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Abstract— In a traditional anti-windup design, the anti-
windup mechanism is set to be activated as soon as the control
signal saturates the actuator. A recent innovation of delaying
the activation of the anti-windup mechanism, both static and
dynamic, until the saturation reaches to a certain level of
severity has led to a performance improvement of the resulting
closed-loop system. More recently, it has been shown that
significant further performance improvements can be obtained
by activating a static anti-windup mechanism in anticipation of
actuator saturation, in comparison with the delayed activation
design. This paper demonstrates that anticipatory activation
of a dynamic anti-windup mechanism would also lead to
significant performance improvements over both the immediate
and delayed activation schemes.

I. INTRODUCTION

Anti-windup, because of its intuitive motivation and its

effectiveness in dealing with actuator saturation, has been

widely used in industries. Many methods for designing anti-

windup compensators have been developed (see, e.g., [1, 3,

5–7, 9–11, 14, 16, 17] for a small sample of the literature).

In all these designs, the anti-windup mechanism is set to take

effect as soon as actuator saturation occurs.

Motivated by the observation that, leaving the controller

to act unassisted in the face of slight or moderate saturation,

the robustness properties of the nominal closed-loop system

might be more effective in overcoming the adverse effect of

the saturation than the anti-windup mechanism could, Sajjadi

and Jabbari in a pair of recent papers [12] and [13] propose

to design the anti-windup compensators, both static and

dynamic ones, for delayed activation (see Fig. 2). Simulation

results indicate that the delayed activation design scheme can

indeed lead to significantly better transient performance in

output tracking than the anti-windup compensator designed

for immediate activation.

Inspired by the work [12] and by an intuition that the

dynamic nature of the system entails a preventive action to

be taken before the actuator saturation actually occurs, we

have just proposed to activate the anti-windup mechanism

in anticipation of actuator saturation [18] (see Fig. 3). The

resulting design leads to significant further performance

improvement over the delayed activation design scheme of

[12]. The delayed activation anti-windup design was devel-

oped and its performance improvement over the immediate
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activation design has been shown for both static anti-windup

mechanism and dynamic anti-windup mechanism, in [12]

and [13], respectively. The anticipatory anti-windup design in

[18] has however only been developed for static anti-windup.

The objective of this paper is to develop a dynamic anti-

windup design for anticipatory activation and to establish its

performance improvement over similar designs for immedi-

ate and delayed activation. As in [12], we will develop the

anticipatory dynamic anti-windup design and carry out the

comparison in the LMI based dynamic anti-windup design

framework ([7] and [11]). We note that both the signs for

delayed activation and anticipatory activation can be viewed

to belong to the general category of nonlinear anti-windup

schemes (see, for example, [4, 15, 19]).

The remainder of this paper is organized as follows. In

Section II, we recall the formulation of the traditional anti-

windup design problem. In Section III, after recalling the

traditional dynamic L2 anti-windup design for immediate ac-

tivation ([7, 11]) and the delayed activation dynamic L2 anti-

windup design of [13], we develop the anticipatory dynamic

anti-windup design. Simulation results that demonstrate the

performance improvements of the anticipatory dynamic anti-

windup design over the immediate and delayed activation

designs are given Section IV. A brief conclusion in Section

V ends the paper.

II. PROBLEM FORMULATION: DYNAMIC L2

ANTI-WINDUP DESIGN

Consider a linear plant subject to actuator saturation

Σp :







ẋp = Apxp +B1w +B2sath(u),
y=C2xp +D21w,
z=C1xp +D11w +D12sath(u),

(1)

where xp ∈ R
np is the state, u ∈ R is the control input,

w ∈ R
nw is the disturbance, y ∈ R

ny is the measurement

output, z ∈ R
nz is the performance output, and, for a given

constant h > 0, the function sath : R → R is a saturation

function defined as sath(u) = sgn(u)min{|u|, h}.

Assume that a linear dynamic controller of the form

Σc :

{

ẋc =Acxc +Bcyy +Bcww, xc ∈ R
nc ,

u=Ccxc +Dcyy +Dcww,
(2)

has been designed that achieves the closed-loop performance

specifications in the absence of actuator saturation. A tradi-

tional dynamic anti-windup design is to add to the controller

a correction signal generated from a linear dynamic anti-

windup compensator driven by q = u− sath(u), that is,
{

ẋc =Acxc +Bcyy +Bcww + η1, xc ∈ R
nc ,

u=Ccxc +Dcyy +Dcww + η2,
(3)
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Fig. 1. Traditional anti-windup scheme: immediate activation at the
occurrence of saturation.

where η = [ηT

1 ηT

2]
T is the output of the linear dynamic anti-

windup compensator

Σaw :

{

ẋaw =Aawxaw +Bawq, q ∈ R
naw ,

η=Cawxaw +Dawq.
(4)

The resulting overall closed-loop system is illustrated in Fig.

1. As the term u− sath(u), which drives the dynamic anti-

windup compensator, becomes non-zero as soon as actuator

saturation occurs, the anti-windup takes effect immediately

after the saturation. Such an anti-windup design can thus

be referred to as the anti-windup design for immediate

activation.

The closed-loop system with a delayed activation anti-

windup compensator, as proposed in [12] and [13], is de-

picted in Fig. 2. The closed-loop system with a anticipatory

activation anti-windup compensator, as proposed in [18], is

depicted in Fig. 3.

Under any of these three activation strategies, the prob-

lem of dynamic anti-windup design is to compute the

anti-windup dynamic compensation coefficient matrices

(Aaw, Baw, Caw, Daw) to meet various performance indices.

In this paper, the design objective is to minimize the L2

gain from the disturbance w to the controlled output z.

The dynamic L2 anti-windup designs have been developed

for immediate activation (see, e.g., [7, 11]) and for delayed

activation (see, [13]). Here, we will develop a dynamic L2

anti-windup designs for anticipatory activation and compares

the performance of the resulting closed-loop system with

those resulting from the immediate activation and delayed

activation designs.
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Fig. 2. Dynamic delayed anti-windup scheme: delayed activation of the
anti-windup mechanism.
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Fig. 3. Anticipatory anti-windup scheme: anticipatory activation of the
anti-windup mechanism.

III. L2 ANTI-WINDUP DESIGN

For the purpose of comparison, we will first recall the

designs for immediate activation and for delayed activation,

from [7] and [11] and from [13], respectively. In our devel-

opment of anticipatory dynamic anti-windup design, we will

use similar notation as used in [7, 11] and [13], with some

minor modification to accommodate the different activation

schemes.

A. Traditional Design for Immediate Activation

Let x =
[

xT

p xT

c xT

aw

]T

and Λ = [BT

aw DT

aw]
T
. Then, the

closed-loop system can be written as

Σ :







ẋ=Ax+Bww + (Bq −BηΛ)q,
z=Czx+Dzww + (Dzq −DzηΛ)q,
u=Cux+Duww + (Duq −DuηΛ)q,

(5)

where

A=

[

Â BηCaw

0 Aaw

]

, Bw =

[

B̂w

0

]

, Bq =

[

B̂q

0

]

,

Bη =

[

0(np+nc)×naw
−B̂η (np+nc)×(nu+nc)

−Inaw
0naw×(nu+nc),

]

,

Cz =
[

Ĉz DzηCaw
]

, Dzw = D̂zw, Dzq = D̂zq,

Dzη =−D̂zη

[

0(nu+nc)×naw
I(nu+nc)

]

,

Cu =
[

Ĉu DuηCaw
]

, Duw = D̂uw, Duq = D̂uq,

Duη =
[

0nu×naw
−D̂

uη nu×(nu+nc)

]

,

and where

Â=

[

Ap +B2DcyC2 B2Cc

BcyC2 Ac

]

, B̂q =

[

−B2

0

]

,

B̂η =

[

0 B2

I 0

]

, B̂w =

[

B2(DcyD21 +Dcw)
BcyD21 +Bcw

]

,

Ĉz =
[

C1 +D12DcyC2 D12Cc
]

,

Ĉu =
[

DcyC2 Cc
]

, D̂zη =
[

0 D12

]

,

D̂zw =D11 +D12DcyD21 +D12Dcw, D̂zq = −D12,

D̂uw =DcyD21 +Dcw, D̂uq = 0, D̂uη =
[

0 I
]

.

The design of the dynamic L2 anti-windup compensator

for immediate activation, as developed in [7, 11], is based

on the solution of an LMI problem. We recall from [13]

the following theorem, on which the LMI problem can be

formulated.
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Theorem 1: The closed-loop system (5) is stable and the

L2 gain from w to z is less than γ if there exist a scalar

M > 0, a symmetric Q > 0 and anti-windup matrices Aa, Ca

and Λ = [BT

aw DT

aw]
T

such that









AQ+QAT ∗ ∗ ∗
BT

w −γI ∗ ∗
CzQ Dzw −γI ∗
Φ41 Duw Φ43 Φ44









< 0, (6)

where Φ41 = MBT

q − MΛTBT

η + CuQ, Φ43 = MDT

zq −
MΛTDT

zη , and Φ44 = −2M+DuqM+MDT

uq−DuηΛM−
MΛTDT

uη .

To express (6) into an LMI, let

Q =

[

Y S
S S

]

, (7)

and define F1 = AawS, F2 = CawS, F3 = BawM and

F4 = DawM . Then, (6) reduces to the following LMI,













Ω11 ∗ ∗ ∗ ∗
ΩT

12 F1 + F T

1 ∗ ∗ ∗

B̂T

w 0 −γI ∗ ∗

Ω41 Ω42 D̂zw −γI ∗

Ω51 Ω52 D̂uw Ω54 Ω55













< 0, (8)

where Ω11 = ÂY + Y ÂT + B̂ηF2 + F T

2B̂
T

η , Ω12 = ÂS +

B̂ηF2 + F T

1 , Ω41 = ĈzY + D̂zηF2, Ω42 = ĈzS + D̂zηF2,

Ω51 = MB̂T

q +F T

4B̂
T

η + ĈuY + D̂zηF2, Ω52 = F T

3 + ĈuS +

D̂uηF2, Ω54 = MD̂T

zq+F T

4D̂
T

zη , and Ω55 = −2M+D̂uqM+

MD̂T

uq + D̂uηF4 + F T

4D̂
T

uη .

Clearly, if the LMI (8) is feasible, then the dynamic anti-

windup matrices can be obtained as Aaw = F1S
−1, Baw =

F3M
−1, Caw = F2S

−1 and Daw = F4M
−1.

B. Design for Delayed Activation

Under a delayed activation anti-windup compensator, the

closed-loop system, as depicted in Fig. 2, can be described

as

Σd:







ẋ=A(g)x+Bw(g)w+(Bq(g)−Bη(g)Λ)q,
z=Cz(g)x+Dzw(g)w+(Dzq(g)−Dzη(g)Λ)q,
u=Cu(g)x+Duw(g)w+(Duq(g)−Duη(g)Λ)q,

(9)

where all the matrices are the same as in Section III-A,

except with B2 and D12 respectively replaced with gB2 and

gD12 and the dependency on g of the resulting matrices

are explicitly marked. Let h > 0 be the level of the

actuator saturation and h/gd, gd ∈ (0, 1), be the level of

the additional saturation introduced to delay the actuation

of the anti-windup mechanism. Letting û(t) = g(t)u(t),
g(t) ∈ [gd, 1], to result in a pseudo LPV closed-loop system

when |u(t)| ≤ h/gd, and noting that û(t) = gd(t)ud(t) when

|u(t)| > h/gd, the authors of [13] arrive at the following

characterization of the L2 gain of the resulting closed-loop

system.

Theorem 2: The closed-loop system (9) is stable with an

L2 gain from w to z less than γ if there exist a scalar M > 0

and matrices Y > S > 0, F1, F2, F3 and F4 such that








Ω11(g) ∗ ∗ ∗
ΩT

12(g) F1 + F T

1 ∗ ∗

B̂T

w(g) 0 −γI ∗

Ω41(g) Ω42(g) D̂zw(g) −γI









< 0, g = 1,

and












Ω11(g) ∗ ∗ ∗ ∗
ΩT

12(g) F1 + F T

1 ∗ ∗ ∗

B̂T

w(g) 0 −γI ∗ ∗

Ω41(g) Ω42(g) D̂zw −γI ∗

Ω51(g) Ω52(g) D̂uw Ω54(g) Ω55(g)













<0, g = gd,

where Ωij(g) are defined in terms of M,S, Y, F1, F2, F3 and

F4 in the same way as Ωij in Section III-A. If the above

LMIs are feasible, then the anti-windup matrices can be

obtained as Aaw = F1S
−1, Baw = F3M

−1, Caw = F2S
−1

and Daw = F4M
−1.

C. Design for Anticipatory Activation

The closed-loop system under an anticipatory activation

anti-windup compensator is depicted in Fig. 3). Let h > 0
be the level of the actuator saturation and h/ga, ga > 1, be

the level of the additional saturation introduced to implement

the anticipatory activation of the anti-windup compensator.

Based on the magnitude of the control input u(t), the

closed-loop system operates in one of the following three

modes:

Mode 1: |u(t)| ≤ h/ga.

In this mode, no saturation occurs and the closed-loop

system reduces to a linear system, for which,




QAT(g)+A(g)Q ∗ ∗
BT

w(g) −γI ∗
Cz(g)Q Dzw(g) −γI



< 0, g = 1, (10)

implies [7] that

d

dt

(

xTQ−1x
)

+ γ−1zTz − γwTw < 0. (11)

Let Q be in the form of (7). Then (10) reduces to the

following LMI:








Ω11(g) ∗ ∗ ∗
ΩT

12(g) F1 + F T

1 ∗ ∗

B̂T

w(g) 0 −γI ∗

Ω41(g) Ω42(g) D̂zw(g) −γI









< 0, g = 1, (12)

where Ωij and other matrices are the same as in Theorem 2.

Mode 2: |u| > h.

In this mode, both saturation elements are in effect,

ua(t) = sgn(u(t))h/ga, and û(t) = h = gaua(t). In view

of û(t) = gaua(t) = ga(u(t) − q(t)), the closed-loop system

can be described as

Σa:







ẋ=A(ga)x+Bw(ga)w+(Bq(ga)−Bη(ga)Λ)q,
z=Cz(ga)x+Dzw(ga)w+(Dzq(ga)−Dzη(ga)Λ)q,
u=Cux+Duww+(Duq −DuηΛ)q,

(13)

where x = [xT

p xT

c xT

aw]T and all matrices, functions of g, are

as defined in Theorem 2.
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Let us consider the quadratic Lyapunov function V (x) =
xTQ−1x. We will analysis the derivative of V along the

trajectories of the closed-loop system operating in this mode.

We first note that, as u and ua have the same sign and

|ua| ≤ |u|, for any W > 0, qW (q−u) = −(u−ua)Wua ≤ 0.

We next invoke the S-procedure on the desired inequality

(11) to obtain

d

dt

(

xTQ−1x
)

+γ−1zTz−γwTw−2τqW (q−u) < 0, τ > 0,

which, in view of the closed-loop system equation (13), can

be expanded into,




x
w
q





T 



Ψ11 ∗ ∗
ΨT

12 Ψ22 ∗
ΨT

13 ΨT

23 Ψ33









x
w
q



 < 0, (14)

where Ψ11 = Q−1A+ATQ−1+γ−1CT

zCz , Ψ12 = Q−1Bw+
γ−1CT

zDzw, Ψ13 = τCT

uW
T + γ−1CT

z(Dzq − DzηΛ) +
Q−1(Bq − BηΛ), Ψ22 = γ−1DT

zwDzw − γI , Ψ23 =
τWDuw + γ−1DT

zw(Dzq −DzηΛ), and Ψ33 = γ−1(Dzq −
DzηΛ)

T(Dzq −DzηΛ)− 2τW (I −Duq +DuηΛ).
Note that (14) is guaranteed by





Ψ11 ∗ ∗
ΨT

12 Ψ22 ∗
ΨT

13 ΨT

23 Ψ33



 < 0, (15)

which, by Schur complement and a congruent transformation

blkdiag{Q, I,M, I}, M = 1
τ
W−1, is equivalent to the

following matrix inequality,








A(g)Q+QAT(g) ∗ ∗ ∗
BT

w(g) −γI ∗ ∗
Cz(g)Q Dzw(g) −γI ∗
Φ41(g) Duw(g) Φ43(g) Φ44(g)









< 0,

g = ga, (16)

where Φ41(g), Φ43(g) and Φ44(g) are defined the same way

as in Theorem 1. By letting Q to be in the form of (7), we

can reduce inequality (16) to the following LMI,












Ω11(g) ∗ ∗ ∗ ∗
ΩT

12(g) F1 + F T

1 ∗ ∗ ∗

B̂T

w(g) 0 −γI ∗ ∗

Ω41(g) Ω42(g) D̂zw(g) −γI ∗

Ω51(g) Ω52(g) D̂uw(g) Ω54(g) Ω55(g)













< 0,

g = ga. (17)

Mode 3: h/ga < |u| < h.

In this mode, we have û = u and |ua(t)| = h/ga. Define

g(t) = û(t)
ua

, then g(t) ∈ [1, ga] and the closed-loop system

takes the form of (13) with ga replaced by g(t) ∈ [1, ga].
Also, it is easy to see that |u| ga − h ∈ (0, hga). Thus, as in

Mode 2, the S-procedure can be invoked to show that (11)

is implied by












Ω11(g) ∗ ∗ ∗ ∗
ΩT

12(g) F1 + F T

1 ∗ ∗ ∗

B̂T

w(g) 0 −γI ∗ ∗

Ω41(g) Ω42(g) D̂zw(g) −γI ∗

Ω51(g) Ω52(g) D̂uw(g) Ω54(g) Ω55(g)













< 0,

g ∈ {1, ga}. (18)

Combining the derivation in all the three modes above, we

arrive at following theorem that characterizes the L2 gain of

the closed-loop system as depicted in Fig. 3.

Theorem 3: The closed-loop system with the anticipatory

activation of the anti-windup compensator, as depicted in Fig.

3, is stable and the L2 gain from w to z is less than γ if

there exist a scalar M > 0 and matrices Y > S > 0, F1,

F2, F3 and F4 such that inequalities (12) and (18) hold. If

these LMIs are feasible, then the anti-windup matrices can be

obtained as Aaw = F1S
−1, Baw = F3M

−1, Caw = F2S
−1

and Daw = F4M
−1.

IV. SIMULATION RESULTS

Consider system (1) and controller (2) with h = 1 and





Ap B2 B1

C2 D22 D21

C1 D11 D12



=













−10.6 −6.09 −0.9 1 0
1 0 0 0 0
0 1 0 0 0

−1 −11 −30 0 0
−1 −11 −30 −1 0













,

[

Ac Bcy Bcw

Cc Dcy Dcw

]

=





−80 0 1 −1
1 0 0 0

20.25 1600 80 −80



 ,

which were originally considered in [8] and [12].

We carried out the anti-windup designs for immediate,

delayed and anticipatory activation, respectively. For the

immediate activation scheme, we obtained a γ = 58.5760.

For the delayed activation scheme, we selected gd = 0.1700
and obtained a γ = 59.5600. For the anticipatory activation

scheme, we selected ga = 1.0017 and obtained a γ =
58.9520. The resulting dynamic anti-windup compensators

are given respectively by


















































































































































































Aaw =













−1.0874× 1010 −1.1492× 1011

1.9051× 104 2.0133× 105

−1.5403× 103 −1.6278× 104

3.6226× 108 3.8286× 109

1.4950× 109 1.5800× 1010

−6.4631× 1010 3.8083× 103 2.1109× 105

1.1323× 105 −7.0336× 10−3 −3.6408× 10−1

−9.1551× 103 5.6837× 10−4 2.9465× 10−2

2.1532× 109 −1.9314× 102 −6.6148× 103

8.8857× 109 −5.2795× 102 −2.9571× 104













,

Baw =













−5.1409× 10−1

− 1.7534× 10−6

− 1.0654× 10−7

1.7130× 10−2

7.0678× 10−2













,

Caw =





4.4387× 108 4.6911× 109

1.4939× 109 1.5789× 1010

−1.0874× 1010 −1.1492× 1011

2.6382× 109 −1.4321× 102 −8.1762× 103

8.8796× 109 −5.2857× 102 −2.9551× 104

−6.4630× 1010 3.7880× 103 2.0949× 105



 ,

Daw =





2.0959× 10−2

7.0630× 10−2

4.8565× 10−1



 (immediate activation),
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
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



































Aaw =













−1.2883× 106 −1.3612× 107

2.7944× 104 2.9526× 105

1.9236× 102 2.0335× 103

−4.0605× 105 −4.2905× 106

5.1013× 105 5.3903× 106

−7.6452× 106 −8.0582× 10−4 4.7805× 10−5

1.6583× 105 1.7191× 10−5 −1.0118× 10−6

1.1415× 103 1.4990× 10−7 −9.3817× 10−9

−2.4097× 106 −5.2909× 101 −8.4145× 100

3.0281× 106 −1.2432× 101 −1.0436× 103













,

Baw =













−1.7316× 10−4

−7.5069× 10−6

−1.3068× 10−7

−1.0818× 10−4

1.2999× 10−4













,

Caw =





−1.2104× 106 −1.2789× 107

5.2080× 105 5.5030× 106

−9.9063× 105 −1.0467× 107

−7.1830× 106 2.7089× 101 −8.4144× 100

3.0913× 106 −1.3432× 101 −1.0436× 103

−5.8770× 106 −2.0251× 101 −1.6000× 103



 ,

Daw =





−4.9997× 10−4

1.3487× 10−4

9.9853× 10−1



 (delayed activation),
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













































Aaw =













− 8.9300× 107 −9.4372× 108

2.1252× 104 2.2458× 105

1.2953× 102 1.3699× 103

1.1142× 107 1.1775× 108

4.4961× 107 4.7515× 108

−5.2966× 108 6.9725× 100 1.7226× 102

1.2604× 105 −2.0453× 10−3 −3.1784× 10−2

7.6827× 102 2.0221× 10−5 −9.7502× 10−4

6.6086× 107 −6.4107× 101 5.4501× 102

2.6668× 108 −2.1919× 101 −1.5963× 103













,

Baw =













− 1.5668× 10−2

− 1.0810× 10−7

− 2.5062× 10−8

1.9661× 10−3

7.9086× 10−3













,

Caw =





1.1345× 107 1.1989× 108

4.4959× 107 4.7512× 108

−8.7085× 107 −9.2031× 108



 ,

6.7289× 107 1.4330× 101 5.8151× 102

2.6667× 108 −2.2899× 101 −1.5968× 103

−5.1653× 108 −1.3452× 101 −1.4320× 103



,

Daw =





1.9584× 10−3

7.9087× 10−3

9.8434× 10−1



 (anticipatory activation).

We note that the L2 gain resulting from the anticipatory

activation design is slightly lower than the L2 gain resulting

from the delayed activation design, but it is slightly higher

than the L2 gain resulting from the immediately activation

design. The real performance difference appears in the tran-

0 5 10 15 20

−30

−20

−10

0

10

20

30

Time (s)

P
la

n
t 

o
u
tp

u
t

 

 

Reference

Absence of saturation

Immediate activation of AW

Delayed activation of AW

Anticipatory activation of AW

0 5 10 15 20

−6

−4

−2

0

2

4

6

Time (s)

P
la

n
t 

in
p
u
t

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time (s)

P
la

n
t 

o
u
tp

u
t

0 5 10 15 20

−1

−0.5

0

0.5

1

Time (s)

P
la

n
t 

in
p
u
t

Fig. 4. Transience performance for two different reference inputs under
three different anti-windup schemes: immediate activation, delayed activa-
tion and anticipatory activation. Left plots: larger reference input. Right
plots: smaller reference input.
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Fig. 5. A zoom-in view of top left plot in Fig. 4.

sience response in tracking a reference signal (see Figs. 4-6).

The anticipatory anti-windup design achieves a much better

transience performance than both the delayed activation and

immediate activation design, especially when the magnitude

of the reference signal is high.

V. CONCLUSIONS

This paper considered the problem of dynamic anti-

windup design. We proposed to activate the anti-windup

compensation in anticipation of actuator saturation. Condi-

tions are established in terms of LMIs under which the result-

ing closed-loop system is stable with a prescribed level of L2

gain from the disturbance to the controlled output. Based on

these conditions, the problem of designing a dynamic anti-
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Fig. 6. A zoom-in view of top right plot in Fig. 4.

windup compensator for anticipatory activation is formulated

and solved as an LMI optimization problem. Simulation

results show that such a “precautionary” approach has the

potential of resulting in better closed-loop performances

in tracking reference signals, in comparison with both the

design for immediate activation and the design for delayed

activation.
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