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Abstract— A new approach to design PI controllers for time-
delay systems is presented. A time-delay can limit and degrade
the achievable performance of the controlled system, and even
induce instability. This paper presents a new method, based
on the Lambert W function [20], for design of PI feedback
controllers as an alternative to the well-known Smith predictor.
PI controllers for first-order plants with time-delays are de-
signed by obtaining the rightmost (i.e., dominant) eigenvalues in
the infinite eigenspectrum of time-delay systems, and assigning
them to desired positions in the complex plane. The process is
possible due to a novel property of the Lambert W function.
Using the controllers designed by using the presented approach,
system performance can be improved as well as successfully
stabilized. Also, sensitivity analysis of the rightmost eigenvalues
is conducted to show that robustness compares favorably to the
Smith predictor.

I. INTRODUCTION

Time-delay systems (TDS), where time-delays exist be-

tween the applications of input to the system and their

resulting effect, can be represented by delay differential

equations (DDEs) [10]. The principal difficulty in studying

DDEs results from the fact that the time-delay terms in

DDEs always lead to an infinite spectrum of eigenvalues.

Recently, based on the analytical solution to systems of

DDEs in terms of the Lambert W function, an approach to

control systems of DDEs has been developed [20]. Using

the Lambert W function-based approach, for a given time-

delay system, the free and forced solution is derived in terms

of system parameters. From the solution, the stability of the

system is determined [16], and controllability/observability is

analyzed [17]. Linear feedback controllers are then designed

via eigenvalue assignment to stabilize unstable systems [18],

to achieve robust stability, and/or to meet time-domain

specifications [19]. For a system of ordinary differential

equations (ODEs), which is delay-free, this serial process

would be standard. However, time-delay systems have an

infinite eigenspectrum, and such a process has not been previ-

ously feasible. By obtaining and assigning the rightmost (i.e.,

dominant) eigenvalues in the infinite eigenspectrum, time-

delay systems can be analyzed and controlled systematically

using the Lambert W function.

In this paper, we make use of the Lambert W function-

based approach to design PI controllers for time-delay sys-

tems. Many controllers in industrial processes only have
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PI action [12] and such controllers are widely used, for

example, in automotive controllers [21]. Using the Lambert

W function, PI controllers are designed by assigning the

rightmost eigenvalues to desired positions in the complex

plane. The designed controller can improve performance

as well as successfully stabilize unstable systems. Also,

sensitivity of the rightmost eigenvalue with respect to system

parameters (including delays) is studied analytically, and via

this analysis the robustness of the controller is shown to

compare favorably to Smith predictor-based controllers.

II. PI CONTROL FOR SYSTEMS WITH

TIME-DELAYS

A first-order plant with a pure time-delay is commonly

described by

G(s) = GP (s)e
−sh =

KM

τMs+ 1
e−sh (1)

where τM is the time constant, h is the time-delay, and KM

represents the steady state gain.

Consider a proportional-plus integral controller:

GS = K̄P +
K̄I

s
(2)

A primary goal of this paper is to choose the gains, K̄P

and K̄I , such that a stable closed-loop system with desirable

performance is obtained. Barred variables ( ·̄ ) denote gains

selected by using the Smith predictor to distinguish them

from gains selected by using the Lambert W function. It

has been shown that PI controllers are sufficient for all

systems that have first-order transfer functions [1], and used

for numerous industrial processes [12]. However, it has been

well-known that the longer the time-delay, the more difficult

it is to stabilize the system. Moreover, the delay term in the

closed-loop characteristic equation complicates the stability

analysis and the design of the controller to guarantee stability

[22].

The stability analysis for the system (1) with the controller

in Eq. (2) has been conducted using bifurcation methods

(see, e.g., [11] and the references therein). The gains in Eq.

(2) are chosen based on the stability regions in the K̄P -

K̄I space [12], often combined with the Nyquist method

[5]. Alternatively, such problems have been addressed by

using an observer based controller with a discrete model

[9], H∞ feedback control with a discrete event based model

to improve robustness to disturbances and modeling uncer-

tainties [6], the Smith predictor [8] and its adaptive version

[21], nonlinear adaptive controllers [14], and Padé approx-

imation approaches [4]. Among those, PI controllers with
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Fig. 1. Block diagrams for a closed-loop system with the Smith Predictor-based control (a), its equivalent system when the response of the plant is
predicted perfectly (b), and the closed-loop system with the Lambert W function-based control (c).

the Smith predictor successfully improved the performance

in simulation and experimental results, and was compared to

an experimental tuning method, the classical Ziegler-Nichols

method step response method, in [8].

A. Use of the Smith Predictor

The Smith predictor in Fig. 1-(a) results in a delayed

response of a delay-free system by moving the time-delay

outside the feedback loop only when the model in the

Smith predictor, ĜP (s), is ideally the same as the plant,

GP (s). Then, the controller GS(s) in (2) can be designed

considering only the delay-free plant, GP (s) (see Fig. 1-(b)).

This is the main advantage of the Smith predictor control.

For example, in order to meet given time domain specifica-

tions, the desired eigenvalues can be chosen from the desired

natural frequency, ωn, and the desired damping ratio, ζ as

λd = −ωnζ ± ωn

√

1− ζ2i = −σ ± ωdi (3)

Assuming no time-delay, K̄P and K̄I are chosen as

K̄I =
ω2
nτM
KM

, K̄P =
2ζωnτM − 1

KM

(4)

by substituting the desired values into the closed-loop char-

acteristic equation of the system in Fig. 1-(b):

s2 +

(
1 +KMK̄P

τM

)

s+
KK̄I

τM
= 0 (5)

This means that the controller, GS(s), can be designed

considering only the non-delayed part, ĜP (s), of the plant

ignoring the time-delay, e−sh. This method is, however,

based on pole-zero cancellation and, thus, the stability is

vulnerable to uncertainty in system parameters [2]. Careful

modeling and parameter identification are crucial for success-

ful application [3]. Furthermore, the Smith predictor cannot

handle disturbances and nonzero initial conditions. Problems

caused by parameter mismatches were studied in [15] and

shortcomings have been discussed in [22]. It is well known

that the stability of the controllers using the Smith predictor

is sensitive with respect to delay uncertainties [7]. This is

discussed more in detail in Section III.

B. Use of the Lambert W Function-Based Approach

In this subsection, as an alternative to the Smith predictor,

a design approach for the PI controller is developed via right-

most eigenvalue assignment using the Lambert W function.

The open-loop transfer function with a PI controller is

Gopen =
KM

τMs+ 1
e−sh

(

KP +
KI

s

)

=
y

e
(6)

where e = −y + r. Then, the closed-loop system as in Fig.

1-(c) in the time-domain becomes

ÿ = −
1

τM
ẏ −

KMKP

τM
ẏ(t− h)−

KMKI

τM
y(t− h)

+ {KMKP s+KMKI} r(t− h)
(7)

By defining x1 ≡ y, x2 ≡ ẏ, the equation can be re-written

as

ẋ1 = x2

ẋ2 = −
1

τM
x2 −

KMKP

τM
x2(t− h)−

KMKI

τM
x1(t− h)

+ {KMKP s+KMKI} r(t− h)
(8)

Then, we obtain the closed-loop system in state-space form

ignoring the reference input to focus on stability, which is
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given by:

ẋ(t) =




0 1

0 −
1

τM





︸ ︷︷ ︸

≡A

x(t)−





0 0
KMKI

τM

KMKP

τM





︸ ︷︷ ︸

≡Ad

x(t− h)

(9)

From the roots of the characteristic equation of the system

(9), the eigenvalues of the system are obtained. However, due

to the time-delay, e−sh, the system is infinite-dimensional

and, thus, there exists an infinite number of eigenvalues. The

principal difficulty in analyzing and controlling systems with

time-delays arises from this transcendental character, and

the determination of this eigenspectrum typically requires

numerical, approximate, or other approaches [10]. Obtaining

and controlling the entire infinite eigenspectrum is not as

straightforward as for systems of ODEs. Instead, for DDEs,

like Eq. (9), it is desired to locate the dominant eigenvalues,

which are rightmost in the complex plane, and to assign

them to desired positions. The Lambert W function-based

approach is an efficient tool for doing this and in the

subsequent section the approach is applied to the system (9)

to design the PI controller and compared with the Smith

predictor. With the coefficient matrices, A and Ad defined in

Eq. (9), the solution matrix, S0 is computed as

S0 =
1

h
W0(AdhQ0) + A (10)

where the unknown matrix Q0 is obtained by solving

W0(AdhQ0)e
W0(AdhQ

0
)+Ah = Adh (11)

Then after setting an equation so that the desired positions for

eigenvalues are equal to those of S0 as λi(S0) = λi,desired

for i = 1, · · · , n, where, λi(S0) is ith eigenvalue of the

matrix S0, the gains, KP and KI are obtained by solving

the equation numerically. For detailed explanation on the

Lambert W function-based approach, including a method

for eigenvalue assignment, refer to [20]. Desired positions

for rightmost eigenvalues, λi,desired in assigning them can

be chosen from the desired natural frequency and damping

ratio using the relation in Eq. (3).

III. ILLUSTRATIVE EXAMPLES AND

SENSITIVITY ANALYSIS

In this section, the Lambert W function-based approach is

applied to two different cases: an open-loop unstable plant

and an open-loop stable plant. The results are compared to

the Smith predictor-based approach with respect to stability

and robustness against mismatches of parameters.

A. Open-Loop Unstable Plants

If the system (1) is unstable, the characteristic equation of

the closed-loop system with the Smith predictor in Fig. 1-(a)

retains the spectrum of the unstable pole of the open-loop
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Fig. 2. Simulated responses of the unstable system (12) controlled with the
Smith predictor (dashed line) and the Lambert W function-based approach
(solid line) using Simulink. Because the Smith predictor is based on unstable
pole-zero cancelation, it fails to stabilize the system.

system. Therefore, the Smith predictor cannot stabilize the

system [2]. For example, for an unstable system

G(s) = GP (s)e
−sh =

1

0.5s− 0.2
e−0.2s (12)

the gains of the PI controller, using the approach in Subsec-

tion II-A, K̄I = 3.1250 and K̄P = 1.4500 when the desired

natural frequency is ωn = 2.5 and the desired damping ratio

is ζ = 0.5. With those gains one can assign the eigenvalues

of the system to be −1.2500 ± 2.1651i, which are stable,

theoretically. However, due to initial conditions, disturbance,

and errors in simulation, this control leads to instability as

seen in Fig. 2. Figure 2 shows responses simulated using

Simulink. Even though there is no disturbance or no initial

condition mismatch, due to errors in numerical integration,

the Smith predictor cannot successfully stabilize the unstable

plant (12).

On the other hand, if the Lambert W function-based

approach in the subsection II-B is applied, the gains are

KI = 1.4309 and KP = 1.2232 for the same desired

rightmost eigenvalues and because it stabilizes the system

without pole-zero cancellation, the designed controller safely

stabilizes the system (see Fig. 2). As mentioned earlier, the

recently developed prediction-based approach by modifying

the Smith predictor, FSA has also unsolved problems regard-

ing approximation and, thus, can fail to stabilize unstable

systems. It was shown that the Padé approximation does not

guarantee stability of controlled system due to its inaccuracy

[18]. Therefore, the Lambert W function has an advantage

over such methods in stabilizing unstable systems.

B. Open-Loop Stable Plants

When the time constant, τM , is 0.5, and the time delay,

h, is 0.2 with KM = 1 for the plant in Eq. (1), the gains

for PI control, for several desired natural frequencies and

damping ratios, are obtained by using the Smith predictor-

based approach and the Lambert W function-based approach,
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TABLE I

GAINS, KI AND KP , OF PI CONTROLLER: OBTAINED BY USING THE LAMBERT W FUNCTION APPROACH VIA RIGHTMOST EIGENVALUE ASSIGNMENT

Smith predictor (from Eq. (4)) Lambert W function

ωn ζ K̄I K̄P KI KP

1.0 0.3 0.5000 -0.7000 0.6214 -0.5143

1.1 0.5 0.6050 -0.4500 0.6884 -0.2439

1.5 0.5 1.1250 -0.2500 1.1751 0.0155

2.5 0.5 3.1250 0.2500 2.5629 0.6013
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−1.2500 ± 2.1651i

Fig. 3. Eigenspectrum of the closed-loop system in Fig. 1-(c). By
using the Lambert W function-based approach in the subsection II-B, the
rightmost eigenvalues of the infinite eigenspectrum are assigned to the
desired positions, −1.2500± 2.1651i.

and given in Table I. The Smith predictor moves the time-

delay outside the feedback loop as seen in Fig. 1-(b) and

makes the number of poles finite (in this case 2) by canceling

the other (infinite number of) eigenvalues. On the other

hand, the Lambert W function-based approach, without the

cancellation, obtains the rightmost eigenvalues and assigns

them to the desired positions. For example, when the desired

natural frequency ωn = 2.5 and the desired damping ratio

is ζ = 0.5 (thus, the desired positions for the rightmost

eigenvalues are −1.2500 ± 2.1651i), the eigenspectrum of

the closed-loop system is depicted in Fig. 3. The rightmost

eigenvalues are placed exactly on the desired positions,

which are obtained from Eq. (3), and others are to the left

of them. The response of the closed systems by using the

Smith predictor (Fig. 1-(a)) and the Lambert W function-

based approach are shown in Fig. 4. Although the systems in

Fig. 1-(c) has an infinite number of eigenvalues, by assigning

the rightmost (thus, dominant) eigenvalues to the desired

positions, one can meet time-domain specifications [19]. As

for robustness, if the system (1) is open-loop stable, the

Smith predictor works as desired and does not have apparent

mismatch problems unlike the example in Subsection III-

A. However, as seen in Fig. 1, the Lambert W function-

based controller has a form simpler than the Smith predictor-

based one. Also, for the Smith predictor-based control in

Fig. 1-(a), the feedback signal for the controller, GS(s), uses
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Fig. 4. Responses of systems controlled by using the Smith predictor and
the Lambert W function.

y·esh, which is the output, y, predicted one time-delay ahead.

Therefore, it is reasonable to consider sensitivity with respect

to mismatch of parameters, and compare the robustness of

the two different control methods. Sensitivity is discussed in

the next two subsequent subsections. In the literature, it has

been shown that estimation of time-delay in continuous linear

time-invariant systems is more difficult than other system

parameters [13]. Also, it is well known that control using the

Smith predictor is sensitive with respect to delay mismatches

[7]. Thus, the sensitivity analysis is focused on the time-

delay. However, the analysis for other parameters can be

conducted in a similar way and results are discussed.

C. Sensitivity of the Smith Predictor

In this subsection the sensitivity of the closed-loop eigen-

values to small variance in the time-delay, h, is considered

for the Smith predictor-based controller.

The transfer function of the closed-loop system with the

Smith predictor in Fig. 1-(a) can be represented as

y

r
=

GSGP e
−sh

1 +
(

1− e−sĥ

)

GSĜP +GSGP e−sh
(13)

Assuming all parameters except the time delay are well-
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matched, i.e., ĜP = GP , the denominator will be

DE(s) ≡ 1 +
(

1− e−sĥ
)

GSĜP +GSGP e
−sh

= 1 +GSGP −GSGP e
−sĥ +GSGP e

−sh

= 1 +GSGP −GSGP e
−sh(e−sδ − 1)

(14)

where δ ≡ ĥ− h. Then substituting the terms

GP ≡
BP

AP

=
KM

τMs+ 1
, GS ≡

BC

AC

=
K̄ps+ K̄I

s
(15)

yields

DE(s) = 1 +GSGP −GSGP e
−sĥ +GSGP e

−sh

= 1 +
BPBC

APAC

−
BPBC

APAC

e−sĥ +
BPBC

APAC

e−sh

(16)

Setting DE(s) = 0 yields the closed-loop characteristic

equation:

Ch(s) = APAC +BPBC −BPBCe
−sĥ +BPBCe

−sh

= (τMs+ 1) (s) +KM

(
K̄P s+ K̄I

)

−KM

(
K̄P s+ K̄I

)
e−sĥ

+KM

(
K̄P s+ K̄I

)
e−sh = 0

(17)

Differentiating both sides of the characteristic equation with

respect to the time-delay, h, yields

∂

∂h
Ch(s) = 2τMs

∂s

∂h
+

∂s

∂h
+KMK̄P

∂s

∂h
+KMK̄I

−KM

(
K̄P

∂s
∂h

+ K̄I

)
e−sĥ

−KM

(
K̄P s+ K̄I

)
e−sĥ

(

−ĥ
) ∂s

∂h

+KM

(

K̄P

∂s

∂h
+ K̄I

)

e−sh

+KM

(
K̄P s+ K̄I

)
e−sh

{

(−h)
∂s

∂h
− s

}

(18)

Because ∂
∂h

Ch(s) = 0, we get the sensitivity with respect

to the time-delay, h, given by

∂s

∂h
=

KM

(
K̄P s+ K̄I

)
e−sh (s)−KMK̄I

2τMs+ 1 +KMK̄P

(19)

By substituting the eigenvalues, λ, for s in Eq. (19), one

can get the sensitivity of the eigenvalues with respect to

small variance in the time-delay. The sensitivity in Eq. (19)

represents an incremental change in the positions of the

eigenvalues corresponding to an incremental change in the

time-delay. Numerical values for several cases, with the same

parameter set as in Subsection III-B, are given in Table II.

D. Sensitivity of the Lambert W Function

From the state equation (9) of the closed-loop system in

1-(c), the sensitivity of the eigenvalue with respect to the

time-delay, h, is obtained in a way similar to the previous

derivation. The characteristic equation of the system (9) is

s2 +
1

τM
s+

KMKP

τM
se−sh +

KMKI

τM
e−sh = 0 (20)

In a similar way to the previous section, by differentiating

both sides the sensitivity of the eigenvalues with respect to

change in the time-delay, h, is given by

∂s

∂h
=

s2KMKP e
−sh + sKMKIe

−sh

2sτM + 1 +KMKP e−sh − (KMKP s+KMKI)e−shh
(21)

The numerical values of the sensitivity with respect to

h for the Lambert W function-based approach and the

Smith predictor are compared in Table II. As seen in Table

II, for several rightmost eigenvalues, which are arbitrarily

chosen, the Lambert W function-based approach shows

smaller values of the sensitivity and, thus, improvement in

robustness. For comparison, ‘improvement’ is calculated as

the ratio of decrease in real parts of the sensitivities to

the real part of the sensitivity of the Smith predictor (i.e.,

(ℜ(S1)−ℜ(S2))/ℜ(S1)× 100). Because in the Smith pre-

dictor control the feedback signal for the controller (GS(s)
in Fig. 1-(a)) uses the “predicted” output, y, (e.g., yesh)

by canceling signals [22], it is sensitive with respect to

infinitesimal delay mismatches [7]. On the other hand, for the

Lambert W function-based approach, the feedback signal for

the controller (GL(s) in Fig. 1-(c)) is not predicted and does

not require any cancelation. This may result in improvement

in robustness as seen in Table II.

For other parameters in Eq. (1), sensitivity analysis can

be conducted in a way similar to the time-delay, h. For

example, for KM and τM , the obtained sensitivities are

summarized in Tables III. The sensitivity with respect to

KM for the Lambert W function also has smaller values

than the Smith predictor. Thus, the Lambert W function-

based approach enhances robustness. However, it does not

mean the presented approach always renders less sensitive

controllers. In Table III, for the sensitivity with respect to

τM , the results are mixed. Thus, use of the Lambert W

function does not always reduce sensitivity of the rightmost

eigenvalues. Therefore, for stable first-order plants, after

comparing sensitivity with respect to parameters (especially,

ones having larger variance, for example, due to difficulty in

estimating) one can choose more suitable method to design

PI controllers that is more robust against variance in system

parameters.

IV. CONCLUDING REMARKS AND FUTURE

WORK

In this paper, we have studied a new approach to design

of PI controllers for time-delay systems as an alternative

to the Smith predictor. PI controllers are the most common

controller and for first order time-delay systems. Choosing

the gains in the PI controllers corresponding to desired

system performance is essential to achieve the control goals.

The presented approach based on the Lambert W function

enables one to choose the gains by assigning the rightmost

eigenvalue to the desired positions, which are obtained from

the desired natural frequency and damping ratio. Unlike

prediction-based methods, the approach is not dependent on
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TABLE II

SENSITIVITY COMPARISON WITH RESPECT TO h: THE LAMBERT W FUNCTION-BASED APPROACH SHOWS SMALLER VALUES OF THE SENSITIVITY AND

IMPROVEMENT IN ROBUSTNESS

Rightmost Sensitivity, ∂λ

∂h
Improvement (%)ωn ζ

eigenvalue, λ Smith predictor (S1) Lambert W function (S2)
ℜ(S1)−ℜ(S2)

ℜ(S1)
× 100

1.0 0.3 −0.3000± 0.9539i 0.8697∓ 0.1245i 0.7431∓ 0.3423i 14.59

1.1 0.5 −0.5500± 0.9526i 1.2191± 0.4722i 0.9606± 0.0662i 21.20

1.5 0.5 −0.7500± 1.2990i 1.8135± 0.9045i 1.4319± 0.4189i 21.04

2.5 0.5 −1.2500± 2.1651i 4.0803± 2.6198i 3.2842± 2.4937i 19.51

TABLE III

COMPARISON OF THE SENSITIVITY: WITH RESPECT TO KM , THE LAMBERT W FUNCTION-BASED APPROACH SHOWS SMALLER VALUES OF THE

SENSITIVITY AND AN IMPROVEMENT IN ROBUSTNESS. ON THE OTHER HAND, WITH RESPECT TO τM : UNLIKE h AND KM , THE SENSITIVITY SHOWS

MIXED RESULTS.

Sensitivity, ∂λ

∂KM

Improvement Sensitivity, ∂λ

∂τM
Improvementωn ζ

Smith predictor Lambert W function (%) Smith predictor Lambert W function (%)

1.0 0.3 0.8797± 0.6350i 0.5495± 0.6061i 37.53 0.4525∓ 1.0170i 0.4930∓ 0.6794i -8.96

1.1 0.5 0.6824± 0.8857i 0.3845± 0.7864i 43.66 1.0714∓ 0.9286i 0.9675∓ 0.5443i 9.70

1.5 0.5 0.5823± 1.0599i 0.2354± 0.9663i 59.56 1.4258∓ 1.4201i 1.4364∓ 0.8225i -0.74

2.5 0.5 0.4085± 1.6487i −0.2070± 1.6364i 49.33 2.1361∓ 3.0292i 2.9950∓ 1.9965i -40.21

pole-zero cancellation and, thus, unstable systems with time

delays can be successfully stabilized as seen in Section III.

Also, because prediction of the plant is not required, the

obtained controller has a simpler form as seen in Fig. 1 and

is more robust in the presence of delay mismatches.

This research can be extended to more complex cases. For

example, the approach is applicable to higher order systems

with time delays and to design of PI with derivative (PID)

control. Those theoretical studies and implementation on

physical systems are being conducted by the authors.
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