
Discrete-time Local Dynamic Programming

Max Berniker and Konrad Kording

Abstract—Optimal control theory is a powerful analytical
tool useful for many diverse fields, including biological motor
control, where the theory is used to predict characteristics of
motor control problems under optimal conditions. However,
finding solutions to these control problems can be very dif-
ficult when examining biological systems, where nonlinearity
and stochasticity are typical. In an effort to overcome this
dilemma and analyze more realistic problems, we present
an algorithm that approximates the solution to the discrete-
time Hamilton-Jacobi-Bellman equations. As with similar local
dynamic programming algorithms, the algorithm approximates
a local solution around a nominal trajectory and progressively
improves the trajectory and the value function’s local esti-
mate. Using this algorithm, we obtain optimal solutions for
a single joint musculo-skeletal system. In particular, we take
advantage of this new algorithm to examine solutions with fast
and discontinuous dynamics and non-Gaussian noise. These
solutions are examined for some of the stereotypical responses
of biological systems, such as the tri-phasic muscle activations
and bell-shaped velocity profiles. The results are also compared
with their deterministic counterparts, emphasizing the need for
stochastic solutions.

I. INTRODUCTION

Controller design, that is directing or influencing a dynam-
ical system to achieve a desired goal, is a common theme
across many scientific fields. From robotics [1] and aircraft
dynamics [2] to economics and decision theory [3], whenever
we can quantify a system’s goals we can utilize optimal
control theory to describe how best to command the system.
Optimal control has been especially helpful in the examina-
tion of biological motor control. By analyzing controllers that
optimize potential cost functions, optimal control is helpful
in exploring how the nervous system is accomplishing motor
behaviors; the analysis of movements in terms of a minimum
jerk cost function [4], [5] is one such example of how an
optimal control analysis can be instructive. However, linear,
deterministic analyses such as these have their limitations.
Many of the motor systems we examine cannot be accurately
described by linear models and demand a nonlinear analysis.
Moreover, deterministic analyses yield phenomena such as
desired trajectories, encouraging paradigms that may be mis-
leading when examining what are truly stochastic systems.
As such, there is a genuine need for nonlinear stochastic
analysis methods.
Finding optimal controllers for biological systems is no-

toriously difficult [6]. Many studies have bypassed these
difficulties by focusing on what are more tractable prob-
lems, such as linear stochastic systems, e.g. [7], [8], or

M.B. and K.K. are with the Department of Physical Medicine
and Rehabilitation, Northwestern Univerity, IL 60622, USA
mbernike@northwestern.edu

nonlinear but deterministic systems, e.g. [9], [10], [11]. Yet,
neither approach can accurately capture the salient features
of biological systems under many normal circumstances.
Similarly, the assumption of Gaussian additive noise may be
overly restrictive under many circumstances. Under restricted
conditions the certainty equivalence property is met (e.g.
[12], [13]) and stochastic solutions have the same form
as their deterministic counterparts. However, in general,
nonlinear deterministic solutions cannot correctly capture
even the mean behavior of their stochastic counterparts.
Methods for solving nonlinear stochastic systems usu-

ally attempt to approximate the continuous-time Hamilton-
Jacobi-Bellman (HJB) equations. The temporal dynamics of
these equations along with the model dynamics are discretely
integrated to approximate optimal solutions. Discretizing
time is also a practical necessity to simulate random stochas-
tic influences such as noise. There are many algorithms for
approximating solutions to the HJB equations and then itera-
tively improving these approximations until the solutions are
adequately accurate, e.g. Differential Dynamic Programming
[14], Heuristic Dynamic Programming [15], [16], Local Dy-
namic Programming [17], Adaptive Dynamic Programming
[2] and iterative linear quadratic gaussian (iLQG) control
[18]. These methods usually approximate the value function
along a current, best estimate of the optimal trajectory, and
then successively improve both this estimate of the trajectory
and the value function.
A new algorithm, iterative Local Dynamic Programming

(iLDP) has been proposed for finding solutions to stochastic
systems [19]. As with the algorithms above, this one aims to
discretely integrate a local approximation to a system’s value
function. While these and similar algorithms are well suited
to solve many problems, there are some drawbacks. For one,
the continuous-time HJB equations prescribe the optimal
conditions for small additive, Gaussian noise. This is likely
a shortcoming when examining biological systems, where
noise often violates these assumptions. Further, because these
approaches attempt to approximate a continuously changing
value function through discrete integration, a ”fine-grained”
time step is required when the HJB equation dictates a fast
temporal derivative. These conditions, fast value function dy-
namics and non Gaussian noise, are easily met in biological
systems. If the time step during integration is not fine enough,
the algorithm may fail. Yet, using a small time step increases
both the number of computations, and the memory required.
For the above reasons, solving the discrete-time (DT)HJB

equations directly may be preferable. The DTHJB equa-
tions make no assumptions about the noise distributions.
In addition, since the equations are discrete, solving them

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 618

bypasses the dangers and memory requirements of approxi-
mating the continuous-time solution with discrete integration.
Moreover, as both the forward simulation of the model and
the algorithm require the discretization of time, there is little
practical difference in turning the overall problem into one
of a discrete-time optimization.
In this work we shall present a discrete-time analogue

of the iLDP algorithm for solving the DTHJB equations
explicitly. The algorithm can deal with non-Gaussian noise
sources and relatively large time steps. Furthermore, the
algorithm introduces an asymmetrical component to the
value function approximation for solving nonlinear problems
where quadratic approximations are not sufficient (a known
limitation for stochastic systems with even small additive
noise [19]). Using this DT algorithm we examine the optimal
solutions to a system whose optimal commands would be
difficult to obtain otherwise. In particular, we will look at
optimal solutions for a nonlinear musculo-skeletal system,
and we will examine the effects of non-Gaussian noise, and
discontinuous dynamics. These solutions will be examined
for some of the stereotypical responses of biological systems,
such as triphasic muscle activations and bell-shaped velocity
profiles. Further, to emphasize the need for stochastic meth-
ods we will demonstrate how these stochastic solutions differ
from their nonlinear but deterministic counterparts.

II. DISCRETE-TIME LOCAL DYNAMIC
PROGRAMMING ALGORITHM

A. Overview

The optimal control problem we are trying to solve is
defined through discrete-time state space equations,

xk+1 = f(xk, uk) + L(xk, uk)wk (1)

where xk and uk are the state and command at the kth step,
and wk is a stochastic random variable described by a given
probability distribution, p(w). We shall assume that at each
time step the state can be measured without error. The cost
function to be minimized is of the form,

J = φ(x,N) +
N−1∑

k=1

L(x, u, k) (2)

where the kernel, L, is a penalty for being in state x with
command u at the kth time step and φ is the terminal penalty.
We seek a control policy, π(x, k) such that when starting
from some initial state, x1 and continuing until the N th time
step this cost function is minimized. We note that the analog
continuous-time equations can easily be converted to this
discrete-time form.
Since this control problem is stochastic, finding a single

optimal, or desired, trajectory is not sufficient to minimize
the cost function. Instead, we must find a family of extremal
trajectories the state will follow as the noise term perturbs
it from one time step to the next. The solution to this
problem is defined by the discrete-time Hamilton-Jacobi-
Bellman (DTHJB) equations. The DTHJB equations describe
the conditions for optimality in terms of the problem’s value

function, V (x, k), also known as the cost-to-go. V (x, k) is
the value, or total expected cost associated with starting in
state x at time k, and using a control policy, π, until the
terminal time step. The optimal value function as defined by
the recursive DTHJB equations is,

V o(x,N) = φ(x)
V o(x, k) = min

u
E{L(x, u) + V o(xo

k+1, k + 1)} (3)
and the corresponding optimal command is,

uo = πo(x, k)
= arg min

u
E{L(x, u) + V o(xo

k+1, k + 1)} (4)

These equations express how the optimal value at the kth

step is the value that minimizes the expected sum of the
instantaneous cost, L, plus the optimal value associated with
the proceeding optimal state at the k+1 time step. Note that
the optimal state at the next time step is not known a priori
and depends on the current state and the optimal command.
Starting with the terminal state and progressing back to the

initial step, k = 1, the above equations provide a description
for how the value function must be updated backwards
through time. This is the basis for all dynamic programming
algorithms. The difficulty is that in general the value function
is a highly nonlinear function of time and space. We could
try to approximate the value function with an nth order
polynomial in x at each time step. However, as the dimension
of x (say,m) increases we must fit an ever increasing number
of parameters (i.e. the curse of dimensionality). Provided
we could solve for the expected value of this polynomial,
we would then be faced with the difficulty of minimizing
this nth order polynomial in an m-dimensional space to
find optimal commands (equation (4)). However, for systems
where equation (3) is smooth, we expect a small region
around the extremal trajectories to be well approximated
by a Taylor expansion, alleviating the need for higher-order
dynamics.
The algorithm we propose is based on the iterative lo-

cal dynamic programming algorithm [19]. In essence, to
overcome the difficulties of solving for equations (3)-(4)
analytically, we locally approximate the value function about
a nominal trajectory. Denoting x̄k as our nominal state
trajectory, and x̃k = x − x̄k as a deviation from it, we can
express the value function as,

V (x̃k, k) = ak + bT
k x̃k + x̃T

k Ckx̃k + h.o.t. (5)

We note that by defining the value function locally, rather
than globally, we may avoid the need for higher order terms
all together. In fact, including up to 2nd order terms is
sufficient for approximating well behaved systems with small
additive noise. Next, we define a local approximation to the
value function as follows,

Ṽ (x̃k, k) = âk + b̂T
k x̃k + x̃T

k Ĉkx̃k + ξ(x̃k) (6)

This is a matrix representation of a 2nd order polynomial in
the state, with higher order terms in ξ(). With the exception

619

of the higher order terms in ξ(), the function is linear in
its parameters. This greatly simplifies the update of equation
(3), and solving for their estimated values merely requires a
matrix inversion.
To incorporate higher order terms beyond x̃ix̃j , should

they become important, we note that ideal candidate func-
tions ξ() should be nonnegative (as is the true value function)
and have analytic expressions for its expectation, E[ξ], and
its gradient. As such, we propose the following exponential
term,

ξ(x̃k) = dkexp(eT
k x̃k) (7)

where ek specifies the direction in state space in which the
cost function’s gradient increases fastest and dk denotes the
relative magnitude of this change. As suggested, analytic
expressions for this function’s expectation and its deriva-
tives are readily available (see Appendix). Furthermore,
the exponential is nonnegative, a characteristic shared with
the true value function. To be clear, this does not ensure
approximations to the value function cannot achieve negative
values (the 2nd order approximation alone may do this).
However, in practice we have found that the approximations
rarely, if ever, achieve such values. Rather, this is a practical
attempt to approximate higher order terms not accounted
for with the second order fit. In addition, by including an
exponential term, the local approximation is still convex,
simplifying the search for optimal commands. Finally, by
including this function we can approximate asymmetric value
functions. This is a characteristic that may be of functional
importance for many problems, and cannot be achieved with
only 2nd order terms. While including cubic terms (or any
odd powers) can also help to approximate asymmetric value
functions, they have the distinct disadvantage of rendering
the value function approximation non-positive definite and
the search for optimal commands non-convex. Employing
the exponential term means the value function is no longer
linear in its parameters, but we can solve for dk and ek by
boot-strapping; we first solve for the 2nd order parameters,
fit the exponential terms to the residual error and then repeat
when necessary. This also assures that the exponential term
only contributes when 2nd order terms are an insufficient
approximation to the value function.
Having proposed an approximate local value function,

we require the corresponding optimal commands. To do
this we must solve equation (4). Fortunately, under some
broad assumptions of noise we can solve for the expectation
of our approximate value function (see appendix). Optimal
commands are then found by setting the partial derivative
of L + E[V] to zero. This can be achieved through many
nonlinear optimization techniques. However, we can greatly
simplify the computation of uo through the following pro-
cedure. First, under many circumstances the state dynamics
are linear in their commands (or can be assumed to be) and
are expressed as,

xk+1 = f(xk) + B(xk)u + L(xk)wk (8)

Then, we approximate the optimal command through a

Taylor expansion of the value function’s derivative. By
neglecting ξ() we can find a closed form solution for a 2nd

order approximate optimal command, uo
2. We can then Taylor

expand E[Ṽ] about {x(uo
2)k+1, u

o
2}, again retaining up to

second order terms, and solve for an improved approximate
uo (if even further accuracy is required, this procedure can
be repeated, see Appendix).
With a number of such pairs of states and their corre-

sponding optimal commands, we can approximate the value
function for this time step. By successively refining our
approximation to the local value function, Ṽ we can march
the nominal state trajectory, x̄ towards a trajectory that min-
imizes the value function, and is on average optimal. Below
we outline the discrete-time local dynamic programming
(DLDP) algorithm.

B. DLDP Algorithm

Our objective is to find a locally optimal controller,
πo(x, k), and value function approximation, Ṽ o, centered
around a nominal state trajectory, x̄ that is on average
optimal. The value function approximation is parameter-
ized by a set of values, Θ = {θk}k=1,,N where θk =
{âk, b̂k, Ĉk, d̂k, êk} are the parameters corresponding to the
kth step. The steps below describe the algorithm’s iterative
attempt to find a set of parameters, Θo and nominal tra-
jectory, optimizing equation (2). These steps are performed
repeatedly, using the current parameters to advance Θi

towards Θo until appropriate convergence criteria are met.
Note that the value function specifies the optimal command
(equation (4)) and an explicit approximation for πo(x, k) is
not necessary.

Step 0. Initialization. To start, an initial controller, π(x, k),
and Θi=0 are defined. For simplicity, this initial controller
can be a time sequence of values ūk rather than a function
of x. Θi=0 can be initialized with zeros.

Step 1. Determine nominal trajectory. Using the current
controller, compute the nominal state trajectory around which
the value function will be approximated, x̄k. This can be
obtained by averaging over many forward integrations. Then
find θnext

N by approximating, Ṽ (x̃, N, θN) = φ(x̃N).

Step 2. Value function backup. Select a cloud of states
centered around the mean trajectory, {xn}n=1,...M , then,
starting at k = N −1, and incrementing backwards, perform
the following steps.

• Step 2a. For each state, xn, compute the approximate
optimal command, un, given the current approximate
value function. This is done by solving equation (4)
(see Appendix and equation (26)).

• Step 2b. Use the optimal command from above
to compute the expected state for the next stage,
xn

k+1 = f(xn, un)+E[L(xn, un)wk], and compute the
discrete-time Hamiltonian, H(xn, un) = L(xn, un) +
E[Ṽ (xn

k+1, k + 1, θi
k+1)].

620

• Step 2c. Use the states and Hamiltonians found
above, {xn,H}n=1,...M to find θnext

k by approximating,
Ṽ (xn, k, θk) = H(xn, un). As described above, this
can be simply done through a matrix inversion to
compute the parameters, âk, b̂k, Ĉk, and then fitting
the residual errors to the dk, ek terms. If desired, an
approximate policy can also be computed from the pairs
{xn, un}n=1,...M .

Step 3. After reaching k = 1, advance the new value
function and policy forward, Θi+1 −→ Θnext and compute
a convergence criteria. To ensure the cost function (equation
(2)) decreases after each iteration, a line search can be
performed, where Θi+1 = εΘnext + (1 − ε)Θi and ε is
a number between zero and one. If the policy and value
function have not converged, return to step 1 and repeat.

III. RESULTS

A. Overview

In the examples presented below, the cloud of states was
randomly drawn from a multivariate Gaussian distribution.
The covariance of this distribution was updated repeatedly,
such that at each time step k it coincided with the dis-
tribution of states obtained using the current estimate of
the value function and policy. Approximately 500 sample
states (M ≈ 500) were used for the clouds in all solutions
shown. Large values of M allow for consistent value function
approximations from one backup to the next, but linearly
scales the number of computations required.
Initially, when the value function approximation is rela-

tively uninformed and inaccurate, the backups result in large
helpful changes to the parameters, Θ. However, in the late
stages of the algorithm, when the value function is close to
converged, small fluctuations in the cloud of states from one
backup to the next, result in slightly different approximations
to the value function. Therefore, rather than performing a line
search to update the value function, ε was initialized close
to 1.0, and was slowly lowered to a value typically around
0.01. This allowed the algorithm to capitalize on novel
information early on, and to effectively average the value
function updates late in the algorithm as the value function
converged. Convergence was determined when changes from
one backup to the next were acceptably small in Θ and the
nominal trajectory, x̄k.

B. Example System

To demonstrate the new algorithm, we examine optimal
controllers and the resulting trajectories for a nonlinear, 4-
dimensional musculo-skeletal system. The model we use is
chosen to be simple enough to interpret the results, while still
exhibiting some of the basic nonlinear features of muscular
systems, namely stiffness, damping and equilibria, that vary
with command.
We model the limb as a point mass acted upon by an

agonist-antagonist pair of muscles. This is equivalent to
a rotational joint with one degree of freedom. We shall

designate the limb’s mass as m, its displacement with y,
and its velocity with v. The equations of motion are,

mv̇ = −Fr(y, v, ar) + Fl(y, v, al) (9)

where Fr and Fl are the muscle forces that pull the mass
to the right, and left, respectively. We model the nonlinear
muscle force as a spring-damper with variable stiffness and
damping. For instance the right muscle’s force is,

Fr = (kor + αrar)(yor − y) − (bor + βrar)v (10)

where ar is the activation level for this muscle, kor, bor,
αr and βr are model parameters that control the muscle’s
stiffness and viscosity and yor is this muscle’s rest, or
equilibrium length. The excitation-activation dynamics of
muscle are modeled as a low-pass filtered version of the
command, or excitation to the muscle,

ȧi =
1
τ

(ui − ai) (11)

where ul and ur are non-negative commands to the two
muscles. The excitation-activation dynamics ensure that the
model cannot instantaneously change the muscle’s activation
state, a feature that is often necessary for co-activation to
be optimal. Note too that the muscle force as defined is
a nonlinear function of state, dependent on the products
of activation, limb displacement and velocity. The state of
this nonlinear system is defined with the four variables,
x = [y, v, ar, al]T , and the command as u = [ul, ur]T .
After discretizing the system, and allowing for noise in the
excitation command, the dynamics are rewritten in the form
of equation (8).

C. Optimal Solutions

In an effort to examine the merits of the new algorithm,
all the results we present will be the result of minimizing
the same basic cost function. Only the magnitude of the
penalties and the noise sources will change. This will allow
us to demonstrate how the new algorithm can perform well
when similar algorithms may require larger memory and
computational resources, or simply fail. The cost function
is of the following form:

J =
1
2
(xN − xd)T Φ(xN − xd) +

N∑

k=1

uT
k Ruk (12)

where R is a penalty term for large commands and xd is
the desired terminal state. For all solutions R = ΔtI , so
the cost approximates the integrated norm of the command.
xd corresponds to a final state where the limb has been
displaced one unit and is at rest with zero velocity.

Step Size
The terminal penalty’s weight, Φ, plays a key role in our
first comparisons. When this term is small relative to R,
the value function’s temporal gradient is small; that is, the
value function changes slowly as it approaches it’s terminal
value, V o(x,N) = 1

2 (x − xd)T Φ(x − xd). If, on the other
hand, Φ is relatively large, then the value function changes

621

quickly as it approaches the, relatively large, terminal value,
V o(x,N). The implications for algorithms that attempt to
discretely integrate the continuous-time HJB equations are
clear; when the terminal penalty is relatively large, a fine
discretization of time is necessary to accurately integrate the
value function. This in turn requires large memory resources
and more computations. Avoiding this problem is in part why
we attempt to solve the discrete-time HJB equations with our
new algorithm.
To illustrate these complications, and demonstrate the

new algorithm’s advantages, we first present a comparison
between the DT algorithm and its CT counterpart. Consider
the case when the value function is integrated as, V (x, k) ≈
V (x, k +1)+ΔtV̇ . Under this scenario, Δt must be chosen
small enough so that the integration does not fail. It can fail
when small errors integrate out to large variations in the value
function, or when the quantity ΔtV̇ is large and negative,
and drives the value function approximation towards negative
values. Under a best-case scenario, let us assume the value
function is approximately correct and the current nominal
state trajectory is close to optimal. Under such conditions,
we can linearize the system about the nominal trajectory
and solve for a locally accurate value function. We can then
rewrite the integration step in terms of this linearized solution
as,

V =
1
2
Δx̃T

k SkΔx̃k ≈ 1
2
Δx̃T

k (Sk+1 + ΔtṠ)Δx̃k (13)

where Ṡ is defined by its matrix Ricatti equations. In this
form, we see that the value function will achieve negative
values, and the integration will fail, when the sum Sk+1 +
ΔtṠ is negative-definite. Under appropriate conditions, we
can find this maximum upper bound on Δt. For instance,
when we set Φ = 5I and consider a 1 second movement,
we find Δt ≤ 0.02. However, in practice we find that this
upper bound is very liberal. In order to solve this problem
with the iLDP algorithm, we were forced to reduce Δt to
0.005 seconds. The results obtained with the iLDP and DLDP
algorithms are nearly identical (see figure 1A). However,
using the DLDP algorithm we could also solve this problem
by doubling the step size to 0.01 seconds, or quadrupling
it to 0.02 seconds (figure 1A), halving and quartering the
memory and computations, respectively.
We note some intriguing characteristics of these optimal

movements that are common across all the solutions pre-
sented here. First, the movements have a smooth bell-shaped
velocity profile. This is not uncommon and can be found
when optimizing many cost functions, e.g.[4], [9], [11]. We
also note that this model, simple though it may be, does
capture the phenomena of triphasic burst patterns. This is a
feature commonly observed in human reaching movements
[20] and typical among the solutions obtained with this
model.
To further demonstrate the merits of the new algorithm,

we found the optimal controller after increasing the terminal
penalty Φ from 5I to 40I . Under these conditions, the value
function changes quickly and we were no longer able to

po
si

tio
n

/ v
el

oc
ity

ac
tiv

at
io

ns
co

m
m

an
ds

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

1

0

0.2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

1

0

0.2

0

0.1

0.2

0.3

0.4

0.5

ILDP Dt = 0.005
IDLDP Dt = 0.005
IDLDP Dt = 0.02

time time

Gaussian noise
Exponential noise

Fig. 1. Comparison of optimal solutions. Solid lines represent the mean
trajectories and dashed lines depict one standard deviation. A) Optimal
solutions when Φ = 5I . Solutions were obtained using the iLDP algorithm
with a time step of 0.005 seconds (blue traces), and the DLDP algorithm
with time steps of 0.005 (red traces) and 0.02 (green traces) seconds. B)
Optimal solutions when the terminal penalty is increased to Φ = 40I .
Solutions were obtained for two noise sources, Gaussian (red traces) and
Exponential (blue traces).

find a solution using the iLDP method. Our discrete-time
algorithm was able to find a solution under a wide range
of time steps (see figure 1B for Δt = .01). As can be
seen, by increasing the terminal penalty, the mean terminal
position is now closer to the desired target location. In
addition, the variance of the trajectories under this controller
is necessarily reduced, to decrease terminal errors. We also
note what can be interpreted as an increase in co-activation
under these conditions, as there is a larger amount of overlap
between the agonist and antagonist musucle’s activations,
which acts to increase the muscle’s combined stiffness
without increasing the muscle force. This heightened
stiffness acts to further decrease the influences of noise on
the trajectory.

Non-Gaussian Noise
For musculo-skeletal systems, noise is a salient feature, and
in general it is not characterized by Gaussian distributions
[21]. However, most algorithms for solving optimal problems
require this assumption. As a further demonstration of the
new algorithm, we solved for the optimal controller, again us-
ing Φ = 40I, dt = 0.01, but with an exponential distribution
over the motor noise. An exponential distribution is a further
refinement to our model, ensuring muscle commands are
never negative, or inhibitory, as with true muscle physiology.
Furthermore, experimental studies suggest that the firing
rates of neurons are characterized by a family of exponential
distributions (e.g. [22]).
The resulting optimal controller (figure 1B) is qualitatively

distinct from the controllers found under the Gaussian noise
assumption. Just as before, the movements made still retain
the familiar bell-shaped velocity profile, however, now the

622

commands to the muscles are distinct from the previous
solutions (compare figure 1A, B). The commands are
initially larger, but decrease to values below those obtained
with Gaussian noise. Furthermore, there is little to no
commanded co-activation under these conditions. However,
due to the non-zero mean of the noise distribution, the two
muscles invariably experience some level of co-activation.
These results not only demonstrate how different classes of
noise can impact the optimal solutions, but also the need
for algorithms such as the one presented here, to analyze
these systems.

Deterministic vs. Stochastic Solutions
Our last solutions serve not only to demonstrate the useful-
ness of the DLDP algorithm, but also the need for stochastic
methods in general. Under the assumption of small additive
noise, optimal controllers for stochastic systems are found by
first solving for the deterministic trajectory obtained under
zero noise conditions, and obtaining a linearized controller
(i.e. LQG controller) about this trajectory. However, in
general the mean commands and trajectories of a stochastic
system will differ from those of it’s deterministic counterpart.
This fact limits the usefulness of deterministic analysis for
stochastic systems such as the human motor system and
emphasizes the need for a stochastic analysis.
Consider the task of walking along the edge of a cliff.

Assume that you want to walk as close to the edge as is
possible, without tumbling over (a large penalty). Under a
deterministic scenario, the best possible solution has you
walking along the edge of the cliff; this minimizes your
distance from it, while keeping you from tumbling over it.
However, common sense would suggest that this is an overly
parsimonious (and dangerous) solution. Under more realistic
assumptions of stochasticity, (i.e. motor noise, uncertain
feedback and knowledge of the cliff’s edge, etc.) the optimal
solution should demand you walk at a distance from the edge
that balances your fear of tumbling over with your desire to
remain close to it. Furthermore, as your fear or uncertainty of
the edge of the cliff increases, the optimal distance between
you and it ought to increase as well.
Using our musculo-skeletal model, we solve the analog

of this cliff-walking problem. We model a force, Fcliff that
tends to drive the limb in the negative direction, but only
when y ≤ ycliff . Then we propose a cost function (equation
(12)) whose initial and desired terminal position are just
slightly larger than ycliff (yd = 1.0). Now, the problem
is to remain close to the edge of the cliff, while avoiding
falling over it. However, to remain at values y > ycliff

requires non-zero motor commands, so the optimal controller
is non-trivial. We solved this problem under the assumption
of Gaussian noise using our DLDP algorithm. For each
value of Fcliff ten solutions were found, and their results
were averaged. In addition, we also solved for the optimal
deterministic trajectory. Under the deterministic assumption,
the limb’s trajectory moves slightly toward the cliff (to
minimize motor costs), but does not reach it (see figure
2A). Importantly, since the limb remains above the cliff’s

po
si

tio
n

co
m

m
an

ds

F cliff = 2.0
F cliff = 1.5
F cliff = 1.0
F cliff = 0.5

optimal deterministic

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.98

1.0

1.02

1.04

time

A

B

0

.1

.2

−20

−10

0

10

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

time

d
/ V

(x
o)

Δ
y

C

D

Fig. 2. Optimal solutions for cliff problem. A) Deterministic and mean
paths for optimal displacements as the strength of the cliff is varied. ycliff

is depicted with thin black line. B) Deterministic and mean commands for
optimal commands. C) The increasing exponential weight term, dk as the
cliff strength increases. D) The y-component of the exponential direction
term, ek .

edge, the magnitude of Fcliff has no influence on the limb’s
movement and the optimal deterministic solution remains
invariant regardless of how large Fcliff is. Examining the
stochastic solutions, we find a qualitatively different result.
Since random errors in the muscle command may drive the
limb across the cliff’s edge, the optimal trajectories move
the limb away from it (see figure 2A). Furthermore, as we
increase Fcliff , crossing the edge becomes a greater risk,
justifying larger motor commands to avoid it (figure 2B). As
a result, the limb’s trajectories move farther from the edge.
Since the dynamics of this task are asymmetric, we expect

the value function to be as well. To this end, we display the
exponential weights of the value function. As the cliff force
increases, we find that the scaling term for the exponential,
dk increases (figure 2C), confirming the asymmetry of the
value function. The direction of the exponential term, ek

indicates the direction in which the value function increases
fastest. For illustrative purposes, we show the y-component
of this four element vector (there was no trend with increas-
ing Fcliff , so the average across all conditions is shown). We
see that initially and finally, moving away from the nominal
trajectory in the negative direction, towards the cliff, incurs
costs fastest; moving towards the cliff at these times increases
the chances of falling over it. However, at intermediate times,
moving away from the nominal trajectory away from the
cliff, incurs costs fastest; this unnecessarily incurs penalties
by being too far from the cliff.
For comparison, we repeated the above procedure with

the DLDP algorithm, but suppressed the exponential term.
Though the differences were small, for each value of Fcliff ,
the cost-to-go with this 2nd order solution was worse than
that obtained above using the exponential term. The differ-
ences were statistically significant (p < 0.05) for all but the
smallest value of Fcliff . These results demonstrate the need
for an asymmetric value function, and the importance of a
stochastic analysis for nonlinear systems, whose mean be-

623

havior can be distinct from that predicted by a deterministic
analysis.

IV. CONCLUSIONS AND FUTURE WORKS

Here we have presented an algorithm that approximates
the solution to the discrete-time HJB equations. The discrete-
time problem requires a unique algorithm to solve its own
version of the HJB equations. To this end we have extended
the iDLP algorithm to an explicitly discrete-time domain and
added a higher order, asymmetrical term to the value function
approximation. What’s more, by solving the discrete-time
HJB equations, we work with summations over time, not
an integral. This allows for a more liberal choice in step
size when numerically integrating a value function with large
(fast) temporal derivatives. Furthermore, the discrete-time
formalization allows for more relaxed assumptions on noise
sources. Our results on a musculo-skeletal system demon-
strate the algorithm’s use in solving optimal control problems
with fast dynamics, non-Gaussian noise, and asymmetrical
value functions that would be difficult to solve with similar
algorithms.
It should be noted that discrete-time systems are not

limited to continuous-time problems whose dynamics have
been discretized. Many dynamical systems are best described
by discrete-time, or multi-stage processes. Indeed, there are
aspects of biological motor control that appear discretized
as well. There is a great deal of evidence to suggest that
the human motor behaviors are constructed with commands
issued, not continuously, but at discrete times. The resulting
movements are comprised of discrete components. These so-
called submovements appear to be a fundamental character
of the human motor system, evident in both normal and
impaired subjects [23], [24]. The algorithm presented here
may be an especially useful tool in analyzing a biological
control architecture that is similarly restricted to discretely
issued commands.
With our algorithm we have assumed that in the region

of optimal trajectories a second order approximation to
the value function would be adequate and approximated
higher order influences with an exponential term. Under
more disruptive assumptions of noise, or abruptly changing
dynamics (as in the cliff problem) the distribution of optimal
states grows in size and a second order approximation may
do poorly. Under these circumstances the exponential term
allows for a better approximation to the value function.
Furthermore, because the exponential term is asymmetric,
it can depict the directions in which the state achieves the
least desirable values. If this choice of representing higher
order terms with an exponential were found to be inadequate,
other forms for the value function could be used with minor
changes to the basic algorithm.
Several assumptions were made in this work to simplify

implementation of the algorithm. For instance, we have
modeled the state dynamics as linear in their commands.
Although this was a natural choice for the systems we were
modeling, it need not be true for the algorithm in general.
When the state dynamics are linear in u, solving for the

minimizing command is greatly simplified. However, many
standard and proficient minimizing algorithms could be used
for this step. Additionally, regarding noise sources we have
assumed a fixed distribution (either Gaussian or exponential),
as this makes the analysis relatively easy. However, it is
known that for biological systems the noise in commands
signal-dependent, making the control problem more difficult.
In future implementations of this work we hope to address
many of these assumptions while examining other, more
sophisticated biological motor systems.

V. APPENDIX
In order to compute the value function updates (equation (3)) as

well as the optimal commands (equation (4)), we need to compute
the expected value function. First we shall consider the case of
Gaussian noise. For notational convenience, we refer to the state
and command at the k − 1 time step as x and u respectively and
Ṽ (xk, k, θk) as Ṽ (xk). The expected value of xk, conditioned on
x and u is,

E[xk] = x̂k = f(x) + B(x)u (14)

and the expected value function, ˆ̃V (x̃k, k) can be expanded as,

E[Ṽ (x̃k)] = ak + bT
k E[x̃k] + E[x̃T

k Ckx̃k] + E[ξ(x̃k)] (15)

where x̃k = xk − x̄k. The expectation of the first three terms is,

E[ak + bT
k x̃k + x̃T

k Ckx̃k] = ak + bT
k (x̂k − x̄k)

+(x̂k − x̄k)T Ck(x̂k − x̄k) + Tr(WL(x)T CkL(x)) (16)

The expectation of ξ() is,

E[ξ(x̃k)] = dk exp(eT
k (x̂k − x̄k)) exp(eT

k L(x)WL(x)T ek/2)
(17)

Collecting terms, the expected value function is,

ˆ̃V (x̃k) = ak + bT
k (x̂k − x̄k) + (x̂k − x̄k)T Ck(x̂k − x̄k)

+Tr(WL(x)T CkL(x)) +

dk exp(eT
k (x̂k − x̄k)) exp(eT

k L(x)WL(x)T ek/2) (18)

Now, to compute the optimal command (equation (4)) we must
minimize the resulting Hamiltonian. This is done by taking the
partial derivative of the Hamiltonian and solving for the extremum
command, uo such that,

∂L(xk, uo)

∂u
+

∂ ˆ̃V (x̃k)

∂x̂k

∂x̂k(uo)

∂u
= 0 (19)

To do this, we first compute the command based on the second
order terms, this will be an accurate approximation when the x is
close to the nominal state, x̄. We then, compute a Taylor expansion
of ξ() about this second order solution to compute an updated, more
accurate command. Define this second order command as,

uo
2 = arg min

u
{L(x, u) + ˆ̃V o

2 (x̃o
k)} (20)

where,

ˆ̃V2 = ak + bT
k (x̂k − x̄k) + (x̂k − x̄k)T Ck(x̂k − x̄k)

+Tr(WL(x)T CkL(x)) (21)

assuming a quadratic motor cost, L = 1/2uT Ru, we arrive at the
following,

uo
2 = −(R + 2B(x)T CkB(x))−1B(x)T (bk + 2Ck(f(x) − x̄k))

(22)
We then compute the forward state based on this second order com-
mand, x̂o

2 = f(x) + B(x)uo
2. These second order approximations

624

are used to compute an updated second order approximation to the
expected value function.
Expanding the value function we find,

ˆ̃V ≈ ak + bT
k (x̂k − x̄k) + (x̂k − x̄k)T Ck(x̂k − x̄k)

+Tr(WL(x)T CkL(x)) + ξ̂(x̃o
2)

+ξ̂′(x̃o
2)(x̂k − x̂o

2) +
1

2
(x̂k − x̂o

2)
T ξ̂′′(x̃o

2)(x̂k − x̂o
2) (23)

for ease of notation, we’ll denote the following,

η(x̂o
2) = dke(eT

k (x̂o
2−x̄k))eeT

k L(x)WL(x)T ek/2 (24)

then we can rewrite the value function as,

ˆ̃V ≈ ak + bT
k (x̂k − x̄k) + (x̂k − x̄k)T Ck(x̂k − x̄k)

+Tr(WL(x)T CkL(x)) + ξ̂(x̃o
2) + η(x̂o

2)e
T
k (x̂k − x̂o

2)

+
1

2
η(x̂o

2)(x̂k − x̂o
2)

T ekeT
k (x̂o

2)(x̂k − x̂o
2) (25)

Just as before, we minimize the Hamiltonian, by computing the
appropriate derivatives and isolating the command. Dropping the x
dependencies for notational convenience we finally we arrive at the
optimal command,

uo = −
“
R + 2BT CkB + ηBT ekeT

k B
”−1

BT
“
bk + 2Ck(f(x) − x̄k) + ηek + ηekeT

k (f(x) − x̂o
2)

”
(26)

For the case of exponential noise we must first define the
distribution over w.

p(w) = Πλi exp(−λT w) (27)

where the expected value is, E[w] = ŵ = [1/λ1, 1/λ2, ..., 1/λs]
and the covariance matrix is E[wwT] = W = diag(1/λ2

i). We
redefine x̂k as f(x) + B(x)u. We can then express the expected
value function as,

ˆ̃V (x̃k) = ak + bT
k (x̂k + L(x)w̄ − x̄k)

+(x̂k − x̄k)T Ck(x̂k − x̄k) + 2(x̂k − x̄k)T CkL(x)w̄

+Tr(WL(x)T CkL(x))

+dk exp(eT
k (x̂k − x̄k))

Πλi

Π(λT − eT
k L(x))i

(28)

now, the second order approximate command and optimal state are,

uo
2 = −(R + 2B(x)T CkB(x))−1(B(x)T bk + 2BT CkL(x)w̄

+2B(x)T Ck(f(x) − x̄k)) (29)

x̂o
2 = f(x) + B(x)uo

2 (30)

then, as before, we’ll define a scalar variable,

η = dk exp(eT
k (x̂k − x̄k)

Πλi

Π(λT − eT
k L(x))i

(31)

and expand the expected value function up to second order terms,

ˆ̃V ≈ ak + bT
k (x̂k + L(x)w̄ − x̄k) + (x̂k − x̄k)T Ck(x̂k − x̄k)

+2(x̂k − x̄k)T CkL(x)w̄ + Tr(WL(x)T CkL(x))

+η(x̂o
2)e

T
k (x̂k − x̂o

2) +
1

2
η(x̂o

2)(x̂k − x̂o
2)

T ekeT
k (x̂o

2)(x̂k − x̂o
2) (32)

Taking the derivative with respect to u, and isolating, we find the
optimal command,

uo = −
“
R + 2BT CkB + ηBT ekeT

k B
”−1

BT

“
bk + 2CkLw̄ + ηek + 2Ck(f − x̄k)) + ηekeT

k (f − x̂o
2)

”
(33)

VI. ACKNOWLEDGMENTS
The authors would like to thank Emanuel Todorov for valuable

discussions on this work.

REFERENCES
[1] A.R. Willms and S.X. Yang. An efficient dynamic system for real-

time robot-path planning. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 36(4):755–766, Aug. 2006.

[2] J.J. Murray, C.J. Cox, G.G. Lendaris, and R. Saeks. Adaptive dynamic
programming. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 32(2):140–153, May 2002.

[3] Jae Won Lee, Jonghun Park, Jangmin O, Jongwoo Lee, and Euyseok
Hong. A multiagent approach to q-learning for daily stock trading.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 37(6):864–877, Nov. 2007.

[4] N Hogan. An organizing principle for a class of voluntary movements.
The Journal of Neuroscience, 4(11):2745–2754, Nov 1984.

[5] T Flash and N Hogan. The coordination of arm movements: An experi-
mentally confirmed mathematical model. The Journal of Neuroscience,
5(7):1688–1703, July 1985.

[6] A. Karniel and G.F. Inbar. Human motor control: learning to control
a time-varying, nonlinear, many-to-one system. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 30(1):1–11, Feb 2000.

[7] E Todorov and M I Jordan. Optimal feedback controls as a theory of
motor coordination. Nature Neuroscience, 5(11), Nov 2002.

[8] J Izawa, T Rane, O Donchin, and R Shadmehr. Motor adaptation as a
process of reoptimization. J Neurosci, 28(11):2883–2891, Mar 2008.

[9] Y Uno, M Kawato, and R Suzuki. Formation and controlf of optimal
trajectory in human multijoint arm movement. Biological Cybernetics,
61:89–101, 1989.

[10] M Kawato. Trajectory formation in arm movements: Minimization
principles and procedures. In H.N. Zelaznik, editor, Advances in Motor
Learning and Control, pages 225–259. Human Kinetics Publishers,
Champaign IL, 1996.

[11] E Nakano, H Imamizu, R Osu, Y Uno, H Gomi, T Yoshioka, and
M Kawato. Quantitative examinations of internal representation for
arm trajectory planning: Minimum commanded torque change model.
Journal of Nuerophysiology, 81:2140–2155, 1999.

[12] Y. Bar-Shalom and E. Tse. Dual effect, certainty equivalence, and
separation in stochastic control. Automatic Control, IEEE Transactions
on, 19(5):494–500, Oct 1974.

[13] Robert F. Stengel. Optimal Control and Estimation. Dover Publi-
caitons, 1994.

[14] D. Jacobson and D. Mayne. Differential Dynamic Programming.
American Elsevier Publishing Company, Inc., New York, 1970.

[15] P J Werbos. Consistency of hdp applied to a simple reinforcement
learning problem. Neural Networks, 3(2):179–189, 1990.

[16] A. Al-Tamimi, F.L. Lewis, and M. Abu-Khalaf. Discrete-time non-
linear hjb solution using approximate dynamic programming: Conver-
gence proof. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 38(4):943–949, Aug. 2008.

[17] N A Borghese and M A Arbib. Generation of temporal sequences using
local dynamic programming. Neural Networks, 8(1):39–54, 1995.

[18] Weiwei Li and E. Todorov. An iterative optimal control and estimation
design for nonlinear stochastic system. In Decision and Control, 2006
45th IEEE Conference on, pages 3242–3247, Dec. 2006.

[19] E Todorov and Y Tassa. Iterative local dynamic programming. To
appear in IEEE ADPRL, 2008.

[20] S H Brown and J D Cooke. Movement-related phasic muscle activa-
tion. i. relations with temporal profile of movement. J Neurophysiol,
63(3):455–464, Mar 1990.

[21] A A Faisal and D M Wolpert. Near optimal combination of sensory
and motor uncertainty in time during a naturalistic perception-action
task. J Neurophysiol, 101(4):1901–1912, Apr 2009.

[22] W Bair, C Koch, W Newsome, and K Britten. Power spectrum analysis
of bursting cells in area mt in the behaving monkey. J Neurosci, 14(5
Pt 1):2870–2892, May 1994.

[23] R C Miall, D J Weir, and J F Stein. Intermittency in human manual
tracking tasks. J Mot Behav, 25(1):53–63, Mar 1993.

[24] H I Krebs, M L Aisen, B T Volpe, and N Hogan. Quantization of
continuous arm movements in humans with brain injury. Proc Natl
Acad Sci U S A, 96(8):4645–4649, Apr 1999.

625

