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Abstract— Large control signal derivatives or inter-sample
differences may harm actuators. An optimization constraint
limiting such variations, related to measurement noise, is
derived. Using the constraint, optimal PI, PID and measure-
ment filters with different orders are designed for several
processes and compared to the optimal linear controller of
high order found via Youla parametrization. Simulations of
load disturbance rejections and measurement noise sensitivities
are shown and conclusions on filter order selection for PI and
PID controllers are drawn.

I. INTRODUCTION

Proportional-Integral (PI) and Proportional-Integral-

Derivative (PID) controllers have been used for decades and

are still today the most commonly used controllers in for

instance process industry, see [1]. Several tuning methods

exist and during the recent years a considerable research

effort has been made for improvements, both in robustness

and disturbance rejection. However, in practice, as noted

in [2], PI controllers are often chosen over PID controllers

even though a considerable improvement can be made by

adding a derivative part. One reason mentioned is the noise

sensitivity introduced by the derivative part. This may give

undesirable control signal variations, leading to expensive

wear of actuators. Controller de-tuning is one remedy, used

in e.g., λ-tuning and internal model control, see [3] and [4],

while another is to set controller parameter bounds, see [5].

For PID, derivative filters of order one is commercial

standard, where the time constant has a preset relation to

derivative time [6]. However, as shown in [2], the filter cut-

off frequency may have a significant impact on both perfor-

mance and noise sensitivity and should thus be part of the

design procedure of the controller. Recently, four-parameter

tunings have emerged. In [7] and [8] an upper bound on the

H∞-norm of the transfer function from measurement noise

to control signal is used while tuning PID controllers with

first order filters. The H2-norm of the transfer function is

used in [9] together with PI and PID controllers with order

one roll-off by using appropriate filters. In [10], PID is used

with a second order filter together with H∞-norm constraints

on the transfer functions from noise to control signal and its

derivative.

Light filtering of measured signal implies ability to react

fast to load disturbances but gives often undesirable varia-

tions in control signal due to noise, while substantial filtering

yields the opposite if the same controller settings are used.

There is hence a trade-off and a need for quantifying perfor-
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Fig. 1. Process P , controller C, and measurement filter F .

mance gains and noise rejection abilities for different filter

orders when constraints are set on control signal behaviour.

In this paper, such a behaviour constraint is presented,

involving the closed loop transfer function from noise to

control signal, that is related to measurement noise and

practical considerations. Optimal PI(D) controllers and noise

filters with different orders together with optimal linear

high order controllers will be designed. Simulations of load

disturbances and noise rejection abilities will be shown for

the different control structures.

II. SPECIFICATIONS ON CONTROL SIGNAL

A. Control Signal Inter-Sample Amplitude Difference

The control structure considered can be found in Figure 1

with process P and controller C with the measurement filter

F such that CF is at least proper. Controlled process output

is denoted f and measured output y, while the control signal,

measurement noise and load disturbance are denoted u, n and

d, respectively. As mentioned in Section I, a highly varying

control signal is undesirable due to e.g., wear of actuators. It

is important to emphasize that in most cases it is not the size

of the control signal amplitude, assuming it is in actuator

range, that may be harmful. It is rapid fluctuations in the

control signal that may cause most damage.

Fluctuations in the control signal can be seen by e.g.

large derivatives or large inter-sample differences. Since the

control signal is in discrete time with constant value between

sampling instants, the approximation of the derivative, i.e.,

∆u/h, where ∆u is the inter-sample amplitude difference

and h is the sampling period, will be used. Assuming that

the measurement noise is white with zero mean and standard

deviation σn, then the discrete time derivative of the control

signal will be zero mean with standard deviation

σ∆u

h
=

∥

∥

∥

∥

z − 1

zh

CF

1 + PCF

∥

∥

∥

∥

2

σn, (1)

where σ∆u is the standard deviation of ∆u.

The above measure may be used to constrain control signal

movement, and two different view points may be taken,

1) Considering control signal derivative, as used in veloc-

ity limiters, see [11].
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2) Considering inter-sample differences associated with

e.g., full control signal range.

The two view points are application and user dependent and

differ only in a scaling factor of h−1 in Eq. (1), and are

thus identical. In the sequel, the inter-sample difference view

point will be used, removing h−1 from both sides.
Since ∆u is a stochastic process, a measure of the control

signal activity is how large part of the distribution of ∆u is

outside a certain limit, ±∆ulimit. Assuming that α percent

of the control activity is allowed outside the limit and using

that ∆u is normal, leads to the relation

∆ulimit = σ∆uλα/2, (2)

where λα/2 is a quantile for a normal distribution, giving
∥

∥

∥

∥

z − 1

z

CF

1 + PCF

∥

∥

∥

∥

2

=
∆ulimit

σn
· 1

λα/2
.

Since equality does not have to be fulfilled at controller

design, the constraint becomes
∥

∥

∥

∥

z − 1

z

CF

1 + PCF

∥

∥

∥

∥

2

≤ ∆ulimit

σn
· 1

λα/2
.

This constraint relates directly to measurement signal quality,

i.e., measurement noise, and allowed control signal move-

ment. When used at feedback system design, it can specify

how active the control signal may be.
1) Constraint Properties: Some properties of the

constraint may be remarked,

– smaller α, i.e., less accepted activity outside the limits,

yields larger λα/2 and a tighter constraint.

– more noise, i.e., larger σn, yields tighter constraint.

– larger inter-sample difference acceptance, i.e., larger

∆ulimit, yields softer constraint.

2) Specifying Constraint Limit: The noise variance σn

may be estimated using standard techniques on measurement

data, see e.g., [11], while the inter-sample amplitude limit

may be related to control signal range and actuator proper-

ties. Selecting α will then determine the contraint. However,

these specifications may be scaled in relation to each other

yielding the same upper limit. For simplicity, ∆ulimit and σn

are set equal, and all specifications are collected in α, leading

to the simplified constraint
∥

∥

∥

∥

∆z
CF

1 + PCF

∥

∥

∥

∥

2

≤ 1

λα/2
, (3)

where ∆z = (z − 1)/z has been introduced.

B. Control Signal Energy

The constraint in section II-A limits rapid variations in

the control signal. However, also control signal energy and

low frequency variations due to measurement noise should

be considered. As in [9], the variance of the control signal

amplitude due to noise is used, i.e.,

σ2
u

σ2
n

=

∥

∥

∥

∥

CF

1 + PCF

∥

∥

∥

∥

2

2

≤ η2.

The limit η is application dependent, and for simplicity

chosen to 1 when investigating the constraint in section II-A,

yielding no energy amplification of the noise.

III. FEEDBACK STRUCTURES

A. PID and Measurement Filter

The considered PI(D) controllers are on parallel form, i.e.,

C(s) = KC (1 + 1/Tis+ Tds) ,

where the integral and derivative parts are discretized using

forward and backward differences, respectively, with sam-

pling period h. For comparison, three different measurement

filters will be used such that the controllers have roll-offs of

orders 0–2 in continuous time, i.e., a PI without filter will

also be compared. Using roll-off less than 2 would not be

possible if continuous time was considered, using that ∆z/h
corresponds to s, since the transfer function in Eq. (3), with a

proper process, must be strict proper in this case. The filters

are restricted to have at most two tuning parameters, yielding

few optimization variables. A natural choice is the damping

ζ and time constant Tf of the filters, and thus the three

different filters are chosen as

F1(s) =
1

sTf + 1
, F2(s) =

1

s2T 2
f + 2ζTfs+ 1

,

F3(s) = F1(s)F2(s),

(4)

and sampled using zero-order hold technique. Note that the

third order filter does not have full degree of freedom when

choosing poles since only two parameters may be specified.

B. Youla Parametrization

For evaluation of designed PI(D) controllers and measure-

ment filters, the optimal linear controller of high order, i.e.,

the Youla parametrization, also known as Q-parametrization,

will be used. Additionally, this controller will give a perfor-

mance bound. Consider the generalized process in Figure 2,

G =

[

Gzw Gzu

Gyw Gyu

]

,

where z is controlled outputs, y measured output, u con-

trolled input and w exogenous inputs, with negative SISO

feedback K . Closing the loop yields

Hzw = Gzw −GzuK (I +GyuK)
−1

Gyw

= Gzw −GzuQGyw,

where Q = K (I +GyuK)
−1

. If G is stable, then Hzw is

stable for all stable transfer functions Q.

Choosing G properly, many convex control costs and

specifications, including those used in this paper, may be set

on the individual elements of Hzw. They are convex in Q
due to the affine relationship between Hzw and Q. However,

since Q may be any stable transfer function, the search

space when optimizing over Q is infinite dimensional. For

numerical computations, Q is parametrized as a FIR filter,

Q(z) =

N−1
∑

i=0

qiz
−i,

where N is the length and the convexity properties are found

in the qi coefficients. This methodology is found in e.g.,

[12] and [13], and implemented in the toolbox QTOOL, see

[14], which is used when solving the optimization problem
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Fig. 2. Setup with generalized process G, SISO negative feedback
controller K , exogenous inputs w, control input u, controlled outputs z

and measured output y.

to be stated. Finding K from Q is a direct calculation as the

mapping is unique. Compared to PI(D) control, no additional

measurement filter will be designed, it is incorporated in K
directly. Choosing N large, then K , and thus Hzw, may

be shaped almost arbitrarily as long as the constraints are

respected.

IV. OPTIMIZATION PROBLEM

A. Optimization Problem Formulation

The integrated absolute error (IAE) at a load disturbance

step is used as objective function to minimize, see e.g., [3].

Robustness towards multiplicative and inverse multiplicative

uncertainties, see [15], may be achieved by constraining the

H∞-norm of the sensitivity functions,

S =
1

1 +KP
, T =

KP

1 +KP
,

where K is the feedback transfer function, e.g., controller

and measurement filter. Frequency independent upper limits

MS and MT as in e.g., [3], hold the number of optimization

parameters to select reasonably small.

With a load disturbance step applied at process input

at initial time when the system is in steady state, the

optimization problem may be stated as

minimize
K

h

∞
∑

k=0

|f(k)| (5a)

subject to ‖S‖∞ ≤ MS (5b)

‖T ‖∞ ≤ MT (5c)

‖KS‖
2
≤ η (5d)

‖∆zKS‖
2
≤ 1/λα/2, (5e)

where K contains PI(D) and measurement filter parameters

or FIR coefficients at Youla parametrization. In the case of

PI(D) control, K is factorized as K = CF as in Section II.

B. Additional Constraints on PI(D) Measurement Filters

Two constraints on the filter parameters are set. They will

restrain the PI(D) and measurement filter from being a richer

structure compared to how they are normally used.

1) Damping ζ: In [7], a ζ around 0.4 is used as a

rule of thumb for a second order filter. However, a small

ζ may give oscillations in the control signal due to the

amplitude peak and in general, a measurement filter may

only perform attenuation of the measured signal. The filters

defined in Eq. (4) have static gain 1 and if the damping

coefficient is restricted to be greater than 1/
√
2, this is

fulfilled. Additionally, to have only one break point of the

filter, defined by Tf , an upper limit of 1 is set on ζ, giving

the following constraint in the optimization problem,

ζ ∈
[

1/
√
2, 1

]

.

2) Time constant Tf : The time constant of the measure-

ment filter must be smaller than the inverse of the largest

modulus of the controller zeros. That is, filtering is only

present at higher frequencies than e.g., the derivative action

start frequency of a PID controller. Since the system is

sampled, the filter cut-off frequency must be lower than the

Nyquist frequency. Thus, the filter time constant is restrained

to be in the interval

Tf ∈
[

h

π
, Ti

]

, or (6a)

Tf ∈





h

π
,

∣

∣

∣

∣

∣

1

2Td
+

√

1

4T 2
d

− 1

TiTd

∣

∣

∣

∣

∣

−1


 , (6b)

for PI and PID, respectively. The upper limits are derived

from continuous time controllers and hold approximately for

discrete time versions if high enough sampling rate.

C. General Process for Youla Parametrization

The considered process P in Figure 1, with control signal

u and load disturbance d, process output f , and measured

output y, may be written in state-space form as

xk+1 = Axk +Buk +Bdk

fk = Cxk +Duk +Ddk

yk = fk + nk.

Letting ud
k = uk + dk, we can define the general signals

– Control input: uk

– Exogenous inputs: wk =
[

dk nk

]T

– Controlled outputs: zk =
[

fk ud
k ∆uk

]T

– Measured output: yk
which gives the following generalized process G, using the

state vector xe
k+1 =

[

x
T
k+1 uk

]T
,

x
e
k+1 =

[

A 0

0 0

]

x
e
k +

[

B 0 B

0 0 1

]





dk
nk

uk





[

zk

yk

]

=









C 0
0 0
0 −1
C 0









x
e
k +









D 0 D

1 0 1
0 0 1
D 1 D













dk
nk

uk



 .

The closed loop transfer function from wk to zk is then

Hzw =







PS −T

S −KS

−∆zT −∆zKS






,

containing all relevant transfer functions for stability analysis

and to solve the optimization problem in Eq. (5). Hzw may

be used directly in QTOOL, see [14], by associating the

objective cost in time domain and constraints in frequency

domain with the corresponding matrix elements. The result-

ing optimization problem is solved using YALMIP [16] and

SEDUMI [17] with built-in functions in QTOOL [14].
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V. PROCESS BATCH

As pointed out in [3], PI(D) control is not suitable for

all processes. An appropriate process batch was given with

process dynamics ranging from first to eighth order, with

or without time delays. The batch includes integrating, non-

oscillative, and oscillative processes as well as processes with

non-minimum phase zeros. A subset of the batch has been

used in e.g., [7] and [8] to evaluate four parameter designs

for PID. The optimization problem posed in section IV-A

has been solved for the batch for PI and PID control with

different filter orders and for Youla parametrized controllers.

VI. PERFORMANCE COMPARISON

The optimization problem for PI(D) and measurement

filter is solved using the Optimization ToolboxTM, Control

System ToolboxTM and Simulink R© in MATLAB
R©, see [18],

[19] and [20]. Two processes from the batch serve as

examples, using sampling time h = 0.02 and the constraints

MS = MT = 1.4, η = 1,

α = 15% yielding 1/λα/2 = 0.97.

With load steps of amplitude 1 and measurement noise with

standard deviation of 0.025, the performances of the different

feedback designs will be shown.

A. Example I: P1(s) = 1/((s+ 1)(0.5s+ 1))
Optimization results for P1, i.e., IAE, constraint function

values and controller parameters, can be found in Table I

and Figure 3 shows load disturbance and noise responses.

For low order processes such as P1, a PI controller is

often considered sufficient. With no filter action, KC is the

high frequency gain, yielding it sensitive to the constraint

in Eq. (5e). However, adding filter action of order 1, the

inverse of the integral gain, i.e., Ti/KC , a good estimate of

IAE for closed loop systems with essentially monotone load

step response, may be decreased. This effect is also seen in

Figure 4, showing the feedback transfer functions, where the

small filter time constant makes the amplitude curve drop at

high frequencies. The phase tends to −180◦ due to the filter

sampling. Increasing noise filter order to 2 has small effect

on the responses, see figures 3 and 4. The optimal second

order filter has damping ζ = 1/
√
2, i.e., as low as possible,

TABLE I

OPTIMAL CONTROLLERS FOR P1(s) = 1/ ((s+ 1)(0.5s + 1)).

Typeorder IAE ‖S‖∞ ‖T‖∞ ‖KS‖2 ‖∆zKS‖2

PI0 1.15 1.40 1.10 0.70 0.97
PI1 0.77 1.40 1.04 0.91 0.97
PI2 0.76 1.40 1.05 1.00 0.97
PID1 0.77 1.40 1.04 0.91 0.97
PID2 0.55 1.40 1.13 1.00 0.38
PID3 0.59 1.40 1.12 1.00 0.30
Youla 0.47 1.40 1.17 1.00 0.43

KC Ti Td Tf ζ

PI0 0.69 0.65 – – –
PI1 1.38 1.07 – 0.022 –
PI2 1.39 1.05 – 0.012 0.71
PID1 1.38 1.07 0 0.022 –
PID2 2.11 1.06 0.27 0.150 0.71
PID3 2.06 1.11 0.29 0.087 0.98
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Fig. 3. Top to bottom, responses for (indices denote filter order): PI0,
PI1, PI2, PID1 (PI1), PID2, PID3, and Youla param. controller at step load
disturbance and measurement noise for P1(s). Upper: Output y. Middle:
Control signal u. Lower: Inter-sample control signal differences ∆u. Biases
with steps of 0.1 have been added for separation.
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Fig. 4. Optimal PI controllers and measurement filters (indices denote filter
order), PI0 (–), PI1 (- -) and PI2 (-·-) for P1(s).

which has a more distinct cut-off than a first order filter.

Due to the increased roll-off, the filter time constant may be

halved compared to first order filter, still fulfilling the high

frequency emphasizing constraint in Eq. (5e). However, this

increases the constraint function in Eq. (5d), see Table I.

For PID control, with a first order filter, i.e., no roll-off,

and a Td > 0, Ti/KC has to be increased a considerable

amount compared to a PI with first order filter to fulfill

the control signal constraints. This is due to the additional

constraint in Eq. (6b), yielding that with Td close to 0

and first order filter, the feedback will essentially be a

PI without any filter action. For a first order filter, it is

thus optimal to choose Td = 0, recovering a PI controller

while using the constraint in Eq. (6a) instead. However,

increasing filter order, i.e., roll-off in the feedback, derivative

action may be allowed, increasing performance significantly,

see Table I and Figure 3. The optimal second order fil-

ter has ζ = 1/
√
2, thus trying to save as much of the

phase and gain at mid-frequencies as possible. However,
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controller (grey) for P1(s).

the increased mid-frequency gain requires larger filter time

constant, Tf = 0.150, such that enough attenuation is given

at high frequencies to hold the control signal constraints.

This implies that control effort is shifted towards lower

frequencies, i.e., the control signal energy constraint is active

instead of the control signal inter-sample difference, see

Table I and responses in Figure 3. This decreases e.g., wear

on actuators. Third order filter decreases the inter-sample

differences further, but to the cost of increased IAE. The

damping of the optimal third order filter is large and a smaller

filter time constant is possible due to the higher roll-off.

To evaluate PI(D) control performance, a Youla

parametrized controller with N = 1000, corresponding to

a 20 s. long FIR filter, was designed. Performance results

can be found in Table I and Figure 3 and controller transfer

function is shown in Figure 5. There are strong similarities

between PID control with filter order higher than 1 and

the Youla controller. The same constraints are active and

the magnitude of the feedback transfer function has the

same characteristics. Due to the high order, the Youla

controller is able to give a higher peak and phase advance at

mid-frequencies and also phase advance at high frequencies.

This contributes to the only 15% better IAE value than the

optimal PID with second order filter, showing that PID is

close to optimal for this process when control signal and

robustness constraints are set.

B. Example II: P2(s) = 1/(s+ 1)4

Increased complexity of the process, comparing P1 and

P2, often requires increased complexity of the controller

for good performance. PI and PID controllers and a Youla

parametrized controller were designed for P2 and the re-

sults are found in Table II while step and noise responses

are seen in Figure 6. Pure PI control is not able to be

sufficiently aggressive for the control signal constraints to

be active and hence, adding a measurement filter will not

increase performance. However, adding derivative gain and

a first order filter and thus increasing controller complexity,

decreases IAE but at the same time increases noise sensitivity

seen by the active constraint of inter-sample control signal

amplitude. Compared to P1, it is however possible to have

PID control with a first order measurement filter, although

TABLE II

OPTIMAL CONTROLLERS FOR P2(s) = 1/(s+ 1)4 .

Typeorder IAE ‖S‖∞ ‖T‖∞ ‖KS‖2 ‖∆zKS‖2

PI0,1,2 5.24 1.40 1.00 0.43 0.61
PID1 4.45 1.40 1.00 0.68 0.97
PID2 3.05 1.40 1.04 1.00 0.37
PID3 3.13 1.40 1.04 1.00 0.21
Youla 2.34 1.40 1.04 1.00 0.31

KC Ti Td Tf ζ

PI0,1,2 0.43 2.26 – – –
PID1 0.80 3.41 1.16 1.37 –
PID2 0.95 2.44 1.19 0.21 0.71
PID3 0.93 2.46 1.20 0.14 0.71

the derivative gain is small since the filter cancels much of

the gain, see Figure 7 for the feedback transfer functions. The

phase of the feedback at high frequencies tend to −180◦ due

to sampling effects. The upper limit on Tf from Eq. (6b) is

approximately 2, which the optimal value is close to. With

orders 2 and 3 of the filter, a larger derivative action may

be used since the filters are able to decrease feedback gain

at high frequencies. The optimal filters have low damping,

ζ = 1/
√
2 and significantly smaller Tf , 0.21 and 0.14,

respectively. This yields as much as possible of the derivative

phase advance and gain can be used to increase performance,

as seen in Table II, which also shows that control action is

shifted to lower frequencies compared to a first order filter.

This effect is also seen in figures 6 and 7.

The Youla parametrized controller with N = 1200 has

again the same magnitude characteristics as a PID with

higher order filter, see Figure 7. It is able to give larger

amplification and phase advance at mid-frequencies than

a derivative part due to its high order, which yields a

23% better performance than the optimal PID controller.

Optimizations without the lower bound on ζ have been

performed, yielding the resulting measurement filter to give

a peak to the feedback similar to the Youla parametrized

controller and results in [10]. However, in this case, the filter

is more than a noise attenuating filter.

VII. GENERAL RESULTS AND CONCLUSIONS

For low order simple processes, e.g., first and well damped

second order dynamics, PI control is sufficiently aggressive

for at least one of the control signal constraints to be

active. It has also been noted that, in general, if no filter

is used, the control signal inter-sample constraint is active

while control signal amplitude constraint is far from active.

Adding a filter increases performance significantly and yields

more control signal energy in mid-frequencies, increasing

the control signal amplitude constraint function, as was seen

for P1. However, for higher order and oscillative processes,

PI control will in general not give active control signal

constraints if not set very hard. It has also been noted that the

performance difference between no filter and first order filter

for PI control is significant when control signal constraints

are active, while the difference between first and second

order filter is small, which was seen for P1.

PID control, with its derivative action, is for the process

batch in general able to have at least one of the control
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filter order), PI0,1,2 (gray - -), PID1 (–), PID2 (- -) and PID3 (-·-) and Youla
parametrized controller (grey – ) for P2(s).

signal constraints active due to the derivative action. A PID

controller with a first order filter often have very small or no

derivative action since the filter cancels it to hold the control

signal constraints. When using second or third order filters,

which in general has as low damping as possible to save

phase advance and gain, performance is increased. Due to

the roll-off, smaller filter time constants may be used, noise

sensitivity is decreased, and control signal energy is shifted

to mid-frequencies where it is less harmful for actuators. The

difference between second and third order filters is however

slight. This filter effect was seen in both examples.

Youla parametrized controllers, that due to high orders

have the ability to choose the most important frequencies in

the feedback, emphasizes the importance of increased gain

and phase advance at mid frequencies with a strong peak

and roll-off in the feedback, as shown in the examples. For

the constraints set in section IV-A and considered processes

without large time delays, the magnitude of the Youla

parametrized controller is very similar to a PID controller

with roll-off apart from having a slightly more defined peak

at mid-frequencies, compare to [10]. However, this is not

realizable by the PI(D) controllers due to the constraint

on ζ. Processes with large time delays yield the Youla

parametrized controllers to give feedback similar to dead-

time compensating control.

Numerical values of α and η are application dependent

and the values set in this paper may be used as starting

point. As seen from the simulations, the control signal inter-

sample amplitude constraint will limit e.g., wear on actuators,

and together with the characteristics of Youla parametrized

controllers, it is concluded that measurement filters should

be chosen such that roll-off is present in the feedback.
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