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Abstract— In this paper, we address semistability analysis
of a class of distributed iterative algorithms for discrete-
time switched network systems. Semistability is the property
whereby every solution that starts in a neighborhood of a
Lyapunov stable equilibrium converges to a (possibly different)
Lyapunov stable equilibrium. To this end, we use a Lyapunov-
based approach to develop a series of sufficient conditions for
semistability of discrete-time switched systems. This technique
gives us a new perspective to design distributed numerical iter-
ative algorithms for network systems from a dynamical systems
viewpoint. Despite the fact that distributed iterative algorithms
in general are not dynamical systems, the methods we used
for proving convergence of dynamical systems are somehow
valid for a large class of distributed iterative algorithms in
network systems. The motivation of this paper exactly follows
from this general observation. Part of the effort by this paper
can be viewed as an attempt to analyze distributed numerical
algorithms for network systems from a control perspective.

I. INTRODUCTION

The distributed agreement problem arises in the context

of coordination of networks of autonomous agents, and in

particular, the consensus or agreement problem among the

agents. Distributed agreement problems have been studied

extensively in the computer science literature [1]–[4]. Re-

cently it has found a wide range of applications, in areas such

as formation control of underwater autonomous vehicles [5],

coordination of mobile robots [6], [7], and sensor networks

[8], [9].

Many current iterative policies for the agreement problem

are assumed to be either stationary structures or switching

structures [10]–[17], which can be unified to analyze un-

der a time-invariant differential inclusion framework. How-

ever, there is a limitation for many networking problems

since time-dependent communication links are widespread

in multi-agent coordination, ad hoc or peer-to-peer network

routing, and distributed algorithm design. Hence, the time-

dependent agreement problem was studied under different

circumstances [1], [2], [18]–[20]. Even though many time-

dependent agreement protocol algorithms have been devel-

oped over the last several years in the literature (see [1],

[2], [18]–[20] and the numerous references therein), stability

properties of these time-varying algorithms have been largely

ignored. Stability here means that small perturbations from

the steady state will lead to only small transient excursions
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from a state of consensus. It is important to note that this

stability is different from the standard notion of convergence

and, hence, leading to a more involved analysis.

In this paper, we address semistability analysis of a class

of distributed iterative algorithms for discrete-time switched

network systems, which is named for the semistable dynamic

iterative agreement (SDIA) problem. Semistability is the

property whereby every solution that starts in a neighborhood

of a Lyapunov stable equilibrium converges to a (possi-

bly different) Lyapunov stable equilibrium. Here “dynamic”

means that the iterative algorithm is a time-dependent algo-

rithm and “agreement” means that the semistable equilibria

are in the subspace of all ones vector. To this end, we use

a Lyapunov-based approach to develop sufficient conditions

for semistability of the SDIA system. This technique gives

us a new perspective to design numerical iterative algorithms

from a dynamical systems viewpoint. Despite the fact that

iterative algorithms in general are not dynamical systems,

the methods we used for proving convergence of dynamical

systems are somehow valid for a large class of iterative

algorithms. The motivation of this paper exactly follows from

this general observation. Part of the effort by this paper can

be viewed as an attempt to analyze numerical algorithms

from a control perspective [21].

There are several applications in which semistability can

be seen to be the appropriate notion of stability. Besides

the case of the distributed agreement problem, we can

mention the stability of the lateral dynamics of an aircraft

in trimmed level flight. For sideslip disturbances affecting

the angle between the longitudinal axis and the velocity

vector, the vertical tail is designed to influence yaw so as

to cause the sideslip angle to converge to zero. However,

the heading angle will not generally converge to the pre-

disturbance heading angle. The offset in the final equilibrium

is a reflection of semistability, which in the literature is

referred to as directional or weathercock stability [22]. This

form of stability is evident from the form of the rudder-

to-heading-angle transfer function which includes an inte-

grator, that is, a simple pole at the origin. Nevertheless,

this observation cannot be applied for nonlinear systems like

switched systems. Hence, it is worth a thorough investigation

on semistability of a class of nonlinear systems like switched

systems.

II. MATHEMATICAL PRELIMINARIES

The notion we use in this paper is fairly standard. Specif-

ically, R denotes the set of real numbers, Z+ (resp., Z+)
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denotes the set of nonnegative (resp., positive) integers, R
n

denotes the set of n× 1 real column vectors, R
n×m denotes

the set of n× m real matrices, (·)T denotes transpose, (·)#

denotes the group generalized inverse, and In or I denotes

the n × n identity matrix. Furthermore, we write ‖ · ‖ for

the Euclidean vector norm, R(A) and N (A) for the range

space and the null space of a matrix or operator A, and

A ≥ 0 (resp., A > 0) to denote the fact that the Hermitian

matrix A is nonnegative (resp., positive) definite. Finally, we

write Bε(x), x ∈ R
n, ε > 0, for the open ball with radius ε

and center x.

We consider a network characterized by a directed graph

G = (V , E) consisting of the set of nodes V = {1, . . . , q}
and the set of edges E ⊆ V×V , where each edge (j, i) ∈ E is

an ordered pair of distinct nodes indicating a communication

from j to i. The set of neighbors of node i is denoted by

Ni = {j ∈ V : (j, i) ∈ E}. Finally, we denote the value of

the node i ∈ {1, . . . , q} at time t by xi(t) ∈ R.

Each node i holds an initial value on the network xi(0) ∈
R. The network gives the allowed communication between

two nodes if and only of they are neighbors. We are

interested in computing the average of the initial values,

(1/q)
∑q

i=1 xi(0), via a stable distributed algorithm in which

the nodes only communicate with their neighbors.

In this paper, we consider distributed linear iterations given

by the form

xi(t + 1) = W(i,i)(t)xi(t) +
∑

j∈Ni

W(i,j)(t)xj(t),

i = 1, . . . , q, t ∈ Z+, (1)

where W(i,j)(t) denotes the weight on xj at node i and time

step t. Letting W(i,j)(t) = 0 for j 6= Ni, this iteration can

be rewritten as a compact form

x(t + 1) = W (t)x(t), t ∈ Z+, (2)

where x(t) = [x1(t), . . . , xq(t)]
T ∈ R

q, W : Z+ → R
q×q is

piecewise continuous with respect to t. Finally, the constraint

on the matrix W (t) can be expressed as W (t) ∈ W , where

W = {W ∈ R
q×q : W(i,j) = 0 if (i, j) 6∈ E

and i 6= j}. (3)

Remark 2.1: The time-dependent discrete-time linear iter-

ation (2) is a dynamical system. If we denote the solution

to (2) with initial condition x(t0) = x0 by s(·, t0, x0),
then the map of the dynamical system given by s :
Z+ × Z+ × R

q is continuous and satisfies the consistency

property s(t0, t0, x0) = x0 and the semigroup property

s(k, t0, s(κ, t0, x0)) = s(k + κ, t0, x0) for all x0 ∈ R
q,

t0 ∈ Z+, and k, κ ∈ Z+. Hence, all the properties of

discrete-time dynamical systems in [23] hold for (2).

III. RELATED WORK

Unlike the fixed matrix case where W is a constant

matrix [24], [25], the time-varying matrix case is much more

involved since it is very difficult to come up with a necessary

and sufficient condition like the results in [24], [25] for W (t)

being convergent. Here we recall some conditions on the

convergence of W (t).
The first result is due to [2], [26]. To state this result, let

Tij be the set of times at which node i receives a message

from node j, containing the value of xj(t), which is used by

i to update the value of xi(t). We define E(t) as the set of

ordered pairs (j, i) such that W(i,j)(t) > 0. Thus, (V , E(t)) is

a directed graph indicating the influences between agents at

time t. Finally, let E be the set of (i, j) such that (i, j) ∈ E(t)
for infinitely many t.

Proposition 3.1 ([26]): Consider (2). Assume W(i,j)(t) ≥
0 for all i, j = 1, . . . , q and t ∈ Z+,

∑q

j=1 W(i,j)(t) = 1

for all i = 1, . . . , q and t ∈ Z+, and W(i,j)(t) = 0 for

all i, j = 1, . . . , q and t 6∈ Tij . Next, assume D ⊆ V is

nonempty and there exists α > 0 such that if (j, i) ∈ E(t),
then W(i,j)(t) ≥ α. Furthermore, assume that there exists

m ∈ Z+ such that for every t, E(t+1)∪· · ·∪E(t+m) = E ,

and the graph (V , E) contains a directed path from every

i ∈ D to every j ∈ V . Then there exist nonnegative constants

w1, . . . , wq such that limt→∞ xi(t) =
∑n

j=1 wjxj(0) for all

i = 1, . . . , q.

The above result is a general result for (2) by considering

a directed graph topology and joint connected graphs to

guarantee distributed consensus. However, it is hard to use

this result to “quantify” the optimal one since the graph con-

straints are not straightforward in the process of optimization

compared to algebraic constraints. The next result, which

is a matrix characterization of the convergence of W (t),
relies on the assumption that W (t) belongs to a finite set of

matrices. We call a square matrix W paracontracting matrix

if Wx 6= x is equivalent to ‖Wx‖ < ‖x‖.

Proposition 3.2 ([27]): Consider (2) where W (t) belongs

to a finite set of paracontracting matrices. If I is the set

of matrices Wi that appear infinitely often in the sequence

W (t), and for i ∈ I, H(Wi) denotes the eigenspace of Wi

associated with eigenvalue 1, then the sequence of vectors

x(t) has a limit x∗ in
⋂

i∈I
H(Wi).

A direct consequence of this lemma is Wolfowitz’s the-

orem given by [28], which says that if for any matrix

sequence Mi1 , . . . , Mij
of positive length selecting from a

finite set of ergodic matrices {M1, . . . , Mm}, the matrix

product Mij
Mij−1

· · ·Mi1 is ergodic, then there exists a row

vector c such that limj→∞ Mij
Mij−1

· · ·Mi1 = 1c. Here

any stochastic matrix M for which limi→∞ M i is a matrix

of rank 1 is called ergodic [29].

Using convex analysis and the set-valued Lyapunov theory,

[18] has extended the above result to the general nonlinear

system by studying the form of the difference inclusion given

by x(t + 1) ∈ co(t, x(t)), where “co” denotes the convex

hull. This famework can be viewed as a generalization of

Proposition 3.1. Due to the space limitation, we do not

consider this general form of linear iterations.

In general, finding a necessary and sufficient condition

for semistability of (2) is a widely open problem. In this

paper, we focus on a subclass of this problem labeled as the

semistable dynamic iterative agreement (SDIA) problem. We

follow the idea of [25] to develop sufficient conditions for

2603



semistability of (2) using Lyapunov functions. The merit of

using Lyapunov equations to characterize the semistability

of (2) is that numerical and optimization techniques such

as sums of squared polynomials (SOS) can be developed to

solve the SDIA problem since it turns the SDIA problem

into a semidefinite programming (SDP) problem [30], [31].

Hence, this method looks more promising in the sense of

computation than Propositions 3.1 and 3.2 to solve the SDIA

problem, particularly for a large-scale network systems. In

fact, it is not quite clear on how to use Propositions 3.1 and

3.2 to solve the proposed SDIA problem since these results

only address the convergence of (2) and the semistability of

these results has been largely ignored.

IV. LYAPUNOV-BASED ANALYSIS

In this section, we present a Lyapunov-based analysis

framework for semistability of discrete-time switched net-

work systems given by the form of (2). First, we give the

definition of semistability for switched systems.

A. Semistability

The following definition introduces the new notion of

semistability for (2). This new concept is motivated from

semistability theory of continuous-time nonlinear dynami-

cal systems [14], [17] and stability theory of time-varying

discrete-time dynamical systems [23]. To state this new

concept, we define the equilibrium point of (2) as a point

z ∈ R
q satisfying W (t)z = z for all t ≥ 0. The set of

all the equilibrium points of (2) is denoted by E, that is,

E , {z ∈ R
q : W (t)z = z ∀ t ≥ 0}. The following

assumption is a standing assumption in the paper.

Assumption 4.1: E is a connected set.

This assumption implies that (2) possesses a continuum

of equilibria instead of isolated equilibria. It creates a ma-

jor difference between our semistability theory and classic

(asymptotic) stability theory in [23]. The classic (asymptotic)

stability theory is not an appropriate notion for the stability

of dynamical systems having a continuum of equilibria as

pointed out in [14]. Hence, we need the following notion of

semistability.

Definition 4.1: i) The linear time-varying iteration (2) is

Lyapunov stable if, for every ε > 0, every xe ∈ E, and t0 ∈
Z+, there exists δ = δ(ε, t0) > 0 such that ‖x(t0)−xe‖ < δ
implies that ‖x(t) − xe‖ < ε for all t ≥ t0.

ii) The linear time-varying iteration (2) is semistable if it

is Lyapunov stable and, for every xe ∈ E and every t0 ∈ Z+,

there exists δ = δ(t0) > 0 such that ‖x(t0)−xe‖ < δ implies

that the sequence {x(t)}∞t=t0
has a limit. The linear time-

varying iteration (2) is globally semistable if it is Lyapunov

stable and the sequence {x(t)}∞t=t0
has a limit for all x(t0) ∈

R
q and t0 ∈ Z+.

It is important to note that semistability is not merely

equivalent to asymptotic stability of the set of equilibria.

Indeed, it is possible for a trajectory to converge to the

set of equilibria without converging to any one equilibrium

point as examples in [32] show. Conversely, semistability

does not imply that the equilibrium set is asymptotically

stable in any accepted sense [33]. This is because stability

of sets is defined in terms of distance (especially in case of

noncompact sets), and it is possible to construct examples in

which the dynamical system is semistable, but the domain of

semistability contains no ε-neighborhood (defined in terms

of the distance) of the (noncompact) equilibrium set, thus

ruling out asymptotic stability of the equilibrium set. Hence,

semistability and set stability of the equilibrium set are

independent notions.

Later on we will also use a slightly extended Definition 4.1

in which the ambient space is a positive invariant set instead

of R
q . In this case, Definition 4.1 still holds with respect to

this positive invariant set by replacing R
q with this set.

B. Semistability Analysis Using Common Lyapunov Func-

tions

In this part of the paper, we establish sufficient conditions

for semistability of (2) using common time-varying Lya-

punov functions. The following lemma is a standard result

for Lyapunov stability of (2) using time-dependent common

Lyapunov functions. For completeness, we include our proof

here.

Lemma 4.1: Consider the linear time-varying iteration (2).

Assume that there exists a continuous, positive-definite ma-

trix function P (t) (that is, P (t) is positive definite for every

t ≥ 0) such that P (t) ≥ αIq > 0, α > 0, for all t ≥ 0, and

P (t) = WT(t)P (t + 1)W (t) + R(t), (4)

where R(t) ≥ 0 for all t ≥ 0. Then (2) is Lyapunov stable.

The next lemma represents a convergence result for (2)

based on common Lyapunov functions.

Lemma 4.2: Consider the linear time-varying iteration (2).

Assume that there exists a continuous, positive-definite ma-

trix function P (t) such that 0 < αIq ≤ P (t), α > 0, for all

t ≥ 0, and (4) holds, where R(t) ≥ Q ≥ 0 for all t ≥ 0.

Then x(t) → N (Q) as t → ∞.

Next, we have a general result on the relationship between

convergence and semistability for (2).

Lemma 4.3: Consider the linear time-varying iteration (2).

If (2) is Lyapunov stable and x(t) → E as t → ∞, then (2)

is semistable, and hence, x(t) → x∗ ∈ E as t → ∞.

Proposition 4.1: Consider the linear time-varying itera-

tion (2). Assume that there exists a continuous, positive-

definite matrix function P (t) such that 0 < αIq ≤ P (t),
α > 0, for all t ≥ 0, and (4) holds, where R(t) ≥ Q ≥ 0 for

all t ≥ 0. Furthermore, assume that N (Q) = E. Then (2) is

semistable.

Next, we extend the notion of semiobservability for matri-

ces [25], [34] to that for operators. First, define the high order

difference operator ∆n as ∆0x(t) = x(t), ∆x(t) = x(t +
1)−x(t), and ∆nx(t) = ∆(∆n−1x(t)), where n = 1, 2, . . ..
In this case, N (∆) = {x ∈ R

q : W (t)x = x, ∀t ∈ Z+} =
E.

Definition 4.2: Let C ∈ R
m×q. The pair (∆, C) is

semiobservable if
q⋂

k=1

N (C∆k−1) = N (∆). (5)
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Proposition 4.2: Consider the linear time-varying itera-

tion (2). Assume that there exists a continuous, positive-

definite matrix function P (t) such that 0 < αIq ≤ P (t), α >
0, for all t ≥ 0, and (4) holds, where R(t) ≥ Q ≥ 0 for all

t ≥ 0. Furthermore, assume that (∆, Q) is semiobservable.

Then (2) is semistable.

C. Semistability Analysis Using Multiple Lyapunov Func-

tions

The common Lyapunov function approach is restricted in

many cases. For example, for multi-agent coordination under

switching topology [10], it was shown that there does not

exist a common quadratic Lyapunov function [35]. In this

case, it is more reasonable to use multiple Lyapunov functions

[36] to characterize semistability of (2) in which the graph

topology may not be fixed. Hence, we begin by addressing

semistability analysis of (2) where W (t) = Wσ(t)(t) ∈ P =
{1, . . . , m} becomes a sequence of matrices, that is, (2) is

given by

Gσ : x(t + 1) = Wσ(t)(t)x(t), t ∈ Z+, (6)

where σ(t) is a piecewise constant switching signal. Here

W (t) belongs to a finite set P due to the fact that the total

number of possible connected graph topologies for (2) is

finite. Let tk ∈ Z+ denotes the time instant when the graph

topology of (6) changes, k = 0, 1, 2, . . .. For 1 ≤ p < ∞, we

define ℓp to be the collection of all real sequences x = (xn)
for which

∑∞

n=1 |xn|p < ∞.

Lemma 4.4: Consider the switched time-varying iteration

Gσ given by (6). Assume that there exist positive-definite

continuous functions Vi : R
q → R with Vi(0) = 0,

i = 1, . . . , m, and nonnegative functions γij(·) ∈ ℓ1, i, j =
1, . . . , m, i 6= j, such that for i, j = 1, . . . , m,

Vik
(x(t)) − Vik

(x(s)) ≤ 0, k = 0, 1, 2, . . . ,

s, t ∈ Z+, tk ≤ s ≤ t < tk+1, (7)

Vj(x(t)) − Vj(x(s)) ≤
t−1∑

τ=s

γikj(τ), j 6= ik,

k = 0, 1, 2, . . . , s, t ∈ Z+, tk ≤ s ≤ t < tk+1. (8)

Then Gσ is Lyapunov stable.

Remark 4.1: The condition (8) is weaker than the con-

ventional non-positive condition (4). Hence, Lemma 4.4 is

stronger than Lemma 4.1.

Next, we have a convergence result for (6).

Proposition 4.3: Consider the switched time-varying iter-

ation (6). Assume that there exist positive-definite continuous

functions Vi : R
q → R with Vi(0) = 0, i = 1, . . . , m, and

continuous nonnegative functions βij(·), i, j = 1, . . . , m,

i 6= j, such that βij ◦ x ∈ ℓ1, i, j = 1, . . . , m, i 6= j,

where ◦ denotes the composition operator, (7) holds, and for

i, j = 1, . . . , m,

Vj(x(t)) − Vj(x(s)) ≤
t−1∑

τ=s

βikj(x(τ)), j 6= ik,

s, t ∈ Z+, k = 0, 1, 2, . . . , tk ≤ s ≤ t < tk+1. (9)

If β−1
ij (0) = M for all i, j = 1, . . . , m, i 6= j, then x(t) →

M as t → ∞.

V. CONCLUSIONS

In the present paper we extend the notion of semistability

to a class of switched network systems. To do this, our goal is

to capture the notion that the solution of the switched system

converges on some set without specifying the equilibrium to

which it converges. We give several Lyapunov type sufficient

conditions for convergence and semistability.
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