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Abstract— Biologists have long searched for reaction net-
works that can spontaneously generate spatial patterns in the
presence of diffusion. The studies so far closely follow Alan
Turing’s “activator-inhibitor” model, where diffusion destabi-
lizes a spatially homogeneous steady state. In this paper, we
propose a new type of Turing system based on an oscillator
that destabilizes a spatially homogeneous steady state towards
a spatio-temporal pattern. We develop a model based on
current experimentally-viable systems and study its benefits and
limitations.

I. INTRODUCTION

Genetic networks which enable communication and coor-
dination of behavior among cells in an ensemble have held
the attention of developmental biologists [1], [2], [3] and
theoreticians [4], [5], [6], [7] for over half a century. In
particular, a vast body of literature - both theoretical [1-6],[8]
and experimental [9], [10], [11] - exists which focuses on the
production of patterns in gene expression, a phenomenon
central to the development of multi-cellular organisms. A
particularly interesting mechanism for pattern formation is
diffusion-driven instability, originally proposed by Turing
[12].

More recently, attempts have been made to build synthetic
gene networks which generate patterns, usually via the exter-
nal manipulation of diffusible substances that modulate gene
expression [13], [14], [15], [16], [17]. To date, there have
been no experimental demonstrations of a robust, tunable
system which can break symmetry and spontaneously gen-
erate predictable gene expression patterns from an initially
homogenous condition as in the Turing mechanism.

In the synthetic biology community, most efforts to
achieve spontaneous generation of spatial patterns have cen-
tered around networks similar to the one originally proposed
by Turing [12]: Two diffusible species (usually termed an ac-
tivator and an inhibitor) interact with each other via chemical
reactions that produce positive and negative interactions as
in Figure 1. For an appropriate range of kinetic parameters
and diffusion constants, these topologies produce spatial or
spatio-temporal patterns from a homogenous initial condition
perturbed by the chemical noise present in normal exper-
imental conditions. However, this type of architecture has
proven very difficult to implement using genetic networks
because: (a) Turing instability requires that the steady-state
occur in the linear regime of the activator-inhibitor interac-
tions away from saturation and severely restricts the param-
eter range to meet the instability criteria; (b) when using
systems with two diffusible components, either the diffusion

constants [12] or the uptake rates [4] must be sufficiently
different to allow unstable spatial modes, and significant
differences are difficult to engineer; and (c) the intermediate
protein steps ignored in a two-state activator-inhibitor model
further restrict the parameters, possibly leaving them outside
the tunable range.

Although the activator-inhibitor model is the canonical
example for Turing instability, many other possible network
structures exist. Indeed, as we make explicit in this paper,
the essential structural property for the Turing phenomenon
is that the network contains an unstable subsystem, which
is stabilized by a feedback loop. The diffusion of molecules
participating in this feedback loop then unleashes the inher-
ent instability and allows growth of spatial modes. In the
activator-inhibitor network in Figure 1, the activator plays
the role of the unstable subsystem and the inhibitor provides
the stabilizing feedback.

In this paper, we propose a new network, requiring only
one diffusible component and an oscillator circuit serving as
the unstable subsystem, as depicted in Figure 2. In Section
II we cover the basic theory used in analyzing reaction-
diffusion systems and relate Turing patterning to the concept
of additive D-stability. In Section III we analyze a simplified
theoretical model of our proposed architecture to demonstrate
that it is indeed capable of generating patterns. In Section
IV we propose a possible synthetic implementation that is
built upon an available oscillator circuit using known genes
and promoters, and provide an analysis of the system which
predicts the range of real kinetic parameters over which
patterns should emerge.

The primary goal of this paper is to provide a novel
network architecture to serve as a starting point for exploring
alternative implementation strategies for reaction-diffusion
pattern generation by synthetic gene networks in multi-
cellular systems. It thus focuses on preliminary analyses and
not on experimental validation.

II. REACTION-DIFFUSION SYSTEM ANALYSIS

Turing pattern formation arises in reaction-diffusion sys-
tems where stability of a steady state in the reaction system
does not imply stability of the homogeneous steady state in
the presence of diffusion [12]. We will consider the situation
where the cells are closely packed and study the continuous
reaction-diffusion system

∂

∂t
c = f(c) +D∇2c (1)
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Fig. 1. The canonical two-component “activator-inhibitor” Turing system.
The top component is the activator and the bottom component is the
inhibitor, both diffusible.

over the spatial domain Ω with smooth boundary ∂Ω subject
to zero-flux (Neumann) boundary conditions. Here c(t, ξ) is
the vector of species concentrations that depends on time t
and spatial variable ξ ∈ Ω, f is the vector field of reaction
rates, D � 0 is a diagonal matrix of diffusion coefficients,
and ∇2 is the vector Laplacian. The Neumann boundary
condition states that ∇c(t, ξ) · n(ξ) = 0, ∀ξ ∈ ∂Ω, where
n(ξ) is the outward normal vector.

We let J = ∂f
∂c |c=c∗ denote the Jacobian linearization

about the steady state c∗. The dynamical behavior of the
reaction-diffusion system is determined from the matrices
J + λkD, where λk are the eigenvalues of the Laplacian
operator ∇2 on the given spatial domain, and the subscripts
k = 1, 2, 3, . . . denote the wave numbers [18]. For example,
on a one-dimensional domain Ω = [0, L], λk = −(πk/L)2.
If the matrix J + λkD is Hurwitz, then the corresponding
wave decays to zero asymptotically in time. If J + λkD is
unstable, then the corresponding wave grows. In Turing’s
condition for pattern formation, matrix J is stable, implying
convergence to steady-state in the absence of diffusion, but
J + λkD is unstable for one or more wave numbers k ≥ 1,
implying the growth of these waves due to diffusion.

A. Additive D-Stability

A matrix stability concept that rules out Turing pattern for-
mation is additive D-stability [19], [20], defined below. We
are interested in this concept because necessary conditions
for additive D-stability, when negated, serve as sufficient
conditions for Turing instability.

Definition 1: A matrix J is called additively D-stable if
J − D̄ is Hurwitz for all diagonal D̄ � 0.

For Turing pattern formation, we need J+λkD to become
unstable for some λk. Because λk ≤ 0 for Neumann eigen-
values [21] and all diffusion coefficients are non-negative,
J + λkD matches the J − D̄ format of additive D-stability
with D̄ = −λkD. Thus, if J is additively D-stable, Turing
pattern formation is not possible.

We will make use of the following necessary condition
for additive D-stability and its proof to observe an essential
structural property for Turing instability:

Theorem 1: A necessary condition for additive D-stability
of the matrix J is that J and all of its principal submatrices

be stable.

Proof: A result similar to Theorem 1 has been proven in
[22]. Here, we present an alternative proof that makes explicit
the structure of D̄ that renders J−D̄ unstable. Observing this
structure will be helpful in designing a network that exhibits
Turing instability.

We proceed by contradiction and suppose that J ∈ Rn×n
contains an unstable principal submatrix Jr of size r ≤ n,
and show that we can recursively construct a diagonal matrix
D̄ � 0 such that J − D̄ is unstable.

If r = n, then J is an unstable matrix and we can choose
D̄ = 0. If r < n, we assume, without loss of generality,
that Jr is a leading principal submatrix. Taking the leading
principal submatrix of size r + 1:

Jr+1 =

[
Jr br
cr ar+1

]
,

we claim that we can find D̄r+1 = diag{0, . . . , 0, dr+1} such
that Jr+1−D̄r+1 is unstable. To see this, let dr+1 = 1/ε and
note from standard singular perturbation arguments [23] that,
as ε→ 0, one of the eigenvalues of Jr+1−D̄r+1 approaches
−∞, while the remaining r approach the eigenvalues of Jr.
Since Jr is unstable, then by an appropriately large choice
of dr+1 we can make Jr+1 − D̄r+1 unstable.

Now we can similarly define

Jr+2 =

[
Jr+1 br+1

cr+1 ar+2

]
and D̄r+2 = diag{0, . . . , 0, dr+1, dr+2}, and render

Jr+2 − D̄r+2 =

[
Jr+1 − D̄r+1 br+1

cr+1 ar+2 − dr+2

]
unstable by an appropriately large choice of dr+2.
We can then recursively apply this procedure until we
make Jn − D̄n = J − D̄ unstable using D̄ =
diag{0, . . . , 0, dr+1, . . . , dn}.

Theorem 1 suggests that a possible route to Turing pat-
terning is to break this necessary condition with an unstable
principle submatrix. This means that an essential structural
property for the Turing phenomenon is that the network
contains an unstable subsystem. This subsystem must be
stabilized by the rest of the system so that the matrix J is
stable, and the diffusion matrix D must be such that J+λkD
is unstable for some wave number k ≥ 1. A matrix D
with this property can indeed be constructed following the
recursive procedure in the proof of Theorem 1.

B. Activator-Inhibitor Example

We show that the structural property for Turing instability
discussed above encompasses the canonical two-component
activator-inhibitor system in Figure 1. The linearization and
diffusion matrices for this system have the form:

J =

[
j11 j12

j21 j22

]
, D =

[
d1 0
0 d2

]
, di ≥ 0,
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where j11 > 0 so that component 1 is the unstable “acti-
vator,” and j22 < 0 so that component 2 is the stabilizing
“inhibitor.” The activator thus serves as the unstable subsys-
tem to disprove additive D-stability. The proof of Theorem
1 implies that instability is achieved when d2 > 0 is large
enough. The proof also implies that d1 = 0 is admissible for
Turing instability.

III. QUENCHED OSCILLATOR SYSTEM

We now present a new network architecture that is capable
of generating Turing patterns. As discussed in the next
section, this network can be implemented using existing
synthetic biological components. It consists of a ring oscil-
lator loop (represented with the pink molecules in Figure
2) that serves as the unstable subsystem and a second
loop that “quenches” the oscillations and stabilizes the full
system. The quenching loop contains a diffusible molecule
(represented with blue in Figure 2), which means that when
the corresponding diffusion coefficient is large, the diffusion
matrix has the destabilizing structure proposed in the proof
of Theorem 1.

For stability of the full system, it is essential that the
quenching loop have a smaller phase lag than the oscillator
loop. Smaller phase lag can be achieved with fewer reaction
steps or with faster degradation rates in the second loop.

To demonstrate pattern formation, we consider the follow-
ing representative model, which exhibits both an oscillator
loop (x1, x2, x3) and a quenching loop (x3, x4):

∂

∂t
x1 =

v1

1 + xp2
− x1

∂

∂t
x2 =

v2

1 + xp3
− x2

∂

∂t
x3 =

v3

1 + xp1
+

v4

1 + xp4
− x3

∂

∂t
x4 =

v5x
p
3

1 + αxp3
− x4 + d4

∂2x4

∂ξ2
(2)

where the concentrations xi, i = 1, . . . , 4, and all other
variables and parameters are non-dimensional. In particular,
the time variable t is scaled to bring the degradation constants
(assumed to be identical for each species) to one, and the
one-dimensional length variable ξ is scaled so that the spatial
domain is Ω = [0, π]. We assume only the fourth species
(represented with blue in Figure 2) is diffusible and is subject
to zero-flux boundary conditions. Because the fourth species
is diffusible, this architecture is able to exhibit diffusion-
driven instability for a large diffusion coefficent d4.

Jacobian linearization of the reaction equations about the
steady-state (x̄1, x̄2, x̄3, x̄4) yields:

J =


−1 −b1 0 0
0 −1 −b2 0
−b3 0 −1 −c4

0 0 c5 −1

 , (3)

where:

Fig. 2. The proposed “quenched oscillator” system. The quenching loop
with the diffusible molecule (in blue) stabilizes the unstable oscillator loop
(in pink). Diffusion then unleashes the inherent instability and allows growth
of spatial modes with high wave numbers.

b1 =
pv1x̄

p−1
2

(1+x̄p2)2
, b2 =

pv2x̄
p−1
3

(1+x̄p3)2
, b3 =

pv3x̄
p−1
1

(1+x̄p1)2
,

c4 =
pv4x̄

p−1
4

(1+x̄p4)2
, c5 =

pv5x̄
p−1
3

(1+αx̄p3)2
.

For the oscillator subsystem, we require:

B , b1b2b3 > 8 (4)

so that the characteristic polynomial of the 3× 3 upper-left
principal submatrix of J , given by (λ+ 1)3 +B, has a pair
of complex conjugate roots in the right half-plane.

For stability of the full reaction network, we need:

C , c4c5 >
B − 8

2
(5)

so that det(λI−J) = (λ+ 1)[(λ+ 1)3 +B+C(λ+ 1)] has
all roots in the left half-plane. For diffusion-driven instability
of the kth spatial mode cos(kξ), the polynomial:

det(λI − (J − k2diag{0, 0, 0, d4})) =

(λ+ 1)[(λ+ 1)3 +B + C(λ+ 1)]

+k2d4[(λ+ 1)3 +B], (6)

where d4 is the diffusion coefficient, must have right half-
plane roots. Indeed, when the product k2d4 is sufficiently
large, three roots of (6) approach those of (λ + 1)3 + B,
which contain right-half plane roots due to (4). This means
that the inhomogeneous modes cos(kξ) grow in time if k2d4

exceeds the threshold for instability of the polynomial (6).
The parameters p = 3, v1 = v2 = 18, v3 = v4 = 0.45,

and α = 0.1 in the system (2) satisfy conditions (4)-(5)
with B = 9.4815, C = 2.2222, and the polynomial (6)
becomes unstable when k2d4 > 11.35. Simulations in Figure
3a indeed exhibit growth of the spatial inhomogeneity when
the steady state is perturbed by adding the first wave (k = 1)
with a small amplitude. This Turing behavior is contrasted
in Figure 3b to the decay of the initial inhomogeneity in the
absence of diffusion.

IV. IMPLEMENTATION OF THE QUENCHED OSCILLATOR

A possible synthetic implementation of the quenched
oscillator system is depicted in Figure 4. The first (top)
loop is the repressilator [24], which is a ring oscillator,
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Fig. 3. (a) Solution x3(t, ξ) of (2) on spatial domain Ω = [0, π] with
zero-flux boundary condition. With parameters p = 3, v1 = v2 = 18,
v3 = v4 = 9, v5 = 0.45, α = 0.1, d4 = 20, Turing instability conditions
are met and a slight perturbation of the homogenous initial condition with
the first wave (k = 1) leads to growth of the inhomogeneity. (b) Simulations
in part (a) repeated with the diffusion coefficient d4 set to zero. The initial
homogeneity decays in time.

comprised of three pairs of transcriptional repressors (tetR,
lacI, λ cI) and promoters (PLtetO−1, PLlacO−1, λ PR).
The second (bottom) loop has one inhibitory interaction and
includes the membrane-diffusible signaling molecule acyle-
homoserine lactone (AHL) as well as V. fischeri quorum
sensing genes luxI and luxR. The second loop interacts with
the first loop through tetR and in a single system will cause
the first loop to cease oscillations.

Although the oscillations produced by the repressilator
are known to be noisy and irregular in practice, for our
application of pattern generation, the interest is not in the
quality of oscillations, but in the presence of unstable modes.
The repressilator was chosen because it is a seminal example
of a synthetic oscillator and also matches the oscillator design
based on a phase lag mechanism as in Figure 2.

A. System PDE Model

We represent the dynamics of this network with the
following set of partial differential equations:

∂

∂t
mC = VPLtetO−1NCC

(
1

1 + ( pT
KT

)nT
+ `PLtetO−1

)
−γmOmC (7)

Fig. 4. A possible synthetic implementation of the network in Figure 2.
Two feedback loops are interconnected by shared production and sensing of
the transcriptional repressor tetR. The genes in the first feedback loop are
depicted in green and the genes in the second feedback loop are shown
in purple. The second loop contains the membrane-diffusable signaling
molecule acyle-homoserine lactone (AHL).

∂

∂t
pC = εCmC − γCpC (8)

∂

∂t
mTO = VPLlacO−1NTOC

(
1

1 + ( pL
KL

)nL
+ `PLlacO−1

)
−γmOmTO (9)

∂

∂t
pT = εTOmTO + εTQmTQ − γT pT (10)

∂

∂t
mL = VPRNLC

(
1

1 + ( pC
KC

)nC
+ `PR

)
−γmOmL (11)

∂

∂t
pL = εLmL − γLpL (12)

∂

∂t
mI = VPLtetO−1NIC

(
1

1 + ( pT
KT

)nT
+ `PLtetO−1

)
−γmQmI (13)

∂

∂t
pI = εImI − γIpI (14)

∂

∂t
A = v3pI − kfA(pR − pRA) + krpRA − γAA

+dAHL∇2A (15)
∂

∂t
pRA = kfA(pR − pRA)− krpRA (16)

∂

∂t
mTQ = VPLuxINTQC

(
1

1 + (KRA
pRA

)nRA
+ `PLuxI

)
−γmQmTQ, (17)

where Vi are velocity constants, Ni are copy numbers, Ki

are dissociation constants, ni are Hill coefficients, `i are
leakage rates normalized to Vi, γi are degradation rates,
and εi are protein translational rates. The parameters are
subscripted according to their corresponding species (C=[cI],
T=[tetR], L=[lacI], I=[luxI], A=[AHL], R=[luxR], RA=[luxR-
AHL complex]) except for velocity and leakage constants,
which are subscripted by promoter, and copy numbers, which
are subscripted by the gene being transcribed. The concen-
tration of the mRNA for tetR is split into those produced
by the oscillator loop (O) and the quenching loop (Q). The

2287



parameter C is the concentration level generated by a single
molecule in our spatial domain and dAHL is the diffusion
coefficient of AHL. We take γC = γT = γL , γp.

B. Conditions for Patterning

The linearization of the reaction terms in (7)-(17) at steady
state (m̄C , p̄C , m̄TO, p̄T , m̄L, p̄L, m̄I , p̄I , Ā, p̄RA, m̄TQ)
yields the Jacobian matrix:

J =

[
J11 J12

J21 J22

]
with the submatrices:

J11 =


−γmO 0 0 −b4 0 0
εC −γC 0 0 0 0
0 0 −γmO 0 0 −b6
0 0 εTO −γT 0 0
0 −b2 0 0 −γmO 0
0 0 0 0 εL −γL

 ,

J12 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 εTQ
0 0 0 0 0
0 0 0 0 0

 ,

J21 =


0 0 0 −b42 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

J22 =


−γmQ 0 0 0 0
εI −γI 0 0 0
0 v3 −a9 a10 0
0 0 c9 −a10 0
0 0 0 b10 −γmQ

 ,
where we use the parameters αC , p̄C/KC , αT , p̄T /KT ,
αL , p̄L/KL, and αA , Ā/KA to obtain the off-diagonal
entries:

c9 =
kfpR
1+αA

,

a9 = c9 + γA,
a10 = kr(1 + αA),

b2 = VPRVLC
nCα

(nC−1)

C

KC(1+α
nC
C )2

,

b4 = VPLtetO−1
NCC

nTα
(nT−1)

T

KT (1+α
nT
T )2

,

b42 = VPLtetO−1
NIC

nTα
(nT−1)

T

KT (1+α
nT
T )2

,

b6 = VPLlacO−1
NTOC

nLα
(nL−1)

L

KL(1+α
nL
L )2

,

b10 = VPLuxINTQC
nRA(

KRA
pR

)(
KRA
pR

1+αA
αA

)nRA

pR(1+(
KRA
pR

1+αA
αA

)nRA )2
.

We note that J11 is the linearization matrix for the first loop,
which corresponds to the standard repressilator system (cI-
lacI-tetR).

The eigenvalues of J11 are the roots of:

det(sI − J11) = (s+ γmO)
3(s+ γp)

3 + εCεTOεLb2b4b6. (18)

It can be shown [24] that instability of J11 is achieved
when:

(β + 1)2

β
<

3X2

4 + 2X
(19)

where β , γp/γmO and X , − 1
γpγmO

3
√
εCεTOεLb2b4b6.

Substituting and rearranging, we arrive at the following
expression for X:

X3 = −nCnTnL
αRA

1 + αRA

αnCC
1 + αnCC

1

1 + `PR(1 + αnCC )

×
αnTT

1 + αnTT

1

1 + `PLtetO−1
(1 + αnTT )

×
αnLL

1 + αnLL

1

1 + `PLlacO−1
(1 + αnLL )

, (20)

where the additional variable αRA ≥ 0 is defined by the
relation:

1

1 + αRA
,
εTQVPLuxINTQC

γpγmQαTKT

(
1

1 + (KRA
pR

1+αA
αA

)nRA
+ `PLuxI

)
.

The eigenvalues of J are the roots of:

det(sI − J) = det(sI − J11)(s+ γI)(s+ γmQ)
2

×[(s+ a9)(s+ a10)− c9a10]
+F (s+ γmO)

3(s+ γp)
2, (21)

where F , v3εIεTQc9b42b10 characterizes the feedback
strength. F must be a value such that all of the eigenvalues
of J are stable. Substituting and rearranging, we arrive at
the following expression for F :

F = γT γIγAγ
2
mQkrnTnRA

1

1 + αRA

(KRA
pR

1+αA
αA

)nRA

1 + (KRA
pR

1+αA
αA

)nRA

× 1

1 + `PLuxI (1 + (KRA
pR

1+αA
αA

)nRA)

× αnTT
1 + αnTT

1

1 + `PLtetO−1(1 + αnTT )
. (22)

Here D = diag{0, 0, 0, 0, 0, 0, 0, 0, dAHL, 0, 0}. J + λkD
looks identical to J except for the AHL entry of the diag-
onal, which is now defined as −â9 , −c9 − γA + λkdAHL.
This leads to:
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det(sI − (J + λkD)) = det(sI − J11)(s+ γI)(s+ γmQ)
2

×[(s+ â9)(s+ a10)− c9a10]
+F (s+ γmO)

3(s+ γp)
2, (23)

which yields unstable roots for large enough λkdAHL. This
means that for diffusion-driven patterning we need a large
diffusion coefficient, a large wave number, or a small spatial
domain.

C. Parameter Selection

This system was constructed using relatively well-studied
components. Some parameter values have been experimen-
tally measured, and accepted literature values were used
whenever possible. Other parameters were estimated based
on values of similar molecules or within a known range of
manipulation. For example, protein degradation rates can be
controlled by adding or changing the ssrA tag [25].

Taking some parameters to be fixed, we use the above
results to guide our choices for manipulatable values by
checking that the first two conditions for Turing patterning
are met and that experimentally-reasonable wave numbers
become unstable. We reduce the number of parameters in
the system by treating the steady state values αC , αT , αL,
αA, and αRA as new parameters to be adjusted such that |X|
is large enough for instability of J11 and F is large enough
to stabilize the overall system, then solve for the original
set of parameters. For example, α∗

C = 2nC

√
1 + 1/`PR will

maximize |X| for that variable and increasing kr and kf
proportionally will increase F without affecting the steady-
state values.

Following this procedure, we generated a list of plausible
parameter values that meet the conditions for Turing pattern-
ing, which is available upon request.

V. CONCLUSIONS AND FUTURE WORK

We have proposed here a novel network architecture for
reaction-diffusion pattern generation in gene expression that
we call a quenched oscillator network. We presented both a
simplified theoretical model and a possible synthetic imple-
mentation to demonstrate this network’s ability to produce
patterns. The eventual goal is a laboratory implementation
that exhibits Turing patterning. According to our parameter
list, most of the steady state concentrations are on the order
of 10−9, which means stochastic effects will be significant.
Stochastic simulations [26] will allow us to better evaluate
the experimental plausibility of the proposed system. Future
directions include trying different, possibly more robust,
oscillators [27] or different diffusible components.
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