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Abstract— This paper deals with the identification of the
nitrogen oxide emissions (NOx) from vehicles using the selective
catalyst as an aftertreatment system for its reduction. The
process is nonlinear, since the chemical reactions involved
are highly depending on the operating point. The operating
point is defined by the driving profile of the vehicle, which
includes for example, cold and hot engine starts, highway,
and urban driving. The experimental data used in this paper
are based on a standard transient test developed for Euro VI
testing. Real measurements of NOx inlet concentration, injected
urea, inlet temperature and exhaust flow are used as inputs
to a detailed simulator. NOx output concentration from the
simulator is used as output, so there is no interference from
the ammonia concentration in the NOx output concentration
due to cross-sensitivity. Experimental data are properly divided
into identification and validation data sets. A Hammerstein-
Wiener model is identified and it represents the dynamics very
well. The best fits achieved with this model are 78.64% and
68.05% for the identification and validation data, respectively.
Nonlinear static functions are selected from the knowledge and
analysis of a selective catalytic reduction first principles based
model. Identified linear models are able to represent the NOx

emission with a fit of 68.93% and 38.92% for the identification
and validation data, respectively.

I. INTRODUCTION

NOx emissions in exhaust gases adversely affect the envi-

ronment, since NOx contributes to the formation of acid rain

and ground level ozone, among others. To prevent damages

to the environment and human health, emission standards

for a number of atmospheric pollutants, as NOx, have been

established decades ago and they are stringently updated.

One of the technologies used for NOx control is the selective

catalytic reduction (SCR). This technology has been devel-

oped from the 50’s, using several components for the catalyst

(e.g. vanadium, titanium) and several reducing agents (e.g.

ammonia), and it has been employed successfully in power

plants, furnaces, gas turbines and automotive applications.

Among the current technologies, SCR is the more convenient

one for heavy-duty applications, but optimal operation is

required to meet new emission targets [1]. [2] introduced

Euro VI emission standards, and they become effective from

2013 and 2014. The proposed limit value for NOx emissions

is 0.4 g/kWh for heavy-duty engines.

Numerous authors have contributed in the development

of detailed and complex models for SCR systems, see e.g.

the lumped parameter model developed by [3]. Recently, [4]

presented a transient kinetic model for SCR of NOx with
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ammonia over an Fe-zeolite catalyst for a wide range of

temperatures (i.e. 150◦C to 650◦C). In [5], a simplified dy-

namic model of a three-way catalytic converter is developed

and validated against dynamic A/F (air/fuel) and emissions

data. In [6], a detailed model for diesel engines is developed

and validated, including the SCR catalyst model, model

based optimization is applied to minimize brake specific

fuel consumption including urea cost while maintaining NOx

and NH3 emissions at Euro VI levels. A model describing

exhaust gas temperature, molar flows of NOx and NH3

downstream of the treatment system for variations in the

engine power and constant engine speed was developed in

[7]. [8] illustrates a transient model of SCR monolith reactors

for automotive applications, which is validated against data

at different scales, including engine test bench experiments.

Also, the dynamic effects at low temperatures are analysed.

There are numerous kinetic models in the literature, which

often require several and specific tests for determining the

parameters of the model. From the point of view of control,

it is however attractive to obtain simpler models that can

be used more easily in controller design. [9], for example,

shows the NOx emission prediction from the diesel engine

operating variables by using a neural network, the split and fit

algorithm and a polynomial NARX algorithm, but the SCR

system is not treated.

Optimal performance of SCR is a challenging problem,

with many research efforts being made. An interesting anal-

ysis of the closed loop SCR control from a practical control

point of view is illustrated in [1], where also three control

strategies are evaluated using a simulator. [10] presents a

combination of feedforward and feedback control structures

for a SCR process using software sensors for measurements

of the nitric oxide concentration at the input of the cat-

alytic converter and the flue gas flow rate. [11] presents a

model-based feedforward controller. The issue of the cross-

sensitivity in NOx sensors is analysed in [12]. Ammonia

coverage ratio is estimated by the use of nonlinear observers

in [13]. These works highlight the need of using advanced

control strategies to meet the stringent requirements.

The objective of this paper is to model the dynamics of the

NOx emissions in the exhaust gas aftertreatment system for

the changing operating conditions exhibited in automotive

applications. A main idea is to use a simple model structure,

thereby facilitating controller design. Promising results using

nonlinear Hammerstein-Wiener models [14] are reported in

this paper. Another noteworthy aspect is that the model uses

an exponential function of the temperature to scale the effect

of the input temperature. Hammerstein-Wiener models have
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also been used successfully in other chemical processes as

for example [15], [16]. The main contribution of this work

is hence the development of simpler, yet accurate, models

for NOx in the aftertreatment flue gas having less estimated

parameters than those available in the literature and that

can be estimated from regular operating data. The fact that

few parameters need to be estimated simplifies controller

design and is particularly important in case adaptive control

is attempted.

The paper is structured as follow: Section II describes

the analysed process, specifically Subsection II-A illustrates

the SCR system, and Subsection II-B details the experi-

mental data set used for identification. Identified models

are described in Section III. A comparison between the

identification results is made in Section IV. Finally the

conclusions are presented in Section V.

II. SELECTIVE CATALYTIC REDUCTION SYSTEM

A. Description

For automotive applications, the selective catalytic reduc-

tion exhaust gas aftertreatment system commonly consists

of a honeycomb monolith, where several chemical reactions

take place, combined with a dosification system of a reduc-

tion agent. Fig. 1 shows the main components of the system:

the urea injection system, the catalyst and the sensors for

exhaust flow, temperature and concentrations.

The SCR system consists of two main stages. Firstly,

a reduction agent, in this case urea, is injected upstream

through a nozzle and mixed with the exhaust flow at the

input of the catalyst. Urea is contained in a harmless aqueous

solution commercially named AdBlue, which consist of

32.5% urea. Urea is converted to ammonia as is shown in

the following reaction (1):

CO(NH2)2 + H2O → 2NH3 + CO2 (1)

Secondly, the ammonia is partially adsorbed on the surface

of the catalyst, where finally the dominant reactions occur in

the catalyst, i.e. the ammonia reacts with the NOx emitted

by the engine (NOx is composed primarily of NO with lesser

amounts of NO2) in order to get nitrogen gas (N2) and water

(H2O) as final products:

• Standard SCR reaction

4NH3 + 4NO + O2 → 4N2 + 6H2O (2)

• Fast SCR reaction

4NH3 + 2NO + 2NO2 → 4N2 + 6H2O (3)

• NO2 SCR reaction

8NH3 + 6NO2 → 7N2 + 12H2O (4)

The efficiency of the SCR system is usually evaluated by

the amount of NOx reduced within the catalyst, see (5) (C

is concentration), and by the ammonia slip, which represents

the unreacted ammonia. Only the first measure is used in this

paper.

%NOx,r =
CNOx,in

− CNOx,out

CNOx,in

× 100 (5)

The optimal operation of a SCR system requires tak-

ing into account the complex relationships governing the

products formation. There are many factors affecting these

formations. The amount of formed NH3 depends on tem-

perature and space velocity [17]. The homogeneous injected

urea distribution improves the NOx conversion. For low

temperatures NOx conversion is decreased. Some undesirable

products can be formed depending on the temperature value

(see [1]), NH3 oxidation is produced for high temperatures

(>450◦C), and ammonium nitrate (NH4NO3) and nitrous

oxide (N2O) are formed at respectively temperatures below

200◦C and above 450◦C. In automotive applications the

temperature can vary significantly, from the cold start of the

engine until hot operating conditions.

B. Experimental test

The World Harmonized Transient Cycle (WHTC) [18] will

be used for Euro VI testing. For this reason, it was used

for the identification test in this paper. The WHTC is a

transient test with a length of 1800 s which specifies engine

speed and load values. It starts with a highly transient part

(urban driving) and ends with higher load and less transience

(highway driving). Fig. 2 shows the NOx at the output of

the catalyst obtained from the simulator, which is the model

output (yr) [fraction], and the four signals used as inputs, i.e.

NOx concentration at inlet (ur,1) [fraction], the injected urea

(ur,2) [g/min], the temperature (ur,3) [K] and the exhaust

flow (ur,4) [mol/s]. From Fig. 2, it can be noticed that

the exhaust flow exhibits steady values and high frequency

changes. The amount of injected urea is related to the NOx

input concentration and to the exhaust flow. It can be noticed

that its value is zero during some time intervals, specifically

for low exhaust flow or low NOx input concentration. Also,

the temperature changes smoothly for a broad range of

values, i.e. 470 K to 670 K approximately (200◦C to 400◦C

approximately). A detailed explanation of the simulator used

can be found in [6]. The advantage of using this simulator is

that several input signals can be tested, and the issue of the

cross-sensitivity in the NOx output sensor due to the presence

of ammonia is avoided. Recent publications about available

NOx sensors, e.g. [12], have shown that they are affected

significantly by the amount of ammonia at the output of the

tailpipe. This issue can create instability problems in closed-

loop control using such sensors for feedback. Fig. 3 shows

the percentage of NOx reduction for the data set used. It can

be observed that the NOx conversion is highly affected by

the changes in the engine variables and the injected urea.

The plot illustrates the difficulty to be able to keep high

NOx conversion (>80%) coping with these varying operating

conditions.

III. IDENTIFICATION

A. Data preprocessing

Table I shows the values used for preprocessing of the

inputs and the output. The original data have been processed

to have zero mean and standard deviation (SD) one. In this

paper, the first 900 samples have been used for identification
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Fig. 1. SCR system.
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Fig. 2. Experimental data.

TABLE I

VALUES USED FOR PREPROCESSING

Variable yr ur,1 ur,2 ur,3 ur,4

Mean 0.325×10−3 0.619×10−3 8.418 533.97 3.596

SD 0.2667×10−3 0.482×10−3 11.212 48.130 1.338

and the last 300 samples for validation (see the boundary

line in Fig. 2 at sample 900). The sampling time is 500 ms.

The preprocessed variables are denoted by y, u1, u2, u3 and

u4 respectively.

B. Linear models

Two linear models were estimated (M-I and M-II), in

order to evaluate what is the best behaviour achieved with

linear models. u1, u2, u3 and u4 are considered as model

inputs, and y as model output. State space (M-I) and output-

error (M-II) models were obtained using Matlab commands,

pem (prediction-error method (PEM)) and oe (output-error
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Fig. 3. Percentage of NOx reduction for the experimental data set.

(OE)), respectively, from the System Identification Toolbox.

The first one, pem, estimates the parameters of a state space

model based on iterative minimization of a criterion. The

second one, oe, estimates the parameters of an output-error

(OE) model using the prediction error method, for more

details see [14], [19].

1) State space model (M-I): The state space model is

obtained by the minimization of the quadratic error between

the measured output and the estimated output. The discrete

time state-space model is as follows:

x(t+ 1) = Ax(t) +Bu(t) (6)

y(t) = Cx(t) +Du(t)

where A, B, C, D are the system matrices with proper

dimensions, x(t) is the state vector and t is discrete time. The

number of states is 2. There was no significant improvement

when the number of states was increased.

2) Output-error model (M-II): The parameter coeffi-

cients were obtained using the prediction error method in

which the minimized criterion is the square of the error,

normalized by the length of the data set. The structure of

a general multiple-input single-output (MISO) output-error

80



Fig. 4. Hammerstein-Wiener model block diagram.

model takes the following form,

y(t) =
n
∑

i=1

Bi(z
−1)

Fi(z−1)
ui(t) + e(t) (7)

where y(t), ui(t) and e(t) are the system output, inputs and

noise respectively, and n is the number of inputs for a MISO

system. Bi(z
−1) and Fi(z

−1) are polynomials defined in the

backward shift operator z−1. The order chosen for Bi and

Fi was 1 and 2 respectively, with delays set to zero and n

selected as 4.

C. Non-linear models: Hammerstein-Wiener model (M-III,

M-IV, M-V)

As linear models are not able to accurately describe the

NOx behaviour for these transient conditions, static non-

linear functions were included by the use of Wiener and

Hammerstein-Wiener models. In general, a Hammerstein-

Wiener model is comprised of three blocks: a static input

nonlinearity (from Hammerstein model), a linear dynamic

system, and a static output nonlinearity (from Wiener model).

For more information see ([20], [21], [22], [14]). Fig. 4

shows the connection between these blocks. Static nonlin-

earities (g(·) and h(·)) can be identified using black-box

techniques, or be fixed from the knowledge of the process.

The advantage of using these independent blocks is that

they can be fixed in an individual way, even the static

nonlinearities in multivariable systems. The linear model in

Fig. 4 is represented by a state space model, but any linear

model can be used in this block. A Wiener model (M-III)

and two Hammerstein-Wiener models (M-IV and M-V) were

identified. The identification was performed with the Matlab

command nlhw of the System Identification toolbox.

1) Static nonlinear output function: The static output

nonlinearity is chosen as a saturation function (8), since

negative values for NOx concentration are not physical. They

are observed in the linear model response. The lower limit

(wmin) is set as the ratio between the negative mean value

and the standard deviation of yr, which corresponds to NOx

concentration equal to zero.

y(t) =

{

w(t) for w(t) > wmin

wmin for w(t) ≤ wmin

}

(8)

This saturation function was used for the M-III, M-IV and

M-V models.

2) Static nonlinear input functions: (a) For the model

M-III, static nonlinear input functions are not set as it is a

Wiener model. (b) For the M-IV identified model, the static

input nonlinearity is fixed only for the temperature (the other

inputs enter linearly), and it is expressed in the same way

that temperature is involved in the chemical reaction rates in

the first principle based model (see (10)). It is well-known

that there are several chemical reaction rates, so the value

of a has been fixed in order to have a value of the same

order as in the first principle based model presented in [11]

for the standard SCR reaction (2). The value of a was set

as 104 K. The idea is to use the kinetic equations to fix

the shape of the nonlinearities, but the idea is not to have a

physical explanation for each one of these. The static input

nonlinearity v3,IV (t) for the model M-IV is the exponential

of the negative scaled inverse of the temperature expressed in

Kelvin (see (10)). Therefore, for the model M-IV, the inputs

of the static nonlinearity function g(·) are the real inputs

ur,i(t), and vi,IV (t) are the preprocessed variables having

zero mean and SD one. Mean and SD values are the same

as in Table I, except for v3,IV (t) that has 2.614×10−8 as

mean value and 5.372×10−8 as SD. Hence

vi,IV (t) = ui(t) for i = 1, 2, 4 (9)

v3,IV (t) = e(−a/u3(t)) (10)

(c) For the model M-V, the input nonlinearity given by

(10) was retained for the set-up of the input nonlinear

functions, as it showed to be a beneficial choice. Piecewise

linear (PWL) functions as static nonlinear function in block-

oriented models have shown to be a versatile and effective

alternative ([23], [24]). This is employed in M-V here. The

previous inputs vi,IV (t) from (9) and (10) are used for the

PWL estimation. The input set of signals for the linear block

of the model M-V is given by the PWL function vi,V (t)
defined as (11):

vi,V (t) = cjvi,IV (t) + dj ∀ vi,IV ∈ Rj , (11)

for j = 1, 2, . . . , Ni.

where R1, . . ., RNi
are partitions of ℜ. For the model M-V,

the number of partitions are {N1, N2, N3, N4} = {9, 5, 9, 5}.

The fact that the piecewise model consists of 56 parameters

requires special consideration of validation, see Section IV.

3) Linear model: In this paper, the linear dynamic system

for the models M-III, M-IV and M-V is represented by

(7), with w(t) as the system output and vi(t) as the systems

inputs (i = 1, 2, 3, 4). The parameters of the linear model

were fitted for each model.

IV. RESULTS AND ANALYSIS

Figs. 5 and 6 show the output for the different models

for the identification data set as well as validation data set

in the units of the measured variable. In Fig. 5, it can be

observed that the major deficiency of the linear models (M-I

and M-II) is in the estimation of low values of NOx, but

their behaviour for high frequency changes at intermediate

values, as between 100 and 250 samples, are reasonably

good. From Fig. 6 can be noticed that some peaks using

the validation data set have higher values for the identified

linear models than for the output from the simulator. As the

performance criteria used (see Table II) showed a slightly

better overall performance for the OE model (M-II), this
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Fig. 5. NOx output for the identified models using the identification data
set.

structure was used as linear model for the Wiener and

Hammerstein-Wiener models. As the main source of error is

observed for low values of NOx, the next step was to include

a saturation function as the static output nonlinearity of a

Wiener model as in [25]. Figs. 5 and 6 show for the Wiener

model (M-III) that negative values in the NOx output were

eliminated and the peaks in the validation data set are closer

to the real output than with the linear models. In order to

improve the NOx estimation, a static input nonlinearity was

considered for the temperature in the first Hammerstein-

Wiener model (M-IV). The outcome of this static nonlinear

function is stressing the effect of the temperature for high

values and minimizing its effect for low temperatures. It can

be noticed that the NOx estimation is better than using the

other identified models, and, that an undesired ripple on the

previous output signal is eliminated. The NOx estimation

was hence improved with this input nonlinearity. The best

results were obtained for the second Hammerstein-Wiener

model (M-V) by incorporating PWL functions to the static

input functions. PWL functions are shown in Fig. 7.

To make a quantitative comparison, FIT and MSE values

have been considered as performance criteria and they are

defined as (12) and (13):

FIT =

(

1−
‖yr − y‖2
‖yr − yr‖2

)

× 100 (12)

MSE =
1

N

N
∑

t=1

(y(t)− yr(t))
2 (13)

where y is the identified output, yr is the output from the

simulator, N is the number of samples, and ‖ · ‖2 denotes

the spectral norm.

Table II summarizes the values of FIT and MSE obtained

for the each model. It can be observed that the best FIT

for the validation data set is 66.80% for the Hammerstein-

Wiener model (M-V). Notice that the difference between the
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Fig. 6. NOx output for the identified models using the validation data set.
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FIT for the linear output-error model and the Hammerstein-

Wiener model is 22.11%, which results in a significant

improvement since both linear models have the same num-

ber of parameters, and the added static nonlinearities were

relatively simple and intuitive, i.e. the saturation and the

exponential functions. Besides, incorporation of the PWL

functions allows to get an extra improvement of 6.16%
and 7.02% over the results obtained with the model M-IV

for the identification and validation data set respectively. It

evidences the PWL ability to deal with nonlinear systems

with changing operating points. In the same way the best

MSE values are achieved for the Hammerstein-Wiener mod-

els. From the results it is concluded that M-V is probably

not subject to overfit, despite the quite high number of

parameters used.
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TABLE II

RESULTS

Model Identification Validation
FIT MSE FIT MSE

M-I 61.76% 0.156 40.33% 0.245
M-II 68.93% 0.103 38.92% 0.256
M-III 75.36% 0.065 55.67% 0.135
M-IV 72.48% 0.081 61.03% 0.104
M-V 78.64% 0.049 68.05% 0.070

V. CONCLUSION

The identified Hammerstein-Wiener models represent the

NOx behaviour for transient operating conditions quite well.

Of all the candidate models studied, these nonlinear models

provide a superior reproduction of the experimental data

over the whole analysed period. Other appealing features of

these Hammerstein-Wiener models lie in the simplicity of the

nonlinearities considered and the possibility to include new

nonlinearities, as well as in its easy implementation. These

favorable results indicate that black-box simple models can

estimate the NOx emission.

The development of the proposed models can contribute

to the development and implementation of nonlinear control

strategies, which are needed to deal with the stringent spec-

ifications and dynamic operating conditions of automotive

applications. It can be used in combination with robust

controllers into a closed control loop structure, in order to

deal with inaccuracies in NOx measurements, as well as

with unmodeled dynamics and time delay, and to improve

accuracy in the urea dosage.

Future works include the analysis of more experimental

data, including higher values for temperature. It could also

be useful to improve the model structure and include delay

estimation. Another future extension for this work is to

include the ammonia slip as a new output of the model.
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