
Dynamic Discrete-Event Systems with Instances for the Modelling of

Emergency Response Protocols

Lenko Grigorov and Karen Rudie

Abstract— A type of model, dynamic discrete-event systems
with instances, is proposed for use with time-varying systems
where a number of system components may share common
behavior. The motivation for this model comes from the area
of emergency response protocols where systems may change
unexpectedly, however, there are predefined types of actors.
The model is based on previous work on dynamic discrete-
event systems and on template design. Synchronization patterns
are introduced which allow the generic definition of component
interactions regardless of a particular system composition. The
synchronous product operation is updated in order to employ
these patterns. Advantages of the proposed model include com-
pactness of representation, preservation of the identity (history)
of individual components and, with the use of online control,
amenability to dynamic changes of control specifications.

I. INTRODUCTION

The application of discrete-event system (DES) control

theory is faced with many difficulties, including the demands

placed on users in terms of familiarity with the theory. In our

previous research, we proposed a methodology where certain

aspects of DES modelling can be simplified with the use of

templates [1]. Recently, in cooperation with the Kingston,

Frontenac and Lennox & Addington Public Health Unit, we

have been interested in the application of DES supervisory

control to the management of emergency situations, e.g.,

disease outbreaks [2], [3].

Emergency situations are usually volatile and unpre-

dictable. In a recent forest-fire training exercise at the Fron-

tenac County, Ontario, for example, trainees had to respond

to an unexpected fire expansion into the area of a densely

populated township. A disease outbreak scenario could serve

as another illustration: new patients may appear at any time,

the time of recovery cannot be determined precisely for

each individual, and health-care workers may succumb to

the disease and turn into patients themselves.

It is clear that in such situations models of static systems,

composed of pre-determined components, cannot be used. A

common approach then is to use what we will call aggre-

gating models—such as Petri nets, [4], and vector DES, [5].

Aggregating models ignore the individuality of components

of the system and simply count how many components are

in each specific state, allowing for a dynamic variation of

the number of components with time, for example. Such

models allow for a great simplification of the state space

and the control solutions. We will argue, however, that such

an approach is not always suitable, especially in modelling

L. Grigorov and K. Rudie are with the Department of Electrical
and Computer Engineering, Queen’s University, Kingston, ON, Canada
lenko.grigorov@banica.org

emergency situations. The main drawback of aggregating

models is the fact that information about the past behavior

of individual components is discarded—and dynamically

updated control specifications may not access it. Let us

consider a disease outbreak scenario and let us assume that,

upon diagnosis, patients get treated with some medication.

As it might be, the lack of recovery in some patients prompts

an internal investigation of the treatment procedure. Two

possible outcomes (and for which numerous examples exist

in real life) are that a batch of medication used for treatment

was ineffective (e.g., due to faulty manufacture) or that one

of the nurses made a systematic error by administering a

different medication (e.g., due to a confusion about the

name of the medication). Note that an investigation such

as the one described already requires detailed information

about the treatment of patients: when, how, by whom. More

importantly, however, the results of such an investigation

would necessitate a change in the control specifications,

i.e., patients treated at a given time or by a specific nurse

will need to be treated again. If the history of individual

components is discarded, as in aggregating models, such

specification updates are not possible.

In this work we propose a new type of model, dynamic

discrete-event system with instances (DDES-I), which is

based on the ideas from our investigation of modelling

emergency response protocols. We take advantage of the

dynamic discrete-event system (DDES) framework from [6]

and the idea of instantiating template models from [1]. A set

of roles are defined for the actors in an emergency scenario.

Then, the model of each actor is an instance of one of the

role models. The DDES consists of a set of actors which

may vary as time advances. Synchronization patterns are

also introduced in order to define how actors interact. The

DDES-I model

• is a compact description similar to aggregating models,

• supports the modelling of dynamic systems and

• preserves the identity and history of modules.

II. PRELIMINARIES

Before introducing the DDES-I model, let us first review

some concepts and notation which will be used at different

points in the rest of the paper. The review is very brief due to

the limited space. More details are available in the references.

A DES is a system where events, from a finite alphabet

Σ, occur instantaneously and asynchronously. The collection

of all strings of events that can potentially occur in the

system forms the language generated by it. If the language is

regular, it can be modelled as a finite-state automaton, G =

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 4478

(Σ, Q, δ, q0, Qm). Then, the total behavior (the generated

language) is denoted L(G) and the set of completed tasks

(the accepted language) is denoted Lm(G). The overall

system may be defined as the parallel composition of a

number of modules, G = ‖Gi for i in some finite index

set, where ‖ denotes the synchronous product operation [7].

For a language L, a string s and n ∈ N, let us define the

notation L/s = {t | s.t ∈ L} and L|n = {t | t ∈ L, |t| = n}.

Some of the modules in a composed system may share a

common pattern of behavior, e.g., all nurses in a unit may

have similar duties. Thus, it is possible to describe modules

as particular instances, Gp
i , of some template module, Gp,

[1]. Instantiation simply creates a copy of the template model

and indexes events to differentiate the instance from other

instances. If Gp = (Σ, Q, δ, q0, Qm) is a template, then the

instance with index i is Ins(Gp, i) = (Σi, Q, δi, q0, Qm),
where

Σi = {σi|σ ∈ Σ},

δi(q, σi) = δ(q, σ).

Specifications for the control of a DES are given as K ⊆
Lm(G), called the legal language. In supervisory control, [7],

the controller can be described as a function γ : Σ∗ → 2Σ

such that for every string in L(G), it defines which events are

allowed to occur next. If proper limits on the occurrences of

events are chosen, then the controller would be able to ensure

that the controlled behavior is contained in K.

A dynamic DES (DDES) is a system defined as the

composition of modules, where the set of modules may

vary with time, [6]. Thus, if t stands for time and M(t) =
{M1t,M2t, . . . ,Mnt} is the set of modules at time t,

G(t) = ‖M(t).

The control of a DDES requires the use of online strategies

as the system varies with time, i.e., instead of precomputing

γ for all possible s, the control function is computed as

the system evolves. In [8], the authors propose the use of

a limited lookahead projection of the system behavior to

compute γ. For a selected window size of N , a tree is

constructed such that it contains all possible future N -step

evolutions of the system. The control decisions are then

chosen so that evolutions not contained in the legal language

are avoided. The tree construction and decision-making are

repeated after each event occurrence.

III. DYNAMIC DES WITH INSTANCES

When modelling disease outbreak control protocols, and

emergency response protocols in general, it is not practical to

create a separate model for every potential actor. Indeed, all

patients (or, respectively, nurses, visitors, etc.) share the same

underlying model behavior. We will call this behavior a role.

If the identities of actors are not important, it is sufficient

to keep track of how many actors are in each possible state

of the role, e.g., through aggregating models such as vector

DES or Petri nets. This approach has been assumed, for

example, in other work at our laboratory, [2], [3], or in the

area of patient flows and health-care resource allocation [9].

However, as already discussed in Section I, the identity of

actors cannot always be ignored.

In order to support the modelling of emergency response

protocols where actor identities need to be preserved, we

propose the use of an extension of the DDES model where

actor models are obtained through the instantiation of role

models. Indeed, roles can be viewed as templates in the

context of template design, [1], and the same instantiation

procedure can be used. The approach also naturally takes

advantage of the ability to describe time-varying systems as

DDESs; emergency situations are usually dynamic and it is

not possible to design the system a priori.

In this paper we will have a running example to illustrate

the introduced concepts. We will consider a disease outbreak

scenario which is inspired by a real protocol for the control

of respiratory disease outbreaks in a long-term care home

[10]. However, for the purposes of clarity and brevity, the

situation has been greatly simplified and only a small part is

considered.

A. Roles and instances

Let R = {R1, . . . , Rl}, l ∈ N be a collection of roles,

where each role is expressed as some finite-state automaton

Rj = (Σj , Qj , δj , qj
0, Q

j
m). Each role describes the proto-

typical behavior of a type of actors. In a disease outbreak

response scenario these could be “long-term care home”,

“doctor”, “nurse”, “patient”, “Ministry of Health”, etc. It is

understood that for institutions, such as “Ministry of Health”,

there will be only one actor with the given role. The models

of actors are obtained by instantiating the roles, in the same

way that templates are instantiated in [1]. The instance with

index k of the role Rj is defined as

Rj
k = Ins(Rj , k) = (Σj

k, Qj , δj
k, qj

0, Q
j
m).

In Section I, we mentioned that the proposed model

is compact. Indeed, it is not necessary to actually create

separate models for every instance. The state space of an

instance is, by definition, identical with the state space of

its role. Thus, it is sufficient to keep track of the indices of

instances and of which instances are in which states.

Let R be a set of roles. The set of instances is defined as

A = {(i1, j1), . . . , (in, jn)},

where n ∈ N, ∀a ∈ A : a ∈ N × {j |Rj ∈ R} and if

(i, j), (i, j′) ∈ A, then j = j′. In other words, each instance

is a pair containing the (unique) instance index and the index

of the associated role. If (i, j) ∈ A, then the model for the

instance would be Rj
i = Ins(Rj , i). We can also define three

functions for convenience:

ι ((i, j)) = i

is the index retrieval function,

ρ ((i, j)) = j

is the role retrieval function, and

Idx(A) = {i | (i, j) ∈ A}

4479

21

3

admit

cancel announce

detect

Fig. 1. The model for actors with the role of a long-term care home. As
this is an institution, there will be only one actor with this role.

312

visit

vaccinate

round cancel

announce

admit

Fig. 2. The model for actors with the role of a nurse.

is a function which returns the indices of all instances in A.

There are three roles which we will consider in our

example: the long-term care home, the health-care workers

there (whom we will refer to as “nurses”), and the patients.

Let us denote the models for each role RH , RN and RP ,

respectively. Thus, we have R = {RH , RN , RP }. In reality,

of course, one would need to consider many more roles. The

models for the three roles are shown in Figs. 1 to 3. The

events used in the models are as follows:

admit Admit a patient to the facility.

announce Announce a disease outbreak state.

cancel Cancel the state of disease outbreak.

detect Detect a disease outbreak.

round Start a patient visitation round.

vaccinate Vaccinate a patient.

visit Visit a patient.

Naturally, there is only one actor with the role RH ; let the

instance index be 1 (and we have the instance model RH
1).

Let us say that there are two nurses with instance indices

2 and 3 (models RN
2 and RN

3), and five patients with the

instance indices 4 to 8 (models RP
4 to RP

8). An illustration

of an instance model (for a patient) is shown in Fig. 4.

With the above selection, A = {(1,H), (2, N), (3, N),
(4, P), (5, P), (6, P), (7, P), (8, P)}.

21
admit

vaccinate, visit

Fig. 3. The model for actors with the role of a patient.

21
admit5

vaccinate5, visit5

Fig. 4. The model for the actor with the role of a patient and index 5.

B. Synchronization patterns

The consideration of instances introduces a problem: the

actor models can no longer synchronize via common events

as usually done in modular systems (i.e., using synchronous

product). In our example, both the RN and RP models con-

tain the event “vaccinate”, meaning that a nurse vaccinates a

patient. However, the models of the instances with indices 2

and 4, RN
2 and RP

4 , will have events with different names:

“vaccinate2” and “vaccinate4”, respectively. The naming

issue could be resolved, in this particular situation, with the

use of appropriate event maps. However, when one considers

the rest of the nurses and patients, and the fact that the

number of instances may vary, the situation becomes much

more complex. Naturally, then, simple event maps will not

be able to describe the desired synchronization. Here, we

propose four synchronization patterns which are suitable for

the definition of interactions between instance models: “all”,

“many”, “any” and “one”. These patterns will be explained

next.

Let ΣR =
⋃

Rj∈R Σj signify the set of all events in the

models of roles. Consequently, for every σ ∈ ΣR there is

the non-empty set R(σ) = {Rj ∈ R|σ ∈ Σj} of roles that

contain the event. Then, for each event σ ∈ ΣR we define

the synchronization pattern

π(σ) = {(j,♦)|Rj ∈ R(σ)} or ∅

where ♦ stands for one of the following:

all All instances of the given role must participate in

the synchronization.

many All available instances, but at least one, of the given

role must participate in the synchronization. Here

“available instances” means instances which are in

a state where the event can occur.

any All available instances, if any, of the given role

must participate in the synchronization.

one Exactly one instance of the given role must partic-

ipate in the synchronization.

The empty pattern, π(σ) = ∅, means that no synchronization

is associated with the event. In particular, events local to the

instances will have the empty pattern.

Thus, if we go back to our example with the nurse and

patient roles and the “vaccinate” event, one could specify the

following pattern:

π(“vaccinate”) = {(N, “one”), (P, “many”)},

where, as before, N is the subscript for the nurse role and P
is the subscript for the patient role. This pattern signifies

that, when actors synchronize on the event “vaccinate”,

exactly one nurse instance will synchronize with at least one

but potentially many patient instances—thus a single nurse

will vaccinate all the patients which can be vaccinated. An

alternative pattern could be

π(“vaccinate”) = {(N, “one”), (P, “one”)},

which means that a single nurse will vaccinate a single

patient (and, if more patients can be vaccinated, the event

will have to occur multiple times).

4480

In our example, the following synchronization patterns

will be used:

π(“admit”) = {(H, “one”), (N, “one”), (P, “many”)}

π(“announce”) = {(H, “one”), (N, “all”)}

π(“cancel”) = {(H, “one”), (N, “all”)}

π(“detect”) = ∅

π(“round”) = {(N, “one”)}

π(“vaccinate”) = {(N, “one”), (P, “one”)}

π(“visit”) = {(N, “one”), (P, “any”)}

Note that classical synchronization on σ, if we ignore

event indices, can be defined as

π(σ) = {(j, “all”)|Rj ∈ R(σ)}

and, if event indices are not ignored (i.e., σ is local for each

instance), as

π(σ) = ∅.

Furthermore, the prioritized synchronization from [11] can

also be expressed. Let A and B be, correspondingly, the

priority sets of Rj1 and Rj2. If σ ∈ A ∩ B, then σ should

be classically synchronized (or strictly synchronized in the

authors’ terminology). If σ ∈ A \ B then we can use the

pattern

π(σ) = {(j1, “all”), (j2, “any”)}

(and a similar pattern for σ ∈ B \ A). As our focus is

on the synchronization of instances, we did not explore

this topic further, but it is conceivable that some of the

other synchronization patterns introduced in [12] can also

be expressed using our approach.

Multi-agent (MA) product, as proposed in [13], also

discusses systems composed of individual modules. It gen-

eralizes the notion of state transition to allow for the si-

multaneous occurrence of a number of events. Thus, the

operations of multiple actors on different tasks in parallel

can be modelled—something not possible with our approach.

However, MA product does not seem to be suitable for dy-

namic systems. The vector space is of fixed dimension (fixed

number of modules) and it is not possible to express module

synchronization other than the classical one. Furthermore,

the model representation is not compact as it does not make

use of templates (or prototypes) for the system components.

C. Synchronous product of instances

If a system is given as a collection of roles, instances,

and synchronization patterns, it is still necessary to be able

to determine the overall behavior of the global system.

The synchronous product operation is used for this purpose

when a system consists of usual modules. However, a new

composition operation is needed to take advantage of the

proposed information structures. Let us call this operation

the synchronous product of instances, denoted ‖spi. The

definition is given next.

Let R be a set of role models, π be the associated

synchronization patterns, and A = {a1, . . . , an} be a set

of n instances.

Then

‖spi(R, π,A) = (Σspi, Qspi, δspi, qspi
0 , Qspi

m),

where the elements Qspi, qspi
0 and Qspi

m are defined as

expected, i.e., the product of the states of the components:

Qspi = Qρ(a1) × . . . × Qρ(an)

qspi
0 = (q

ρ(a1)
0 , . . . , q

ρ(an)
0)

Qspi
m = Qρ(a1)

m × . . . × Qρ(an)
m .

Let σ ∈ ΣR, q = (q1, . . . , qn) ∈ Qspi. The transition

function is defined as follows:

δspi(q, σ{i1,...,il}) =



























































(q1, . . . , δ
j1
i1 (qi1, σi1), . . . , qn)

if π(σ) = ∅, l = 1 and

δj1
i1 (qi1, σi1) is defined

(q1, . . . ,

δj1
i1 (qi1, σi1), . . . , qυ, . . . ,

δjl
il (qil, σil), . . . , qn)

if π(σ) 6= ∅ and Condition

undefined otherwise,

where υ ∈ [1, n], i1 to il denote the indices and j1 to jl
denote the roles of some set of instances {ak1, . . . , akl} ⊆ A
(i.e., ∀x ∈ {1, . . . , l} : ix = ι(akx) and jx = ρ(akx)), and

the condition Condition is defined as follows:

1) ∀ix ∈ {i1, . . . , il} : δjx
ix (qix, σix) is defined;

2) ∀(i, j) ∈ A, (j, “all”) ∈ π(σ) : i ∈ {i1, . . . , il};

3) if ∃j, (j, “many”) ∈ π(σ) or (j, “one”) ∈ π(σ), then

∃ix ∈ {i1, . . . , il} : jx = j;

4) ∀(i, j) ∈ A, (j, “many”) ∈ π(σ) or (j, “any”) ∈ π(σ)
where δj

i (qi, σi) is defined: i ∈ {i1, . . . , il};

5) if ∃ix, iy ∈ {i1, . . . , il}, jx = jy and (jx, “one”) ∈
π(σ), then ix = iy.

The interpretation of the parts of the condition is as follows:

1) This part simply states that all transitions that take

place are defined in the corresponding instances.

2) If there is an instance for which on the event σ the

synchronization pattern is “all”, the instance must be

making a transition in the composed system.

3) If there is a “many” or “one” synchronization pattern

for the event σ, there must be at least one instance

(with the corresponding role) making a transition on

the event.

4) All instances for which on the event σ the synchroniza-

tion pattern is “many” or “any” and which can make

a transition on σ must participate in the transition.

5) This part states that there cannot be two different

instances with the same role which participate in the

transition when the synchronization pattern is “one”.

The event set of the composition is then defined in terms of

the transitions in the model, i.e.,

Σspi = {σI |∃q ∈ Qspi : δspi(q, σI) is defined},

where I ⊆ Idx(A) denotes a set of instance indices.

4481

In our example, the complete composition is too large

to show in this paper, however, it is possible to illustrate

the construction of the transition function δspi from a single

state. Let us assume that the actors are in the following states:

the long-term care home is in state 1, nurse 2 is in state 1,

nurse 3 is in state 2, patients 4 to 6 are in state 2 and patients

7 and 8 are in state 1. Then, the composed state of interest

is q = (1, 1, 2, 2, 2, 2, 1, 1) and the transitions from q are as

follows:

δspi(q, “admit{1,2,7,8}”) = (1, 1, 2, 2, 2, 2, 2, 2)

δspi(q, “detect{1}”) = (2, 1, 2, 2, 2, 2, 1, 1)

δspi(q, “round{2}”) = (1, 2, 2, 2, 2, 2, 1, 1)

δspi(q, “visit{3,4,5,6}”) = (1, 1, 1, 2, 2, 2, 1, 1)

Transitions on “announceI”, “cancelI” and “vaccinateI” are

not defined for any I ⊆ Idx(A).
Note that the use of synchronization patterns is not nec-

essary if the set of actors is static and known a priori.

Then, with suitable event masks, the desired synchronization

can be accomplished. However, as already discussed, we

envision the use of this modelling methodology in dynamic

systems, where the number of instances of roles may change

unexpectedly as time advances. Then, static event masks

cannot be used. Synchronization patterns, in essence, form

dynamic event masks which can adapt to system changes.

The reader may also observe that the computation of po-

tential transitions is non-trivial. Especially when the pattern

“one” is used and there are a number of instances which

could synchronize, there could be a high-order polynomial

number of transitions. This is, indeed, the nature of the

systems considered in this paper (or, one could argue, the na-

ture of DES systems in general). Under a limited-lookahead

control strategy, however, the system size would pose less

of a problem as only a portion of the full system would be

considered at a time.

With all definitions in place, we can finally proceed with

the formal definition of dynamic discrete-event systems with

instances, DDES-I. Let t stand for time, let R be a set of

roles, π be the associated synchronization patterns, and let

the set of role instances be time-varying, A(t). Then DDES-I

is defined as

G(t) = ‖spi(R, π,A(t))

= (Σspi
t , Qspi

t , δspi
t , qspi

0t , Qspi
mt).

Without loss of generality, it can be assumed that in the life

span of the system instance indices cannot be reused: for all

time instances t′ < t′′ < t′′′ such that i ∈ Idx(A(t′)) and

i 6∈ Idx(A(t′′)), then i 6∈ Idx(A(t′′′)).
Furthermore, for the purpose of consistency, the current

states of instances are preserved as time advances. For all

consecutive time instances t′ = t + 1 where time advances

on the occurrence of the event σI : if ak = (i, j) ∈ A(t) and

ak′ = (i, j) ∈ A(t′), at time t the current state of the system

was q = (q1, . . . , qk, . . . , qn), at time t′ the current state of

the system was q′ = (q′1, . . . , q
′
k′ , . . . , q′n′), and δspi

t (q, σI) =
(q′′1 , . . . , q′′k , . . . , q′′n), then q′k′ = q′′k .

In our example, as time advances, there could be variations

in the number of patients and nurses.

Most of the ideas introduced with DDES-I, such as

roles, instance identities and interaction histories, can be

expressed also in colored Petri net models, [14]. Colored

Petri nets form an extension to Petri nets where the basic

net structure of places and transitions is complemented with

the expressiveness of a programming language. The notion

of tokens is replaced by the concept of data types (of

possibly non-finite range) and values, where each token

can carry an identifier and, potentially, its transition history.

However, with our simplified approach, we maintain focus

on the essential properties we would like to model: dynamic

behavior, interaction and history, and avoid the unnecessary

use of highly-expressive models. As discussed next, DDES-I

models can take advantage of the existing techniques devel-

oped for online control.

IV. CONTROL OF DDES-I

In this section, due to space limitations, we will provide

only a brief overview of the topic of DDES-I control.

Dynamic DESs with instances are time-varying models

and the classical approach of offline synthesis of supervisory

controllers is not applicable. In [6], the limited-lookahead

online control proposed by Chung et al. in [8] was applied

to DDES. Thus, the same method was used for DDES-I.

The limited-lookahead controller relies on the availability

of a partial view of the system. More specifically, a descrip-

tion of the potential behavior of the system over a limited

period in the future is considered. In [8], the limited view

of the system is provided by the function fN
L(G) defined

over the strings s in a given language L(G) as follows:

fN
L(G)(s) = (L(G)/s|N , Lm(G)/s|N), where N is the depth

of the look-ahead window. In this paper, we will use a

slightly modified version of this function, where the history

of event occurrences is preserved; this allows us to consider

specifications which are not state-based. Given a DDES-I G,

we can define fN
L(G) as follows:

fN
L(G)(s) = ({s}. (L(G(ts))|N) , {s}. (Lm(G(ts))|N)) ,

where ts is the time right after the string s has occurred.

A. Control specifications

Online control provides greater flexibility in defining con-

trol specifications. For example, they can be a function of

time, of past performance and/or of current system composi-

tion. For example, in [15], the authors propose a framework

where the supervisor may choose to switch between a

number of control policies during runtime.

In limited-lookahead control, [8], the authors propose the

use of a function, fN
K , to specify which subset of the strings

in the limited-lookahead window are desirable and which

ones are not. In other words, given the legal language K,

and a string s, fN
K ◦ fN

L(G)(s) = (K/s|N , K/s|N).
Here we use a modified version of this function in order

to enable control strategies for DDES, e.g., as proposed in

[6]. The differences are the following:

4482

1) the history of event occurrences, the string s, is con-

sidered and

2) for each node (state) in the lookahead tree, the function

determines a desirability value, rather than a simple

dual evaluation (“legal” or “illegal”).

Thus, we have

fN
K ◦ fN

L(G)(s) = (fN
L(G)(s), v)

where v : Σ∗ → R is an evaluation of every prefix of the

strings in fN
L(G)(s). As noted in [6], the classical separation

of strings as “legal” or “illegal” can be accomplished simply

by returning one of two values as the evaluation of strings,

e.g., 0 and −∞.

With DDES-I, a controller may take advantage of addi-

tional information which is not normally available with other

models, i.e.:

• the identity of modules executing events,1

• the role (or type, class) of individual modules and

• the interactions of modules (in the composite indices of

events).

Examples of the kinds of specifications which can be ex-

pressed in terms of the above properties include

• The occupation of nurses must be fair, i.e., within a time

interval, there should not be a discrepancy larger than

one in the number of tasks a nurse has completed.

• Nurses should attend to the same patients, i.e., nurses

are assigned patients.

• All actors with the role “visitor” are informed about the

regulations on patient visits.

• All actors who have interacted with the patient with

instance index 7 must undergo a screening procedure.

It is important to note that, in contrast to classical su-

pervisory control and due to the nature of the dynamic

systems considered, a controller for DDES-I might not be

able to guarantee the achievement of the control goals under

all circumstances. For example, if all nurses walk out of a

hospital (i.e., all instances of the role “nurse” disappear from

the system), it might not be possible to avoid a deadlock.

However, static analysis and simulation runs of a given

emergency response protocol might give the insight needed

to modify the protocol so that undesired conditions could be

avoided.

V. CONCLUSIONS

In this work we described a type of compact DES model,

dynamic DES with instances, designed for use with time-

varying systems consisting of individual components with

shared behavior. The motivation for DDES-I comes from our

ongoing research in the area of emergency response proto-

cols, such as protocols for the control of infectious disease

outbreaks. An emergency situation may evolve unexpectedly

with time, however, the actors in such a scenario usually

have common, predefined roles. The DDES-I models support

the definition of synchronization patterns for a time-varying

1This information is not available in aggregating models such as Petri
nets and vector DES.

number of modules and, together with online control, the use

of dynamic specifications. Modelling can be done naturally

and in a compact form.

Future work can focus on a number of aspects which are

not addressed fully in the proposed model. These include: a

formal framework for the definition of control specifications

which takes advantage of the information available with

DDES-I, the development of synchronization patterns which

depend on past instances of synchronization, and investigat-

ing if it is possible to incorporate some of the ideas of multi-

agent product, [13], within DDES-I.

VI. ACKNOWLEDGMENTS

We would like to thank Emergency Management Ontario,

Frontenac County (Ontario), City of Kingston (Ontario) and

the Kingston, Frontenac and Lennox & Addington Public

Health Unit for all the help during our investigation of

emergency management. Input from our colleagues at our

research laboratory also helped in shaping this paper. This

work was supported by a grant from NSERC, Canada.

REFERENCES

[1] L. Grigorov, B. E. Butler, J. E. R. Cury, and K. Rudie, “Conceptual de-
sign of discrete-event systems using templates,” To appear in Journal

of Discrete-Event Dynamic Systems, 2011.
[2] T. Brunsch and K. Rudie, “Discrete-event systems model of an

outbreak response,” in Proceedings of the 2008 American Control

Conference, Seattle, WA, USA, June 2008, pp. 1709–1714.
[3] S.-J. Whittaker, K. Rudie, J. McLellan, and S. Haar, “Choice-point

nets: a discrete-event modelling technique for analyzing health care
protocols,” in Proceedings of the 47th Annual Allerton Conference on

Communication, Control and Computing, Monticello, IL, USA, 2009,
pp. 652–659.

[4] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event

Systems Using Petri Nets. Kluwer Academic Publishers, 1998.
[5] Y. Li and W. M. Wonham, “Control of vector discrete-event systems

I—the base model,” IEEE Transactions on Automatic Control, vol. 38,
no. 8, pp. 1214–1227, 1993.

[6] L. Grigorov and K. Rudie, “Near-optimal online control of dynamic
discrete-event systems,” Journal of Discrete-Event Dynamic Systems,
vol. 16, no. 4, pp. 419–449, 2006.

[7] W. M. Wonham, “Supervisory control of discrete-event systems,”
Available at http://www.control.toronto.edu/DES/, June 2008.

[8] S.-L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
supervisory control of discrete event systems,” IEEE Transactions on

Automatic Control, vol. 37, no. 12, pp. 1921–1935, 1992.
[9] E. D. Gunes and H. Yaman, “Modeling change in a health system:

Implications on patient flows and resource allocations,” Clinical and

Investigative Medicine, vol. 28, no. 6, pp. 331–333, 2005.
[10] A Guide to the Control of Respiratory Infection Outbreaks in Long-

Term Care Homes, Public Health Division and Long-Term Care
Homes Branch, Ministry of Health and Long-Term Care, Ontario,
October 2004.

[11] R. Kumar and M. Heymann, “Masked prioritized synchronization for
interaction and control of discrete event systems,” IEEE Transactions

on Automatic Control, vol. 45, no. 11, pp. 1970–1982, 2000.
[12] V. Chandra, Z. Hunag, W. Qui, and R. Kumar, “Prioritized composition

with exclusion and generation for the interaction and control of
discrete event systems,” Mathematical and Computer Modeling of

Dynamical Systems, vol. 9, no. 3, pp. 255–280, 2003.
[13] I. Romanovski and P. E. Caines, “On the supervisory control of multi-

agent product systems,” in Proceedings of the 41st IEEE Conference

On Decision and Control, Las Vegas, NV, USA, December 2002, pp.
1181–1186.

[14] K. Jensen and L. M. Kristensen, Coloured Petri Nets. Springer, 2009.
[15] C. Winacott and K. Rudie, “Limited lookahead supervisory control of

probabilistic discrete-event systems,” in Proceedings of the 47th An-

nual Allerton Conference on Communication, Control and Computing,
Monticello, IL, USA, 2009, pp. 660–667.

4483

