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Abstract— This paper presents a criterion to characterize
control invariant polytopes for differential inclusion systems.
The practice-oriented method, based on viability theory and
convex analysis, can be applied to determine computational
procedures to obtain families of control invariant polytopes.
The criterion is based on a necessary and sufficient condition

for viability to hold at any point on the boundary of a polytope.

I. INTRODUCTION

The importance of invariance in control and systems

analysis has been increasing since the first results on the

topic, see the pioneering work [5]. Currently, well established

results are available, mainly for linear systems, [15], [18], but

also for nonlinear systems [1], [10], [14], see the monograph

on invariance [7]. The problem of characterization and com-

putation of invariant sets for particular classes of continuous-

time nonlinear systems has been tackled in [12], [16], [17],

mostly using LMI related approaches. The attention devoted

to invariance is strongly due to its tight relation with many

basic topics in control and systems analysis, such as stability,

domain of attraction estimation and hard constraints satis-

faction, among others. On the other hand, few computation-

oriented results are available for generic nonlinear systems.

Viability theory, considered from the control point of view,

concerns systems whose dynamics are given by a differential

inclusion. Roughly speaking, they are systems for which

the variation (or the successor, for discrete-time systems)

of a state is a set rather than a point in the state space.

Viability theory provides mathematical tools to characterize

conditions for a set to be robust or control invariant for

the system. Viability has been mainly developed by Aubin

and co-authors, see [2]–[4], and applies to very general

families of sets. See also [9], which proposes methods

to construct viability kernels for multi-input single-ouput

nonlinear systems affine in the control.

The main objective of this paper is to provide a char-

acterization of control invariance and contractiveness of

polytopes for differential inclusion systems. As common

modeling frameworks, like uncertain systems or constrained

controlled ones, can be cast in terms of differential inclusion
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systems, the proposed approach applies to a wide class of

systems. Differential inclusion can also be used to approx-

imate nonlinear systems. In this paper, we focus on linear

systems with state-dependent bounds on the input, which

are intrinsically nonlinear. It has to be stressed that, while

ellipsoidal invariant sets are more common in the context

of nonlinear continuous-time systems, results in literature

involving polytopes concern mainly linear systems, see [11],

[13]. The aim is to apply analytical tools proper of viability

theory and convex analysis, see [6], [8], [19], [20], to

determine a computation-oriented criterion for characterizing

polytopic control invariant sets for constrained continuous-

time linear systems. Restricting our attention to polytopes,

rather than to the generic sets dealt with in viability theory,

allows us to use properties of convex analysis, which lead to

tractable problems and more practical solutions. The price to

pay is the introduction of a certain conservativeness.

The paper is organized as follows: Section II presents the

problem statement, Section III recalls some definitions and

results on viability theory. In Section IV the main results

on control invariance of a polytope are stated. In Section V

the presented method is applied to numerical examples. The

paper ends with a section of conclusions.

Notation

Given n ∈ N, define Nn = {x ∈ N : 1 ≤ x ≤ n}. Given A ∈
R

n×m, Ai with i ∈ Nn denotes its i-th row. Operators ≤,≥,<

and > are intended to apply element-wise to vectors a, b ∈
R

n. Given two sets D and E and a nonnegative scalar α ≥ 0,

denote the set αD = {αx : x ∈ D}, and the Minkowski set

addition is D⊕E = {x = d + e : d ∈ D,e ∈ E}. The interior

of D is denoted as int(D), its boundary is ∂D. With S (D)
we denote the set of subsets of D. Given a set valued map F :

R
n →S (Rm), its domain is dom(F) = {x ∈ R

n : F(x) 6= /0}
and its graph is graph(F) = {(x,y) ∈ R

n ×R
m : y ∈ F(x)}.

II. PROBLEM STATEMENT

Consider the continuous-time system given by:

ẋ(t) ∈ F(x(t)), (1)

where x(t) ∈ R
n is the state at time t, and with F : R

n →
S (Rn), set valued map. Notice that this modeling frame-

work, which is referred to as differential inclusion, encloses

common systems such as uncertain systems and controlled

ones. In fact, the solutions of the uncertain system ẋ(t) =
f (x(t),w(t)), where w(t) ∈W (x(t)) is the uncertainty (or the

parameter) with W (x) ⊆ R
n, are those of (1) with

F(x) = f (x,W (x)) = {y ∈ R
n : y = f (x,w), w ∈W (x)}.
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Analogously, the trajectories of the controlled system ẋ(t) =
f (x(t),u(t)), with bounds on the input u(t) ∈U(x(t)) ⊆ R

m,

are those of system (1) with

F(x) = f (x,U(x)) = {y ∈ R
n : y = f (x,u), u ∈U(x)}.

Moreover, differential inclusion can be used to approximate

the evolutions of a nonlinear system ẋ(t) = f (x(t)), provided

that f (x) ∈ F(x) for all x ∈ R
n.

The objective of this work is to design a computation-

oriented method for obtaining polytopic control invariant sets

for a controlled system with state-dependent bounds on the

input. This means, as formalized below, that our aim is the

characterization and computation of a (family of) set K ⊆R
n

such that, for all x(0) = x0 ∈ K, there exists an admissible

control signal u(t) ∈ U(x(t)) which permits to maintain the

state x(t), solution of (1), in K for t ≥ 0.

III. VIABILITY THEORY

We recall here some general definitions and results on

viability theory, which is strongly associated to the research

of Aubin and co-authors, see [2]–[4]. Many of those results

are developed in the cited works, and references therein,

under assumptions which are more general than those re-

quired in this paper. Since we are interested in characterizing

and computing polytopic control invariant sets, we give the

definitions and the properties for the case under analysis.

Definition 1 (Viability properties [3]): Consider the set

K ⊆ dom(F). A function x(·) from [0,T ] to R
n, solution of

(1), is called viable if x(t) ∈ K for all [0,T ]. We say that K

enjoys the local viability property or control invariance (for

the set valued map F) if, for any initial state x0 in K, there

exist T > 0 and a viable solution on [0,T ] to differential

inclusion (1). It enjoys the global viability property (or,

simply, the viability property) if we can take T = +∞.

Many of the results provided in the context of viability

theory analysis are valid for generic nonempty sets K in the

state space. An important tool on which those results are

based is the contingent cone of set K at x ∈ K, denoted as

TK(x), see [3]. When K is closed and convex, the contingent

cone is equal to the closure of the tangent cone.

Theorem 1 (Tangent cones of closed, convex subsets [3]):

For K ⊆ R
n, closed and convex, its contingent cone TK(x)

coincides with the closure of the tangent cone, given by

Ck(x) =
⋃

h>0

K − x

h
,

that is the closed cone spanned by K − x.

Then, for convex, closed set K, we have that TK(x) =
CK(x), which are closed and convex cones. Notice that the

tangent cone of a closed, convex set K is R
n at any point x ∈

int(K). Hence, the definition of viability domain, involving

the contingent cone in the general case, can be given directly

in terms of the tangent cone for closed convex sets.

Definition 2 (Viability domain [3]): Let F : R
n →S (Rn)

be a nontrivial set valued map. A closed, convex set K ⊆
dom(F) is a viability domain of F if and only if

∀x ∈ K, F(x)∩CK(x) 6= /0. (2)

Also some assumptions on the set valued map F(·) have

to be imposed in order to apply the Viability Theorem. A

set valued map F : R
n → S (Rn) fulfilling such assumptions

is defined as Marchaud map, which amounts to say that

its graph and its domain are closed, the values of F(·)
are convex, and the growth of F(·) is linear, see [3]. Such

preliminaries are useful since it has been proved that any

closed, convex viability domain K for system (1) with F(·)
Marchaud map enjoys the viability property.

Theorem 2 (Viability theorem [3]): Consider a Marchaud

map F : R
n → S (Rn) and a closed, convex K ⊆ dom(F). If

K is a viability domain, then for any state x0 ∈K, there exists

a viable solution on [0,+∞) to the differential inclusion (1).

This means that, for every initial condition in K, closed

and convex, there exists a trajectory of system (1) which

remains in K at any time t ∈ [0,+∞), if there exists a ”direc-

tion” belonging to the map F(x(t)) and to the tangent cone

of K at x(t), see Figure 1. In this case, in fact, considering

such direction at any time, the trajectory would always head

towards the interior of set K (or on the boundary).

CK(x)

F(x)

K

Fig. 1. Viability condition.

IV. POLYTOPIC CONTROL INVARIANT SETS

The results presented in this section, representing the main

contributions of that paper, provide a computation-oriented

characterization of control invariance for polytopes.

Consider a polytope in the state space containing the origin

in its interior, Ω = {x ∈ R
n : Hx ≤ 1}, with H ∈ R

nh×n, and

the linear controlled system

ẋ(t) = Ax(t)+ Bu(t), (3)

with u(t) ∈ U(x(t)) control input. The input bounding set

U(x(t))⊆R
m is assumed to be the state-dependent polytope

U(x) = {u ∈ R
m : Lu ≤ P(x)}, (4)

with L ∈ R
nu×m and P : R

n → R
nu , and such that F(x) =

Ax⊕BU(x) is Marchaud. Notice that if U(x) is Marchaud

then F(x) = Ax⊕BU(x) is Marchaud too, see [3].

Remark 1: No loss of generality is induced by considering

system (3)-(4) in spite of (1). In fact, given F(x) determining

(1), Marchaud and with F(x) polytopic, for any A∈R
n×n and

1219



defining B = In and U(x) = (−Ax)⊕ F(x), the differential

inclusion (1) can be written in terms of (3).

The Minkowski function is introduced here, see [7] and

references therein for some properties.

Definition 3: Given a compact, convex set K ∈ R
n with

0 ∈ int(K), the Minkowski function of K at x ⊆ R
n is

ΨK(x) = min
α≥0

{α ∈ R : x ∈ αK}.

In the case of a polytopic set Ω containing the origin in

its interior, the Minkowski function is given by

ΨΩ(x) = min
α≥0

{α ∈ R : H jx ≤ α,∀ j ∈ Nnh
} = max

j∈Nnh

{H jx}.

The objective is to determine a condition for the level sets of

the Minkowski function to be control invariant sets, within

a region Γ ⊆ R
n. To achieve the purpose, it is sufficient to

prove that there exists u(x) ∈ U(x) such that Ψ̇Ω(x) ≤ 0,

for all x ∈ Γ, since it implies that ΨΩ(x) is a nonincreasing

function and since αΩ ⊆ β Ω if and only if α ≤ β . In

what follows we provide conditions, based on the concept

of viability, to ensure Ψ̇Ω(x) ≤ 0, which implies that the

level sets of ΨΩ(·) are control invariant sets for system (3)

with constrained input. Furthermore, we aim at determining

the greatest region in the state space where such conditions

are satisfied and then stability can be ensured by a proper

selection of the control input.

Condition Ψ̇Ω(x)≤ 0 is equivalent to prove that, for every

x ∈ Γ, there exists a u(x) ∈U(x) such that (Ax+Bu(x)) lies

within the tangent cone of the level set of function ΨΩ(·).
Then, denoted Ω(x) = ΨΩ(x)Ω, the viability condition (2) is

∀x ∈ Γ, (Ax⊕BU(x))∩CΩ(x)(x) 6= /0. (5)

Notice that Ω(x) is the smallest level set of ΨΩ(·) containing

x. The tangent cone of Ω(x) at x (which lies on the boundary

of Ω(x), by construction) is given by

CΩ(x)(x) = {v ∈ R
n : Hkv ≤ 0, ∀k ∈ arg max

j∈Nnh

{H jx}}.

Hence, suppose that the state x is known and denote with k =
k(x) ∈ Nnh

an index such that H jx ≤ Hkx for all j ∈ Nnh
, that

is, such that Hkx = ΨΩ(x). This is equivalent to k ∈ kΩ(x),
where kΩ(x) ⊆ Nnh

is defined as

kΩ(x) = arg max
j∈Nnh

{H jx}. (6)

Given k ∈ Nnh
define

Rk = {x ∈ R
n : Hix ≤ Hkx, ∀i ∈ Nnh

}, (7)

that is, the region of points x ∈ R
n such that k ∈ kΩ(x).

Notice that regions Rk, with k ∈ Nnh
, can have nonempty

intersections. The viability condition (5) is satisfied at x if

there exists u = u(x) ∈U(x) such that

HkAx + HkBu ≤ 0, (8)

for all k ∈ kΩ(x). For every k ∈ Nnh
and any x ∈ Rk, as in

(7), we define an optimization problem as follows.

Definition 4 (Primal problem): Consider the system (3)

with input bounds (4). Given k ∈ Nnh
and x ∈ Rk, consider

the following optimization problem:

α∗
k (x) = min

α , u
α,

s.t. Hix ≤ α, ∀i ∈ Nnh
,

τ(HkAx + HkBu)+ (Hkx−α)≤ 0,

L ju ≤ Pj(x), ∀ j ∈ Nnu ,

α ≥ 0,

(9)

with τ > 0.

Remark 2: There is no direct connection between the

second inequality in (9) and the Euler Approximating System

(EAS), which is a discrete-time system often used in spite

of the continuous-time one for computational purposes, see

[7]. The inequality has a geometrical meaning, it is valid for

every positive τ and, most importantly, it does not introduce

any approximation error. In fact, the condition for viability

based on (9) is necessary and sufficient, as illustrated below.

A computation-oriented condition for the viability to be

satisfied at a point x ∈R
n stems from the following property.

Proposition 1: Given k ∈ Nnh
and x ∈ Rk, the optimal

solution α∗
k (x) of the primal problem (9), is such that

ΨΩ(x) = α∗
k (x) if and only if there exists u ∈U(x) such that

condition (8) holds at x. Furthermore, ΨΩ(x) < α∗
k (x) if and

only if condition (8) is not satisfied at x for any u ∈U(x).

Proof: First notice that k ∈ kΩ(x) since x ∈ Rk. Suppose

that condition (8) holds for a proper u ∈ U(x). Then the

second constraint in (9) is satisfied by the value α = ΨΩ(x)=
Hkx and the first set of constraints are fulfilled, by definition

of Minkowski function. On the other hand if the optimal

value of problem (9) is given by the Minkowski function

at x, i.e. α∗
k (x) = ΨΩ(x), then the first set of constraints

are satisfied by definition, in fact Hix ≤ max j∈Nnh
{H jx} =

ΨΩ(x) = α , for all i ∈ Nnh
. Moreover, from (6), it follows

that Hkx = α and then the second constraint in (9) becomes

the condition (8). Hence, we can conclude that the solution

α∗
k (x) is equal to the Minkowski function at x if and only if

the condition (8) is satisfied at x.

Furthermore it is easy to see that ΨΩ(x) ≤ α∗
k (x). In

fact, the value of the Minkowski function at x would be

attained by removing the second constraint (if the set U(x)
is nonempty, clearly), that means, it would be the optimal

over a greater feasibility region, and then a smaller or equal

value should be obtained. Hence it can be concluded that

the optimal solution of the optimization problem is equal to

the Minkowski function at x if and only if condition (8) is

satisfied at x. This implies that the optimal value is greater

than ΨΩ(x) if and only if (8) is not fulfilled at x.

In what follows, we are going to use the Lagrange multi-

pliers and the dual optimization problem to pose geometric

conditions for a region of the state space to be a control

invariant set. First, it is worth recalling that for the case

under analysis strong duality holds if the primal is feasible,

being (9) a linear problem in the optimization variables α
and u, see [6], [8].

Applying classical results from duality for convex opti-
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mization problems and defining the function

Lk(β ,δ ,σ ;x) =
nh

∑
i=1

βiHix + δτHkAx + δHkx−
nu

∑
j=1

σ jPj(x),

we obtain the dual problem:

L∗
k(x) = max

β ,δ ,σ
Lk(β ,δ ,σ ;x),

s.t.
nh

∑
i=1

βi + δ ≤ 1,

δτHkB +
nu

∑
j=1

σ jL j = 0,

β ≥ 0, δ ≥ 0, σ ≥ 0,

(10)

whose optimal value is such that Lk(β ,δ ,σ ;x)≤ L∗
k(x) for all

feasible (β ,δ ,σ), clearly. Hence L∗
k(x) is the maximal lower

bound of α∗
k (x) and, from strong duality, L∗

k(x) = α∗
k (x).

Then, Lk(β ,δ ,σ ;x)≤α∗
k (x) for any feasible solution of (10).

Proposition 2: A necessary and sufficient condition for

inequality (8) to be satisfied at x ∈ Rk is

L∗
k(x) ≤ Hkx, (11)

or, equivalently Lk(β ,δ ,σ ;x) ≤ Hkx for every feasible solu-

tion (β ,δ ,σ) of (10). Furthermore, condition (8) is violated

at x ∈ Rk if and only if

L∗
k(x) > Hkx, (12)

or, equivalently, if there exists a feasible solution (β ,δ ,σ)
of (10) such that Lk(β ,δ ,σ ;x) > Hkx.

Proof: Recall that ΨΩ(x)≤α∗
k (x) and that ΨΩ(x) < α∗

k (x)
if and only if (8) does not hold at x ∈ Rk. Then (8) holds

at x if and only if Hkx = ΨΩ(x) = L∗
k(x) = α∗

k (x), which

is implied by (11). Analogously, it can be proved that (12)

entails that α∗
k (x) > ΨΩ(x) and then, as previously shown,

violation of condition (8).

Posing the condition for viability as in (11), rather than

by means of an equality constraint, permits to obtain convex

optimization problems under adequate assumptions on U(x).
Consider now the dual problem (10). Given k ∈ Nnh

and

x ∈ Rk, the problem is the maximization of a linear function

over a polyhedral set in the space of variables β , δ and σ .

In general case, the maximum is attained at some extreme

point or the problem is unbounded. Since the primal optimum

exists and is bounded, the analysis can be reduced to the

extreme points of the feasibility region of the dual problem.

Property 1: The optimal value of the dual problem (10)

is attained at an extreme point of the feasibility region.

Proof: Since the origin is an extreme point of the fea-

sibility region of the dual problem (10), which is bounded

above by the primal optimal value, the result is implied by

Fundamental Theorem of Linear Programming, see [6].

It is important to stress the fact that the feasibility region

of the dual problem does not depend on the value of x but

only on Hk (and on the structure of the system, clearly). Then

the dual problem feasibility set is valid for every x ∈ Rk and

its extreme points can be precomputed knowing Hk only.

Proposition 3: Given k ∈ Nnh
, denote with (β p,δ p,σ p)

the p-th extreme point of the feasibility region of the dual

problem (10), with p ∈ Nnv . The subset of Rk, defined in

(7), such that the condition (8) is satisfied at x ∈ Rk by a

u(x) ∈U(x) is given by

Vk =
⋂

p∈Nnv

{x ∈ R
n : Lk(β

p
,δ p

,σ p;x) ≤ Hkx}. (13)

Furthermore, the region of points x ∈ Rk for which the

condition (8) is violated for every u ∈U(x) is

V̄k =
⋃

p∈Nnv

{x ∈ R
n : Lk(β

p
,δ p

,σ p;x) > Hkx}. (14)

Proof: From Property 1 we have that, for every x ∈ Rk,

there exists a p∗ = p∗(x) ∈ Nnv such that

Lk(β ,δ ,σ ;x) ≤ Lk(β
p∗

,δ p∗
,σ p∗ ;x) = L∗

k(x),

for any feasible (β ,δ ,σ). From this and Proposition 2

the first claim follows. Analogous considerations prove the

second claim.

It is worth stressing that Vk, given by the intersection of

subsets of the state space, is the exact region of all x ∈ Rk

where condition (8) is satisfied for an adequate u(x) ∈U(x).
The only optimization problem to solve for characterizing

Vk concerns the computation of the extremes of the dual

problem, neither the computation of u(x) is required.

Remark 3: Notice that Vk is the set of points in Rk for

which condition (8) is satisfied by a u = u(x) ∈ U(x), for a

particular k ∈ kΩ(x). This is equivalent to the condition of

viability for all x∈ int(Rk), that is if kΩ(x) = {k}. Viability, in

fact, should concern a condition on u ∈U(x) involving every

k ∈ kΩ(x). Intriguing phenomena (as Zeno solutions, for

instance) could occur at x ∈ ∂Rk, with k ∈ Nnh
, and deserve

more accurate considerations. The analysis of such boundary

phenomena is one the objective of our future research.

From the computational point of view, it is important

to notice that if Pj(x) is concave in x for all j ∈ Nnu ,

the functions Lk(β
p
,δ p

,σ p;x) are convex and then Vk is

a convex set. Analogously, if Pj(x) is convex in x for all

j ∈ Nnu , then the Lk(β
p,δ p,σ p;x) is a concave function and

V̄k is a union of convex sets. The analysis of the different nh

regions Rk, one for any Hk with k ∈ Nnh
, permits to obtain

a polytopic viable domain.

V. ILLUSTRATIVE EXAMPLES

Example 1: Consider the linear system (3) with matrices

A =

[

0 −1

1 0

]

, B =

[

1 0

0 1

]

, (15)

and constraints on the input is U(x) =U = {u∈R
2 : ‖u‖∞ ≤

1}. The trajectories in absence of control are given by the

circumferences of the circles centered in the origin. It is,

then, immediate to check that any circle in the state space

is a viable set for the dynamic system. On the other hand,

our aim here is to use this simple explanatory example to

illustrate how the proposed results can be used for computing

a family of control invariant sets and a region where viability

condition holds for Ω(x).
Consider the set Ω = {x ∈ R

2 : ‖x‖1 ≤ 1}. The objective

is to compute the maximum γ ≥ 0 such that µΩ are a
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21

a

Fig. 2. Autonomous directions on the boundary of γΩ in R1.

control invariant polytopes for every µ such that 0 ≤ µ ≤ γ .

Considering Hk = [1 1], the region under analysis is the first

quadrant, i.e. Rk = {x ∈R
2 : x ≥ 0}. By geometric inspection

it can be noticed that the ”critical” point in Rk for viability

of γΩ is x = [γ 0]T , see Figure 2. Actually, moving x along

the facet of γΩ from [γ 0]T to [0 γ]T , the direction of the

autonomous system, i.e. Ax, is such that HkAx decreases,

becoming negative from x = [0.5γ 0.5γ]T . Notice that if

HkAx ≤ 0 then viability condition holds at x simply posing

u = [0 0]T . By geometric inspection it can also be concluded

that the maximal γk for which γkΩ satisfies the viability

condition in the region Rk is γk = 2, see Figure 3. We expect

to recover the same value applying the presented results.

21 3

Ax

Ax

Ax⊕U

Ax⊕U

Fig. 3. Sets γΩ and system dynamics.

The dual problem feasibility region for the case under

analysis is given by the following constraints:






















δτ + σ1 −σ3 = 0,

δτ + σ2 −σ4 = 0,
nh

∑
i=1

βi + δ ≤ 1,

β ≥ 0, δ ≥ 0, σ ≥ 0.

Notice that, for any possible value of δ , there exist admissi-

ble values of σ such that the linear equality constraints hold.

The first constraint, for instance, is satisfied by every pair of

values σ3 ≥ 0 and σ1 ≥ 0 such that their difference is equal to

δτ . The extreme values of β and δ are given by the extreme

points of the region, in their subspace, contained between the

simplex and the origin. Then the extreme values of δ are 0 or

1. For δ = 0 we have that σ is such that σ1 = σ3 and σ2 = σ4,

and then the extremes are σ1 = σ3 = 0 or σ1 = σ3 = +∞
and σ2 = σ4 = 0 or σ2 = σ4 = +∞. The infinite values can

be discarded, since the related function Lk(β ,δ ,σ ;x) would

be equal to −∞, then leading to trivial inequalities in the

definition of Vk and V̄k, (see (13) and (14)). Then the only

interesting extremes are given by σi = 0, for i ∈ N4. The

other possibility is δ = 1 and then the finite extreme value

of σ is σ = [0 0 τ τ]T . Thus the finite extreme values of the

dual problem feasibility region are

(β 1, δ 1, σ1) =
[

1 0 0 0 0 0 0 0 0
]T

,

(β 2, δ 2, σ2) =
[

0 1 0 0 0 0 0 0 0
]T

,

(β 3, δ 3, σ3) =
[

0 0 1 0 0 0 0 0 0
]T

,

(β 4
, δ 4

, σ4) =
[

0 0 0 1 0 0 0 0 0
]T

,

(β 5, δ 5, σ5) =
[

0 0 0 0 1 0 0 τ τ
]T

,

(β 6, δ 6, σ6) =
[

0 0 0 0 0 0 0 0 0
]T

.

The resulting set of (nontrivial) constraints determining x ∈
Rk such that the viability condition holds for Ω(x) are































Lk(β
1
,δ 1

,σ1;x) = [1 1]x ≤ [1 1]x,
Lk(β

2,δ 2,σ2;x) = [1 −1]x ≤ [1 1]x,
Lk(β

3,δ 3,σ3;x) = [−1 1]x ≤ [1 1]x,
Lk(β

4,δ 4,σ4;x) = [−1 −1]x ≤ [1 1]x,
Lk(β

5,δ 5,σ5;x) = [1 1]x + τ[1 −1]x−2τ ≤ [1 1]x,
Lk(β

6,δ 6,σ6;x) = 0 ≤ [1 1]x,

and then














x2 ≥ 0,

x1 ≥ 0,

[−1 −1]x ≤ 0,

[1 −1]x ≤ 2.

(16)

The region Vk, and the half-spaces that determine it as in

(16), are depicted in Figure 4. The shadowed regions are

those points in the state space that violate constraints (16),

and then the white portion of the space represents Vk. Thus,

the maximal γk such that γkΩ satisfies the viability condition

in Rk is 2, as expected. From symmetry, analogous results

are obtained for every Ri, with i ∈ N4, and the resulting γ ,

obtained as the minimal γi, is 2. It is important to stress that

no extreme point computation for Ω is required, the half-

space representation of the polytope is sufficient.

Fig. 4. Viability region in Rk.
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Example 2: We consider now the same continuous-time

dynamic system (15), with state-dependent bounds on the

control input, that is U(x) = {u ∈ R
2 : Lu ≤ P(x)} with

L =









1 0

0 1

−1 0

0 −1









, P =









−x2
1 + 16

−x2
2 + 9

−x2
1 + 9

−x2
2 + 4









.

Thus, the bounds on the input are boxes whose extreme

values dependent on the state. Notice that the bounds are

tighter as the state is further from the origin. We have

to expect, then, that viability condition is satisfied in a

region around the origin. Moreover, since Pj(·) are concave

in x, then functions Lk(β ,δ ,σ ; ·) are convex and then the

viable region Vk is also convex, being the intersection of

convex sets. Functions Lk(β
p
,δ p

,σ p;x) are the same as in

the previous example for all p 6= 5. For p = 5 the convex

constraint results in:

[1 1]x + τ[1 −1]x− τ(−x2
1− x2

2 + 13)≤ [1 1]x,
⇔ x2

1 + x2
2 + x1 − x2 −13 ≤ 0.

(17)

Constraints and the region Vk are depicted in Figure 5.

Fig. 5. Viability region in Rk.

The points where the circumference of (17) intersects the

axis are [3.14 0]T , [−4.14 0]T , [0 3.14]T and [0 − 4.14]T .

The result can be checked from a geometric point of view.

In fact, consider the point x̂ = [3.14 0]T and the set valued

map at this point. The input bounding set at x̂ is given by

U(x̂) = {u ∈ R
2 : 0.86 ≤ u1 ≤ 25.86, −4 ≤ u2 ≤ 9}

and Ax̂ = [0 3.14]T . Then the vector v(x̂) = [0.86 − 4]T is

admissible, i.e. v(x̂) ∈U(x̂), and Ax̂+v(x̂) lies in the tangent

cone of Ω(x̂) = 3.14Ω at x̂, as depicted in Figure 6.

VI. CONCLUSIONS

The paper presented a method to characterize control

invariance of polytopes for differential inclusion systems.

Properties related to viability theory and to convex sets

and functions have been used to propose a practice-oriented

method for analysis and computation of control invariant

polytopes. Several problems and possible directions of fur-

ther research are open, such as the analysis of border

phenomena like Zeno solutions, the characterization of poly-

hedral Lyapunov functions and the problem of control design.

Fig. 6. Critical point of viability region in R1.

REFERENCES

[1] T. Alamo, A. Cepeda, M. Fiacchini, and E. F. Camacho. Convex
invariant sets for discrete–time Lur’e systems. Automatica, 45:1066–
1071, 2009.

[2] J.-P. Aubin. A survey of viability theory. SIAM Journal of Control

and Optimization, 28(4):749–788, 1990.
[3] J.-P. Aubin. Viability theory. Birkhäuser, 1991.
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