n} where n represents the number

of samples in the training set for each driver. This objective

mimics the real world scenario where past TOD, DOW, DUC

are saved in an on-board memory and the DUC is predicted

at the first key-on after each charge by observing TOD and

DOW.

A. Unfiltered and Filtered training sets

We use multiple data sets based of the observation xi to

provide a prediction:

• Unfiltered training set includes all the samples in the

training set.
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(a) User 1

(b) User 2

(c) User 3

(d) User 4

Fig. 3. Figures show the scatter plot of the recorded DUCs for user 1 to
4 where the value of DUCs are bined. The range between 0 to 100 miles
is divided into 10 bins and any DUC value more than 100 miles is also
represented by the last bin, and the bins are presented by their mid-points.

• Filtered training set A includes the samples in the

training set whose DOW type, weekend or weekday,

matches with xi’s DOW type.

• Filtered training set B includes the samples in the

training set whose DOW, Monday to Sunday, matches

with xi’s DOW.

• Filtered training set C includes the samples in the

training set whose TOD are within 1.5 hours of xi’s

TOD.

• Filtered training set D includes the samples that are in

both sets B and C.

TABLE I

THIS TABLE SHOWS THE RMSE OF ESTIMATED DUC (IN MILES) BASED

ON THE UNFILTERED AND FILTERED TRAINING SETS. THE FINAL SHOWS

THE RMSE FOR THE FINAL DUC ESTIMATION BASED ON (1) AND THE

LAST COLUMN SHOWS THE NUMBER OF TEST SET SAMPLES FOR WHICH

THE FINAL PREDICTION IS PROVIDED.

User Unf. A B C D Final No.

U1 4.2 4.1 4.6 4.1 4.6 4.0 16
U2 23.9 20.5 22.0 18.7 23.4 15.0 10
U3 21.9 20.5 16.0 22.1 26.6 6.1 11
U4 14.3 14.2 19.2 19.3 17.9 8.2 11

For example for xi=(Monday,10), set A includes all historical

data that their DOW is Monday through Friday, set B

includes all samples whose DOW is Monday, its set C

includes all samples whose TOD is between 8:30 and 11:30,

and set D includes all samples that their DOW is Monday

and their TOD is between 8:30 and 11:30.

After finding filtered training sets A to D for an observation

xi, we use the RLS method to provide a prediction for DUC

showed by ŷik, that represents the estimation for the i-th

sample in the test set based on the k-th filtered training set

where k ∈ {A,B,C,D}. More details of RLS method can be

found in [10]. It is important to note that TOD is a numerical

variable but DOW is a symbol and 1 to 7 represent the

assigned values to symbols. Usually the RLS is used just

for numerical variables and for the mixed case, RLS is used

for each symbol. But in our case we choose to treat the

numerical values representing symbols as numbers because

this approach boosts out prediction accuracy. The reason is

that there is a strong relationship between the outcome of

symbols, e.g., DUC value for Saturday and Sunday.

B. Selection Method

By using the filtered training sets described in Section IV-

A and the RLS method, five different predictions for a test

sample are computed. Now the question is, how to choose the

final estimation of DUC from multiple predictions provided

by filters?

The following observations are crucial for setting the

selection rules:

• Variance of a filtered training set used for prediction

is an important measure for QoP. If a filtered training

set has a high variance it means that there is a high

variability and randomness in the data used for predic-

tion and one should not expect a good prediction in this

case. It is possible that one or two filters have low QoP

and others have high QoP. For example, consider the

following case: for a given driver, if TOD is 6:30 to 8:30

she drives close to 60 miles because her job is 30 miles

away from her house. However, if TOD is 10:30 she

drives 20 miles because she does not work that day. Also

we assume that she has a flexible work schedule and

sometimes she works on Wednesdays and sometimes

she does not. With these assumptions, given the input

observations TOD=7:00 and DOW=Wednesday, filtered
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training set B can have high variance and one should

use the prediction provided by other filters.

• The number of samples in a filtered training set is an

important factor as well, because if there is only one

sample in a filtered set, the variance is zero but the

QoP is factitiously high. Consequently we consider a

prediction corresponding to less that 3 samples in the

filtered training set as low QoP even if their variance is

low, because the prediction is not trustworthy.

• We can choose a fixed value as a threshold for accept-

able QoP so that if a filtered set variance is above that

threshold, the corresponding estimation is discarded.

Alternatively, we can choose the variance of unfiltered

training set as the normal variance of the data and

discard a filter estimation if the variance of the cor-

responding filtered training set is above this level. We

choose the latter case since some drivers have a more

random driving pattern. For example, for the driver 1

the normal variance is 5 and for the driver 2 the normal

variance is 25. For this case we do not have to find

a fixed level for the threshold and it is determined by

calculation based on the drivers driving history.

Based on the above observations, the selection rules and

DUC estimation are as follows:

1) For a given input observation xi, i ∈ {1, · · · ,16} form

the filtered training sets A,B,C,D and find predictions

by the RLS method.

2) For all k ∈ {A,B,C,D}, compute

ηk =

{

0 ηk ≤ 3,

1 otherwise,

where nk is the number of samples in the filtered set k

and ηk is a corresponding flag of the filter k. When

the flag ηk is zero, the corresponding prediction is

discarded and will not be used to compute the final

DUC in (1).

3) For all k ∈ {A,B,C,D}, compute

hk =

{

0 σk ≥ σu

1 otherwise,

where σk,σu represent standard deviation of filtered

training set k and the unfiltered one. When the flag hk

is zero, the corresponding prediction is discarded and

will not be used to compute the final DUC in (1).

4) Compute the DUC estimation for the input observation

xi according to

ŷi =

{

∑k ηkhk ŷik

∑k ηkhk
∑k ηkhk > 2,

no estimation otherwise,
(1)

The final DUC is the average of predictions which both

of the corresponding flags ηk,hk are 1. If the condition

∑k ηkhk > 2 does not hold, the overall estimator would

not give any estimation due to a low QoP of most of

the estimators.

Fig. 4. Cost vs. the estimated DUC (ŷ) for 30,45,70,80 miles for intended
DUC (y).

Table I shows the Root Mean Square Error (RMSE) of the

estimated DUC (in miles) for the samples in the unfiltered

and filtered test sets. The last column shows the number of

test set samples for which the final prediction is provided.

Note that the total number of samples for other cases is

16 (except for the filter D which are 16,14,15,15) which

is the number of samples in the test sets for users. The

RMSE has improved significantly for two reasons. First,

the proposed algorithm for final prediction is successful in

refusing to provide a prediction that otherwise would be

a poor prediction of the DUC. The second reason for the

improvement is due to the fact that the final method provides

the estimate for fewer samples, which may reduce the RMSE.

Since there is no penalty for not providing an estimate,

the comparison between final method and other methods

becomes somewhat difficult. However, the FE results pre-

sented in the next section clearly and unambiguously show

the superiority of the final method over the other ones (see

Table II) since no prediction can affect FE negatively.

V. BENEFIT OF DUC ESTIMATION BASED ON FE

A closed-loop control strategy for PHEV energy manage-

ment was developed at the Ford Motor Company to obtain a

SOC profile such as the dotted blue line in Fig. 1. Then the

strategy was simulated and implemented on a real PHEV to

compare the FE with the base strategy and a significant FE

improvement was achieved. The underlying assumption was

that the intended DUC is known; However, in our work the

DUC is not provided and we predict the DUC that will be

used by energy management. The goal of this section is to

show the impact of the prediction on FE using the simulation.

We use the simulation model to find the FE for several

driving cycles for a PHEV vehicle for two cases: an exact

intended DUC (entered by the driver) and the estimated

DUC based on the algorithm discussed in Section IV. The

results for US06 driving cycle which is the focus of this

paper, are saved in a look-up table to form the function

duckFuelCost(y, ŷ) that represents the fuel consumption of

the PHEV when the vehicle is driven y miles while the

estimated DUC used by TEMC is set to ŷ miles.
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TABLE II

THIS TABLE SHOWS THE RMSE OF ESTIMATED DUC (IN MILES) BASED

ON THE UNFILTERED AND FILTERED TRAINING SETS. THE FINAL SHOWS

THE RMSE FOR THE FINAL DUC ESTIMATION BASED ON (1) AND THE

LAST COLUMN SHOWS THE NUMBER OF TEST SET SAMPLES FOR WHICH

THE FINAL PREDICTION IS PROVIDED.

User All A B C D Final 1

U1 -0.15 -0.14 -0.27 -0.14 -0.27 -0.16
U2 0.39 0.74 0.43 1.00 0.76 1.22
U3 0.11 0.07 -0.81 0.12 -1.75 0.22
U4 0.45 0.43 -0.07 0.40 0.13 0.93

We define cost as the difference between the fuel con-

sumption of the base strategy (the red curve in Fig. 1)

and the DUC strategy (a depletion curve such as the blue

curve in Fig. 1). So a negative cost represents fuel saving

achieved by the DUC strategy and the positive cost means

that more fuel is used by the DUC strategy compared with

the fuel consumption of the base strategy. The latter case

represents the risk of using the DUC strategy in terms of

fuel consumption. Fig. 4 shows the cost vs. the estimated

DUC (ŷ) for 30,45,70,80 miles for intended DUC (y). Below

we discuss the important factors affecting the benefit or

risk of using DUC strategy with estimation in terms of fuel

consumption concluded from Fig. 4

• The base case changes mode from CD to CS around 30

miles. If both y and ŷ are shorter than 30 miles, the base

and DUC strategy are the same and the cost is zero.

• When no final DUC estimation is provided, it is the

same as the case that ŷ = 0 and the base strategy will

be followed and the cost is zero.

• Perfect DUC estimation is the case that y = ŷ where the

estimated DUC exactly matches with the intended DUC.

The blue line in Fig. 1 shows the strategy for this case

when y = ŷ = 90 miles. For this case, fuel consumption

is always better than the base case if y > 30 miles (and

otherwise the consumptions are equal). The minimum

of curves in Fig. 4 for y = 45,70,80 represent this case

that occur at ŷ = 45,70,80 miles.

• For a given driven distance for example y = 70, any

value of DUC estimation in the interval 30 < ŷ < 83

provides some fuel saving benefit compared with the

base strategy. This interval decreases as the real DUC

(y) decreases, so there is less room for estimation error

to obtain some fuel saving benefit. Since there is always

some estimation errors, if the estimated DUC (ŷ) is

smaller than for example 40 miles, it is better not to

use the DUC estimate and follow the base strategy.

• There is a high risk in terms of fuel consumption in

over-estimation, as indicated by a sharp increase of cost

functions for ŷ larger than y. This means that in case

of over-estimation, the fuel consumption can be much

worse than the base strategy. However, there is more

room to tolerate under-estimation.

We use the cost function to find whether using DUC

prediction improves the fuel consumption compared with

TABLE III

FE IMPACT OF FINAL METHOD 1 AND 2 OF PREDICTION AND THE BEST

CASE FOR WHICH THE EXACT INTENDED DUC IS KNOWN IN TERMS OF

KILOGRAMS OF GASOLINE FOR 16 SAMPLES IN THE TEST SET FOR USER

1 TO 4. THE % COLUMNS SHOWS THE PERCENTAGE OF FUEL SAVED

COMPARED WITH THE BASE STRATEGY.

User Final 1 % Final 2 % best %

U1 -0.16 -0.38 0 0 0.06 0.15
U2 1.22 1.59 1.21 1.59 2.14 2.79
U3 0.22 0.35 0.19 0.30 1.26 1.97
U4 0.55 0.72 0.58 0.80 1.28 1.82

Ave. 0.55 0.72 0.58 0.80 1.28 1.82

the base strategy. Table II summarizes the FE impact for 16

test samples of 4 users if the DUC estimation based on the

unfiltered and filtered training sets and the final estimation

based on (1) are used by TEMC. The FE impact represents

the difference of gasoline consumption between the base

strategy and the DUC strategy in terms of kilograms of

fuel. Consequently more positive numbers are more desirable

since they represent fuel saving achieved by using the DUC

strategy. Note that when no final DUC estimation is provided,

then ŷ = 0 and the FE impact is zero.

It is important to note when the real DUC (the perfect

estimation) is less than the point that the CD mode changes

to the CS mode, roughly 30 to 37 miles, the FE impact

is very close to zero and the difference can be considered

as numerical noise produced by simulation. So we propose

final method 2 that is the same as the final method 1 with

the difference that we use the base strategy instead of DUC

when the predicted DUC is smaller that 37 to reduce the

effect of estimation error and noise. Table III shows the FE

impact of method 1 and 2 and the percentage of fuel saving

compared with the base strategy. To investigate the effect of

prediction error on the FE, we also present FE impact of

the base case for which we assume the exact intended DUC

is known and used by TEMC (yi = ŷi). The results clearly

show the benefit of DUC strategy with the prefect and the

predicted DUC for up to 1.82% and 0.8% FE improvement

on average for 4 drivers (note that without user 1, the average

improvements are 2.38% and 1.07%).

Remark 1: It is important to notice that good DUC es-

timation does not translate to good fuel saving of DUC

strategy compared with the base case. From the Table I, it is

clear that the DUC estimations for user 1 have much better

QoP than the results for user 2. However, Table II or Table III

show that fuel saving for user 2 is much higher than user 1.

As mentioned above the reason is that real DUC values for

user 1 are shorter than 37 and consequently the base strategy

and the DUC strategy are both in the CD mode.

VI. CONCLUSION AND FUTURE WORK

Our results confirmed that if the intended DUC is exactly

known, this knowledge can be used by energy management

algorithm of a PHEV to improve fuel economy. However

the intended DUC is not always known. We proposed a
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method to predict the DUC based on the TOD, DOW key-

on observations and the stored data for 4 different users.

We briefly reviewed the energy management strategy and we

showed the fuel economy improvement for the users when

the predictive DUC strategy is used.

There are a few ideas to continue research in this area.

Instead of predicting the DUC by minimizing a training set

summation of square errors of the DUC and then checking

the FE improvement, we can minimize a cost function based

on the FE directly. In future we study the case that DUC

estimation can be updated on-board based on the online

GPS information and the trip chain observations, charging

locations, and speed traces. By updating the DUC estimate

on-line it is possible to improve the DUC prediction and the

FE significantly, especially for under-estimated DUC values

for Users 3 and 4, since after driving more than the initial

estimated DUC it becomes obvious that under-estimation has

happened and the initial estimation needs to be revised.
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