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Abstract— A receding horizon steering controller is pre-
sented, capable of pushing an oversteering nonlinear vehicle
model to its handling limit while travelling at constant forward
speed. The controller is able to optimise the vehicle path, using
a computationally efficient and robust technique, so that the
vehicle progression along a track is maximised as a function of
time. The resultant method forms part of the solution to the
motor racing objective of minimising lap time.

I. INTRODUCTION

The research presented here focuses on the development

of a virtual racing driver model capable of minimising

the manoeuvre time of a vehicle over a predefined course.

Such work is motivated by the desire to achieve a greater

understanding of the interaction between a driver and vehicle

operating at its limit of capabilities. A greater appreciation

for how a driver arrives at a particular decision, might in turn

allow a race car to be developed more closely tailored to a

driver’s needs.

A racing driver is required to find the balance of vehicle

controls that results in the fastest possible lap time. This is

achieved by maximising the velocity of the vehicle through-

out the manoeuvre, limited periodically by the available tyre

grip and power output of the vehicle’s engine. Simultane-

ously the driver attempts to choose a vehicle trajectory that

minimises the total distance travelled. These two require-

ments are conflicting in nature and hence a compromise

is sought which results in vehicle manoeuvre time being

minimised.

A number of attempts have been previously made by

researchers to solve the minimum lap time problem. An

approach widely adopted by racing establishments is the

so called quasi-steady-state (QSS) method [1], [2]. This

approach approximates the motion of the car as a series

of steady state manoeuvres which can be joined together

to form a complete vehicle-circuit simulation. However,

the steady-state assumption means that vehicle transient

behaviour cannot be studied. Furthermore, the approach has

no consideration of the human driver, meaning it has limited

use during the vehicle design phase.

More recently, to permit the study of vehicle transients

a number of new methods, based on optimal control the-

ory, have been developed. Thommyppillai et al. [3], [4]

have developed an approach centered around optimum path

following. The concept relies on the idea that accurately
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tracking a predefined racing line while trying to maximise

vehicle speed results in an optimum lap. The approach,

however, is somewhat restrictive in nature as the racing line

is fixed regardless of the vehicle setup parameters, similar

to the QSS lap simulation methods. A second stream of

research has proposed the problem as one of nonconvex

nonlinear optimisation with constraints used to reflect the

track boundaries and prohibited vehicle operating regions.

This method enables both the optimum path and speed

trajectories to be computed online with full account of

vehicle nonlinearities. Such methods have successfully been

developed by a number of researchers [5], [6], [7]. How-

ever, solving the required nonconvex optimisation problem

is extremely computationally intensive and the techniques

generally have a lack of robustness.

In [8], the initial results of a computationally efficient

method for optimising the vehicle path around a racing track

of finite width were presented. The work presented here

extends this earlier research by providing a refined algo-

rithm, directly extendable to the case of combined path and

speed optimisation. It focuses particularly on the improved

methods used to linearise the problem and thus ensure the

optimisation problem remains convex and therefore compu-

tationally efficient. Simulations demonstrating the control of

an oversteering vehicle are also presented.

The next section gives an overview of the oversteering

nonlinear vehicle model used for both the vehicle plant and

internal human model. This is followed by descriptions of

the various components that make up the steering controller.

The method used to generate the optimum vehicle trajectory

is next outlined together with the how the vehicle position

relative to the track is linearised which ultimately results

in an efficient computational problem. Finally, a number of

simulation results are presented.

II. VEHICLE MODEL

The lateral dynamics of the vehicle are represented using

the standard single track yaw/sideslip model shown in Fig.

1. The equations of motion for lateral velocity, v, and yaw

rate, ψ̇, can therefore be written as:

Mt(v̇ + uψ̇) = Fyf + Fyr (1)

Izzψ̈ = aFyf − bFyr (2)

which are valid for the constant longitudinal velocity case
provided small angles are assumed. The pure lateral slip
force characteristics of the tyres are assumed to vary ac-
cording to the Magic Formula expression:
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Fig. 1. Single track vehicle model with associated forces and dimensions.

Fyj = −2Dj sin (Cyj arctan(Byjαj − Eyj(Byjαj − arctan(Byjαj))))
(3)

The tyre nonlinearities are approximated using a Linear

Time Varying (LTV) model. Front and rear lateral slips, αf

and αr are chosen as set point parameters about which the

tyre characteristics are linearised. Collecting only first order

terms of a Taylor Series expansion enables the front and rear

lateral force of the tyres to be described by the simple LTV

expression:

Fyj(t) = Cjy(t)αj(t) + Djy(t), (4)

where Cjy(t) and Djy(t) denote the time varying lateral slip

stiffness and tyre force intercept at zero slip respectively [9].

Furthermore, the vehicle system to be controlled is con-

sidered to comprise of the vehicle dynamics coupled with

the driver’s Neuromuscular System (NMS) dynamics. As

demonstrated in [10], the NMS can be represented as an

under-damped second order system which acts on the steer-

ing input to the vehicle, thus

δ̈sw + 2ζnωnδ̇sw + ω2
nδsw = ω2

nδcom, (5)

where δcom is the steering wheel angle commanded from the

driver’s brain and δsw considered an output of the driver’s

NMS. ζn and ωn denote the damping ratio and natural

frequency of the NMS respectively.

Combining the NMS model and vehicle dynamics allows

the total system to be represented using a discrete time state-

space description:

x(k+1) = A(k)x(k) + B(k)∆δcom(k) + E(k) (6)

z(k) = C(k)x(k), (7)

where x(k) is the vehicle system states, E(k) contains the tyre

force intercept terms from (4) and the commanded steering

input has been split into the sum of the steering input from

the previous time step, now a system state, and the change

in steering input during the present step.

The chassis, tyre and NMS parameters used to construct

the vehicle system are given in Table I. Note that the

distances from the front and rear axles to the vehicle CoG

result in a vehicle with a rear bias weight distribution.

III. STEERING CONTROLLER

The steering controller is structured to form a nonlinear

Model Predictive Control (MPC) strategy. However, in order

to reduce the computational demand, the controller does not

TABLE I

VEHICLE, TYRES AND DRIVER’S NMS PARAMETERS.

Parameter Symbol Value

Vehicle mass Mt 1050 kg

Vehicle yaw inertia Izz 1500 kgm2

CoG to front axle distance a 1.38 m
CoG to rear axle distance b 0.92 m
Steer to road wheel angle ratio G 17
Stiffness factor (per tyre) Byi 17.5
Shape factor (per tyre) Cyi 1.68
Peak factor (per tyre) Dyi 3900 N
Curvature factor (per tyre) Eyi 0.6
NMS damping ratio ζn 0.7

NMS natural frequency ωn 18.9 rads−1

generate a fully optimal nonlinear control law, but instead

makes use of time varying internal models, linear (in)equality

constraints and a quadratic cost to form a convex Quadratic

Programming (QP) problem. Formulating the optimisation

problem in this way guarantees its termination and allows

it to be solved rapidly using a number of possible methods

[11].

A. Preview and Predicted Vehicle Trajectory

Central to the controller’s ability to minimise manoeuvre

time is the idea of a preview window ahead of the vehicle

gathering information and using this as the basis for control

decisions. Employing such a strategy aims to mimic the

line of sight of a real driver and their ability to assess the

track ahead and make steering (and brake/throttle) decisions

accordingly. The internal model produces a future predicted

response of the vehicle at each iteration. Here, the internal

model is taken to be the LTV vehicle model developed

in section II. The previous prediction results (at time step

k−1) can therefore be used to gather the necessary preview

information for the next optimsation. In what follows the

track centreline is taken as the reference trajectory on which

preview information is based. Fig. 2 sets out the reference

trajectory parameters and how they relate to the predicted

vehicle trajectory.

As shown in Fig. 2, the track centreline is defined in the

global reference frame using an intrinsic coordinate descrip-

tion (sr, φr). The previous predicted position of the vehicle

is defined relative to lines normal to the track centreline and

at lateral displacements errors yerr(k+i|k−1) for i = 1 . . . Np

where Np is the prediction horizon.

In order to determine the future vehicle position, the

variable-model-preview concept detailed by Keen and Cole

[9] is adopted. This approach allows for a more accurate

estimation of the vehicle’s future state and output trajecto-

ries, x̂(k+i) and ẑ(k+i) respectively, by using the discarded

input commands from the previous control cycle. Iterating

(6), open-loop, with the series of delta input commands,

∆δ̂com(k+i−1) for i = 1 . . . Np, enables an estimation of

the predicted trajectory for the next control cycle to be

found. Since (6) and (7) are time varying in nature the
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track centreline

predicted vehicle trajectory at previous time step (k-1)

Fig. 2. Predicted vehicle trajectory and corresponding reference trajectory
parameters.

prediction results in a sequence of linearised vehicle models

that approximate the future dynamics of the vehicle along

the horizon. This future knowledge of the expected vehicle

dynamics enhances the prediction strategy and is an essential

part of the control strategy.

B. Banded MPC Scheme

The following quadratic cost function is proposed to

connect the linearised vehicle dynamics within the predicted

trajectory and the reference trajectory.

J(k) =

Np
∑

i=1

ẑT
(k+i)Q1(i)ẑ(k+i) + R(i)∆δ̂2

com(k+i−1)

+ QT
2(i)ẑ(k+i), (8)

where Q1(i) and Q2(i), are semi-positive definite diagonal

matrices which contain the weights of relative importance

placed on the output objectives. The positive scalar, R(i) de-

termines the extent to which the change in steering demand,

∆δ̂com, contributes to the minimisation of the cost function.

Typically when forming MPC problems the predicted states

x̂(k+i) are eliminated from the problem, instead written as

functions of the current state and optimised control inputs.

However, as demonstrated in [12], by not eliminating the

predicted states the resultant QP problem has a banded

structure in which the sparsity can be exploited by suitably

developed solvers. The technique is particulary advantageous

when using long preview/control horizons and results in rapid

convergence to solution when compared to the equivalent

densely structured QP problem. To implement the banded

structure the following equality constraint is therefore intro-

duced:

x̂(k+i+1) = Â(k+i)x̂(k+i)+B̂(k+i)∆δ̂com(k+i)+Ê(k+i), (9)

for i = 0 . . . Np − 1.

By substituting the linearised state-space output equation

(7) into the quadratic cost (8) and writing in a more compact

form, the general QP problem with equality constraint (9)

and the possibility of inequality constraints on the predicted

input and output trajectories can be written as

min
θ(k)

J(k) =
1

2
θT
(k)H(k)θ(k) + ηT

(k)θ(k) (H(k) = HT
(k) ≥ 0)

(10)

subject to

Γ(k)θ(k) = γ(k) (11)

and

Ω(k)θ(k) ≤ ω(k), (12)

where the resultant optimised variable has the following

structure

θ(k) =























∆δ̂com(k)

x̂(k+1)

∆δ̂com(k+1)

x̂(k+2)

...

∆δ̂com(k+Np−1)

x̂(k+Np)























(13)

C. Optimum Path Generation

The objective of the controller is to minimise the time

taken to perform a particular manoeuvre. Since in the present

case the forward speed of the vehicle is considered constant,

this can be achieved by determining a path that minimises

the total distance travelled. With time as the independent

variable, this is posed as maximising the distance travelled

in a fixed amount of time [7]. From Fig. 3, the task is to

describe the incremental distance dsr, travelled along the

track centreline, in terms of the incremental distance ds =
V T ≈ uT travelled by the vehicle in time T . Maximising

dsr therefore maximises the progression of the vehicle along

the track. All vehicle progression evaluations are made with

respect to lines normal to the track centreline.

track centreline

predicted vehicle 

trajectory

Fig. 3. Geometric definitions for derivation of intrinsic vehicle-track
progression expression.
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Fig. 3 allows the derivation of the following expression

describing the incremental distance, dsr, travelled along

the track centreline in terms of heading angle and lateral

displacement error between the predicted vehicle and track

centreline:

dsr = ds + yerrdφr − ds
φ2

err

2
, (14)

provided φerr remains in the limit in which a second-

order small angle approximation of cosine remains valid.

Examining (14) reveals the connection between the various

vehicle related terms and progression along the track. The

first term, ds the distance the vehicle travels in one time

step, connects directly the velocity of the vehicle to track

progression. The term associated with the lateral error yerr,

is positive when on the inside of the bend as drawn in Fig.

3. Hence progression along the track centreline is increased

the further the vehicle moves to the inside of the bend. The

term associated with φerr, is negative since any angle error

between the track and vehicle heading requires the vehicle to

travel slightly further to achieve the same track progression

compared to if it travelled in a direction parallel to the track

centreline.

Summating expression (14) from i = 1 . . . Np yields the

nominal distance travelled along the track centreline over the

prediction horizon.

Np
∑

i=1

dsr(k+i) =

Np
∑

i=1

ds + ŷerr(k+i)dφr(k+i) − ds
φ̂2

err(k+i)

2

(15)

Therefore by maximising (15) the progress of the vehicle

along the track in a fixed time interval (NpT ) is maximised.

Here, the longitudinal velocity is assumed constant and thus

the summation of the first term can be neglected. It should

be noted that in the event of optimising both the vehicle

path and speed profile, as real racing drivers do, using (15)

in its entirety for the objective function would permit this.

For the constant speed case however, the following candidate

objective function is proposed, taking into account possible

penalisation of steering effort

J(k) =

Np
∑

i=1

q
(

− ŷerr(k+i)dφr(k+i) +
φ̂2

err(k+i)

2

)

+ R∆δ̂2
com(k+i−1), (16)

where q and R are the weights placed on maximising the

distance travelled and the amount of the control effort used

respectively. Equations (14)-(16) differ from their counter-

parts in [8], by providing a more accurate description of the

progress of the vehicle relative to the track. Additionally,

the objective function is no longer formed explicitly as a

tracking/regulatory task.

In order for the optimisation to remain a convex QP

problem, which can be solved in an efficient way, it is

necessary that all the terms in (16) can be linearly reproduced

from the system states and inputs. ∆δcom is the input to the

system and hence can be produced straightforwardly. The

track radius is approximated using rr(k+i) ≈ rr(k+i+1|k−1)

from the previous predicted trajectory, likewise the heading

angle error between the vehicle and track, φ̂err, can be

defined simply as

φ̂err(k+i) = (β̂(k+i) + ψ̂(k+i)) − φr(k+i)

≈ (β̂(k+i) + ψ̂(k+i)) − φr(k+i+1|k−1), (17)

for i = 1 . . . Np, where the vehicle slip angle is approximated

as β ≈ v
u

. However, the normal distance between the vehicle

and track centreline, ŷerr, is a nonlinear function in the

system states. The next section details how ŷerr is linearised

and therefore the linear positioning of the vehicle relative to

the track preserved.

D. Linearising Lateral Displacement Errors

It is proposed that, provided there are only small changes

between consecutive predicted trajectories, the lateral dis-

placement error to be optimised at the current time step can

be approximated using

ŷerr(k+i) = ŷerr(k+i+1|k−1) + ∆ŷerr(k+i) (18)

It is therefore only necessary to derive a linear expression

which describes the change in lateral displacement error

between two successive predicted vehicle paths, ∆ŷerr(k+i),

rather than the absolute lateral error. With the vehicle for-

ward speed considered constant, this depends only on the

differences in heading angles between the two trajectories

δφ. Fig. 4 illustrates the connection between the two paths

when an intrinsic coordinate description is used. Hence an

approximation of the change in lateral displacements can be

found using

δ̂δφ

y(k+i) = δ̂δφ

y(k+i−1) cos (φ̂(k+i+1|k−1) − φ̂(k+i|k−1))

+ ds(φ̂(k+i) − φ̂(k+i+1|k−1)) (19)

predicted vehicle trajectory at current time step (k)

predicted vehicle trajectory at previous time step (k-1)

Fig. 4. Initial geometric definitions for derivation of intrinsic displacement
error expressions, due to a change in heading angle δφ, for two consecutive
predicted vehicle paths.
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where û(k+i)T = û(k+i+1|k−1)T = ds for i = 1 . . . Np.

There is also a correspondingly small change in longitudinal

displacement when the heading angle of the vehicle changes

which ultimately contributes to ∆ŷerr. From Fig. 4 it is

possible to approximate this as

δ̂δφ

x(k+i) = δ̂δφ

x(k+i−1) cos (φ̂(k+i+1|k−1) − φ̂(k+i|k−1))

+ δ̂δφ

y(k+i−1) sin (φ̂(k+i+1|k−1) − φ̂(k+i|k−1))(20)

By resolving the changes in lateral and longitudinal displace-

ment, (19) and (20) respectively, in the direction normal to

the track centreline, ∆ŷerr can be approximated as

∆ŷerr(k+i) ≈ δ̂δφ

y(k+i) cos(φ̂err(k+i+1|k−1))

+ δ̂δφ

x(k+i) sin(φ̂err(k+i+1|k−1)), (21)

for i = 1 . . . Np, which results in a further improvement

in accuracy compared to the equivalent quantity defined in

[8]. By including δ̂δφ

y(k+i−1) and δ̂δφ

x(k+i−1) as system states,

the lateral errors between the vehicle and track centreline

over the prediction horizon, ŷerr(k+i), can be formed as a

system output together with φ̂err(k+i) and optimised within

objective function (16).

E. Track Boundary and Tyre Slip Constraints

To prohibit the vehicle from crossing the track boundaries,

constraints are imposed on the position of the vehicle. Since

the position of the vehicle relative to the track has been

linearised this is achieved straightforwardly by ensuring

±ŷerr(k+i) ≤ wr/2 − w (22)

for i = 1 . . . Np, where wr is the width of the track

and w is the half-track-width of the vehicle. Furthermore,

stabilising constraints on tyre lateral slip αf and αr are also

included within the optimisation problem, limiting the tyres

to operation within the positive slope region of the tyre force

curves. Thus the lateral slip limit αbound is set at, or just

below, the point at which maximum lateral tyre force occurs.

±α̂j(k+i) ≤ αbound, (23)

for i = 1 . . . Np.

Equations (22) and (23) are incorporated into the optimi-

sation problem through inequality (12).

IV. PATH OPTIMISATION SIMULATION RESULTS

To demonstrate the ability of the steering controller to

control an oversteering vehicle, a number of simulations

were performed. Figs. 5 and 6 show overlayed path and

time-histories, respectively, for both a 90 deg and s-bend

type manoeuvre. The s-bend manoeuvre was generated by

coupling a right-hand 90 deg bend onto the initial left-

hand 90 deg bend. The simulations were performed at a

constant forward speed of 30 ms−1. The simulation and

control parameters used during the simulations are set out

in Table II.

Fig. 5 shows how, at this demanding forward speed, the

controller makes full use of the track width on both corner

entry and exit. Furthermore, the rear axle side-slip time

TABLE II

SIMULATION AND CONTROL PARAMETERS USED DURING THE PATH

OPTIMISATION SIMULATIONS.

Parameter Symbol Value

Discrete time step T 0.02 s
Preview horizon Np 300
Maximise distance travelled weight q 10
∆δcom effort weight R 1
Track/road width wr 10 m
Vehicle half track w 0 m
Side-slip constraint αbound 0.09 rad
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Fig. 5. Path optimised simulation results of an oversteering vehicle, for
a 90 deg (solid line) and s-bend (dashed line) manoeuvre, with marked 1
second intervals.

histories demonstrate the controller operating the rear (limit-

ing) axle on the imposed side-slip constraint corresponding

to 99.8% peak lateral force, thus maximising the vehicle

performance. In order to achieve this the controller applies

counter-steering action during the approximately steady-state

phases of the manoeuvre. The steering-wheel-angle (SWA)

time histories also show how the oversteering motion is

setup using the yaw dynamics to “flick” the vehicle one

way then the other on corner entry. Further insight into

the behaviour of the vehicle can be found by constructing

a steady-state handling diagram for the nonlinear vehicle

[13], as depicted in Fig. 7. Point I represents the operating

point of the vehicle during approximately the 6-8 second

phase of the path optimised simulation results. As can be

seen, the vehicle operates at an equilibrium point just left

of the rear slide point. Nevertheless this is well within the

unstable region of its handling characteristics, demonstrating

the steering controller is capable of controlling the vehicle

model at the limit even during unstable operation. It is

worth noting that because the vehicle is operating in an

unstable region, application of these optimal controls to

an equivalent nonlinear vehicle would likely result in the

vehicle quickly deviating from the optimum path. In this

case, a stabilising feedback controller would be needed to

successfully complete the manoeuvre.

By overlaying the two simulated manoeuvres, provided the

controller has sufficient preview, it is possible to compare the

influence of a second corner on the vehicle trajectory through

the first 90 deg bend. Fig. 5 shows that during the s-bend

manoeuvre, the controller is able to use less track width on
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corner entry and peel off from the first apex slightly earlier,

taking advantage of the immediate transition into the second

90 deg bend. The different turn-in behaviour is somewhat a

consequence of the constant speed restrictions imposed on

the simulation, as a real driver would most likely use the

full track width on entry in order to maximise the vehicle

turn radius. Nonetheless, the results highlight the coupling

between consecutive corners and how long preview horizons

need to be used to compensate, to some extent, for the fact

that a real racing driver is likely to have prior knowledge of

the circuit layout.
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Fig. 6. Path optimised time histories, of a oversteering vehicle, for a 90
deg (solid line) and s-bend (dashed line) manoeuvre.
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Fig. 7. Handling diagram resulting from normalised tyre characteristics.
Steady-state equilibrium point I, represents the operating point of the vehicle
during the 6-8 second phase of the path optimised simulations.

V. CONCLUSIONS

The work described details a steering controller capable of

optimising the path of a vehicle, at constant forward speed, in

order to minimise vehicle manoeuvre time. The problem has

been formulated in a computational efficient and robust way

by using linear time varying model predictive control theory

and by linearising the positioning of the vehicle relative to

the track. In particular, the novel approach used to linearise

the vehicle position, describing the vehicle and reference path

intrinsically and making use of the previous optimisation

results, has enabled the optimisation problem to be formed

as a convex Quadratic Programming problem. The use of

long control and preview horizons has motivated significant

computational gains to be achieved by adopting a banded

structured MPC scheme, as opposed to the more widely

documented densely structured approach.

Simulations have demonstrated the model can successfully

control an oversteering nonlinear vehicle at its (unstable)

lateral limit, with the same levels of limit-axle tyre saturation

previously documented when controlling a stable understeer-

ing vehicle [8]. Operation of the vehicle at its handling

limits has allowed the total vehicle distance travelled during

the simulated manoeuvres to be minimised within the track

boundary constraints. Future work includes the extension

of the minimum manoeuvre time algorithm to combined

optimal path and speed profile generation while controlling

a more complex vehicle model.
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