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Abstract— Most distributed Kalman filtering (DKF) algo-
rithms for sensor networks calculate a local estimate of the
global state-vector in each node. An important challenge
within distributed estimation is that all sensors in the network
contribute to the local estimate in each node. In this paper, a
novel DKF algorithm is proposed with the goal of attaining the
above property, which is denoted as global covariance. In the
considered DKF set-up each node performs two steps iteratively,
i.e., it runs a standard Kalman filter using local measurements
and then fuses the resulting estimates with the ones received
from its neighboring nodes. The distinguishing aspect of this
set-up is a novel state-fusion method, i.e., ellipsoidal intersection
(EI). The main contribution consists of a proof that the
proposed DKF algorithm, in combination with EI for state-
fusion, enjoys the desired property under similar conditions
that should hold for observability of standard Kalman filters.
The advantages of developed DKF with respect to alternative
DKF algorithms are illustrated for a benchmark example of
cooperative adaptive cruise control.

Index Terms— Distributed estimation; Kalman filter; Fusion;
Asymptotic analysis.

I. INTRODUCTION

The standard state-estimator for a linear process with

Gaussian noise distributions is the Kalman filter, which

was formally presented in [1]. The estimator calculates the

global state-vector based on all measurements of the process.

Nowadays, measurements are often acquired by means of a

sensor network, especially in large-area processes, e.g., [2].

Employing the centralized Kalman filter in a sensor network

requires global communication and central data-processing.

Since this is known to be infeasible for large-scale sensor

networks, a continuously increasing interest has been shown

in distributed Kalman filtering (DKF) set-ups, e.g., [3]–[5].

In a typical DKF each node performs a standard Kalman

filter on the local measurement and exchanges data only

with neighboring nodes. Moreover, due to the unpredictable

system changes within deployed large-scale sensor networks,

keeping track of the shared data between different nodes

is intractable. Hence, none of the nodes can afford direct

knowledge of global information and thus the performance of

DKFs should be assessed differently compared to centralized

solutions. A first performance objective of DKF is that each

individual measurement in the network contributes to any

local estimate, even though direct communication is limited

to neighboring nodes. As such, the objective of a DKF is a

global covariance, i.e., each measurement that is available

in the sensor network sets asymptotic bounds on some parts
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of the local state-covariance in any other node. A DKF with

this property will be referred to as global covariance DKF.

In what follows, it is shown that an approach to attain

this property is employing a state-fusion method in each

node on the resulting estimates of local Kalman filters. This

fusion method merges the local estimate of a node with the

estimates received from neighboring nodes. Notice that in

contrast to this approach, it can be proven that the global

covariance property is not attainable if measurements are

exchanged instead of estimates, as proposed in [3], [5], [6]

(unless each node communicates with all the other nodes in

the network). However, simply performing an arbitrary state-

fusion method, such as the one in, e.g., [7], [8], does not yield

global covariance either, since certain required properties of

the state-fusion method are not satisfied.

As such, the main contribution of this paper is a proof

that a DKF where each node performs a local Kalman filter

followed by the state-fusion method ellipsoidal intersection

(EI) of [9], is a global covariance DKF. This proof consists

of deriving asymptotic bounds of the full state-covariance for

each node and showing that these bounds are a function of

the global sensor data available within the sensor network.

Moreover, it is proven that to attain asymptotic bounds of

the full state-covariance in all nodes, a sufficient condition

is that there exists at least one node in the network for which

the state is locally observable. A benchmark “platoon of

vehicles” example is employed to illustrate the benefits of

the developed global covariance DKF in comparison with

other existing DKF algorithms.

II. PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-

negative real numbers, integer numbers and non-negative

integer numbers, respectively. For any C ⊂R, let ZC :=Z∩C.

The notation 0 is used to denote either zero, the null-

vector or the null-matrix of appropriate dimensions. The

transpose, inverse and determinant of a matrix A ∈R
n×n are

denoted as A⊤, A−1 and |A|, respectively. Further, [A]qr ∈ R

denotes the element in the q-th row and r-th column of A.

Given that A,B ∈ R
n×n are positive definite, denoted with

A ≻ 0 and B ≻ 0, then A ≻ B denotes A − B ≻ 0. A � 0

denotes that A is positive semi-definite. For any A ≻ 0,

A
1
2 denotes its Cholesky decomposition and A− 1

2 denotes

(A
1
2 )−1. Furthermore, the following matrix properties for any

A,B ≻ 0 will be frequently used:

• If A � B, then CAC⊤ �CBC⊤ for any C of appropriate

dimensions (Proposition 8.1.2 [10]);

• If A � B, then A−1 � B−1 (Proposition 8.5.5 [10]).
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Given A ∈ R
n×n, let νq(A) ∈ R

n and λq(A) ∈ R denote its

q-th eigenvector and eigenvalue, respectively. If νq(A) and

λq(A) contain only real values, for all q ∈ Z[1,n], then the

Jordan decomposition of A yields: A = SDS−1. Hence, S :=
(ν1(A) . . . νn(A)), i.e., [S]qr = [νr(A)]q for all q,r ∈ Z[1,n],

and D := diag(λ1(A), . . . ,λn(A)), i.e., [D]qr = λq(A) if q = r

and [D]qr = 0 otherwise, for all q,r ∈ Z[1,n]. The Gaussian

function (Gaussian in short) of vectors x,µ ∈R
n and matrix

Σ ∈ R
n×n is denoted as G(x,µ ,Σ).

To model the sensor network, consider an undirected graph

G = (V,E), where V = {v1, · · · ,vN} is the set of nodes

(vertices), for some N ∈ Z+, E ⊆ (V ×V ) is the set of edges

and (vi,v j) is the edge from vi to v j. If (vi,v j) ∈ E, then

(v j,vi)∈E. Also, N :=Z[1,N] denotes the set of node-indices.

Definition II.1 Let r,s ∈ N and a finite, undirected graph

G = (V,E) be given. Then a graph path that starts at vr ∈
V and ends at vs ∈ V is a sequence of vertices τr,s =
{υ(1), · · · ,υ(l)} ⊆ V , where (υ( j),υ( j+1)) ∈ E, for all j ∈
Z[1,l−1], and υ(1) = vr, υ(l) = vs. Furthermore, the length of

the path is L(τr,s) := l and L(τr,r) := 0.

Definition II.2 Let r,s ∈ N and a finite, undirected graph

G = (V,E) be given. Then the graph distance between vr,vs ∈
V , denoted with d(vr,vs), is the length of the shortest path

between them, i.e., d(vr,vs) := minτr,s∈Tr,s L(τr,s), where Tr,s

is the set of all graph paths from vr to vs. In case vr = vs we

define d(vr,vr) := 0.

For any i ∈N , let Ni(q) := { j ∈N|d(vi,v j) = q} denote the

set of nodes corresponding to the q-th order neighbors of

node vi. Further, let Ni(0,1) :=Ni(1)∪{i} and let ♯Ni(q) denote

the cardinality of Ni(q). Notice that ∪q∈Z+Ni(q) =N .

III. PROBLEM FORMULATION

Let an autonomous process and a sensor network of N

nodes be given. The state-vector of the process, denoted as

x ∈R
n, is affected by process-noise, denoted as w ∈R

n. The

measurements that are taken at a node i, denoted as yi ∈
R

mi , are affected by measurement-noise, denoted as di ∈R
mi ,

where mi ∈ Z≥1 is the output dimension in each node i. In

case k ∈Z+ denote the sampling-instants of the system, then

the discrete-time process-model at a node i, yields

x[k+1] = Ax[k]+w[k],

yi[k] =Cix[k]+di[k].
(1)

Both the process-noise and the measurement-noise are as-

sumed to have a zero-mean Gaussian PDF for all k, i.e.,

p(w[k]) := G(w[k],0,Q) and p(di[k]) := G(di[k],0,Ri).

The goal of the sensor network is to estimate x in each

node by means of a DKF. In line with the current literature,

the estimation algorithm at each node i performs a “local

Kalman filter” (LKF) given yi. The resulting PDF of the

LKF at node i at sample instant k is denoted as pi(x[k]) :=
G(x[k], x̂i[k],Pi[k]), for some x̂i[k] ∈ R

n and Pi[k] ∈ R
n×n.

To make yi improve the accuracy of p j(x), for all j ∈ N ,

i.e., to enable global covariance, nodes exchange the result

of their LKF with each other. As such, node i receives

p j(x[k]) for all j ∈Ni(1). The received PDFs are then merged

with pi(x[k]) in a “local state-fusion algorithm” (LSF). The

resulting PDF of this fusion-step is denoted with pi f
(x[k]) :=

G(x[k], x̂i f
[k],Pi f

[k]), for some x̂i f
[k] ∈R

n and Pi f
[k] ∈R

n×n.

Fig. 1. Schematic set-up of the estimation algorithm of node i.

To complete the estimation algorithm of a node, two

aspects are still to be addressed. One is the state-fusion

method, which for clarity is simply regarded as the problem

of fusing two arbitrary estimates of the same state-vector x,

i.e., pi(x) and p j(x). Since keeping track of shared estimates

between different nodes is intractable, the employed fusion

method cannot require any knowledge on correlations, or

mutual information, of pi(x) and p j(x). Only then the LSF

of each node i is able to deal with correlations of the

local estimate pi(x[k]) and any other estimate p j(x[k]) in the

network, i.e., also for any node j 6∈ Ni(1). The second aspect

is a complete description of the estimation algorithm, which

is schematically depicted in Figure 1, and its properties. The

properties of interest for any DKF algorithm are, firstly,

global covariance, as explained in the Introduction and,

secondly, an asymptotic bound guarantee for each state-

covariance matrix Pi f
. The next section motivates our choice

of the state-fusion method, after which the properties of the

proposed DKF algorithm are presented.

IV. STATE FUSION: ELLIPSOIDAL INTERSECTION

This section recalls the recently developed state-fusion

method EI, as presented in [9]. The method fuses pi(x) :=
G(x, x̂i,Pi) with p j(x) := G(x, x̂ j,Pj) into the new esti-

mate pi f
(x) := G(x, x̂i f

,Pi f
), for some x̂i, x̂ j, x̂i f

∈ R
n and

Pi,Pj,Pi f
∈ R

n×n. The distinguishing feature of this method,

compared to alternative fusion methods, e.g., [7], [8], [11], is

that mutual information is parameterized a priori to deriving

a fusion formula via estimation theory. As such, it was

proven in [9] that EI satisfies the following criterion, which

is necessary to attain a global covariance DKF.

Criterion IV.1 Let pi(x) and p j(x) be given. Then indepen-

dent on correlations it should hold that Pi f
� Pi and Pi f

� Pj.

Criterion IV.1 is a formal characterization of the fact that

pi f
(x) is a “more accurate” estimate of x, compared to pi(x)

and p j(x), independent of mutual information. Mutual infor-

mation refers to, for example, measurements and process-

model parameters that were used by both pi(x) and p j(x).
Hence, in the first step of EI a new estimate is introduced that

is only based on the mutual information of pi(x) and p j(x).
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This estimate is denoted with pγ(x) := G(x,γ,Γ), for some

“mutual mean” γ ∈ R
n and “mutual covariance” Γ ∈ R

n×n.

In case γ and Γ are known, then the expressions of the fused

mean x̂i f
and fused covariance Pi f

follow from estimation

theory, i.e.,

Pi f
=
(

P−1
i +P−1

j −Γ−1
)−1

,

x̂i f
= Pi f

(

P−1
i x̂i +P−1

j x̂ j −Γ−1γ
)

.
(2)

The values for γ and Γ are determined in the second step

of EI. To ensure that the unknown correlation is treated

correctly, γ and Γ are derived by assuming a maximum effect

of the mutual information on pi(x) and p j(x). To that extent,

the matrices Si, Di, S j and D j are introduced, such that the

following Jordan decompositions hold, i.e.,

Pi = SiDiS
−1
i , D

− 1
2

i S−1
i PjSiD

− 1
2

i = S jD jS
−1
j .

Also, let H := P−1
i +P−1

j −2Γ and let λ0+(H) ∈ R+ denote

the smallest, non-zero eigenvalue of H. Then the mutual

covariance and mutual mean, for some ε ∈ R+, yields

Γ = SiD
1
2
i S jDΓS−1

j D
1
2
i S−1

i , (3)

γ =
(

P−1
i +P−1

j −2Γ−1 +2εI
)−1

×
((

P−1
j −Γ−1 + εI

)

x̂i +
(

P−1
i −Γ−1 + εI

)

x̂ j

)

,
(4)

where [DΓ]qr =

{

max([D j]qr,1) if q = r,

0 if q 6= r,
(5)

and ε =

{

0 if |H| 6= 0,

ε ≪ λ0+(H) if |H|= 0.
(6)

The interested reader is referred to [9] for a more detailed

description of EI. Next, the algorithm of the proposed DKF,

as it is schematically depicted in Figure 1, is presented.

V. A DISTRIBUTED KALMAN FILTER

The algorithm that is performed by each node i consists

of a LKF followed by a LSF. The part that corresponds to

the LKF is derived from a Kalman filter in the information

form, see, e.g., [3]. State-fusion of one estimate with multiple

other estimates is commonly conducted recursively. This

means that the LSF algorithm fuses pi(x[k]) with the first

received p j(x[k]), after which their resulting fused estimate

is further merged with the PDF that is received next, and

so on. Let the initial local estimate at sample-instant k be

defined as pi(0)(x) := pi(x[k]). Then this recursive behavior

implies that pi(l)(x), for all l ∈ Z[1,L] and L := ♯Ni(1), is

defined as the fused estimate of pi(l−1)(x) and the l-th

received estimate p j(x[k]), which will be denoted as p j(l)(x).
The final estimate after fusing pi(x[k]) with all received

PDFs is therefore pi f
(x[k]) := pi(L)(x). Hence, the following

algorithm is performed by a node i at each sample-instant k:

Algorithm V.1 Distributed ellipsoidal intersection (DEI)

Step 1: local Kalman filter (LKF)

Mi[k] = APi f
[k−1]A⊤+Q;

Pi[k] =
(

M−1
i [k]+C⊤

i R−1
i Ci

)−1

;

x̂i[k] = Pi[k]
(

M−1
i [k]Ax̂i f

[k−1]+C⊤
i R−1

i yi[k]
)

;

Step 2: local state fusion (LSF)

x̂i(0) = x̂i[k], Pi(0) = Pi[k];

for l = 1, . . . ,L, do:

x̂ j(l) = x̂ j[k], Pj(l) = Pj[k], j ∈Ni(1);

Γ(l) = MutualCovariance(Pi(l−1),Pj(l)), i.e., (3);

γ(l) = MutualMean(Pi(l−1),Pj(l),Γ(l), x̂i(l−1), x̂ j(l)), i.e., (4);

Pi(l) =
(

P−1
i(l−1)+P−1

j(l)−Γ−1
(l)

)−1

;

x̂i(l) = Pi(l)

(

P−1
i(l−1)x̂i(l−1)+P−1

j(l)x̂ j(l)−Γ−1
(l) γ(l)

)

;

end

x̂i f
[k] = x̂i(L), Pi f

[k] = Pi(L).

2

The proposed DKF of Algorithm V.1 is denoted as DEI to

distinguish it from other DKF algorithms. Let us proceed

this analysis by proving that the DEI is a global covariance

DKF and that under certain conditions Pi f
, for all i ∈ N ,

is asymptotically bounded. In terms of the bounds, more

precisely, it is shown that there exists a covariance-matrix

Θi ∈ R
n×n, such that limk→∞ Pi f

[k] � Θi. To that extent,

assume that each node i performs a stand-alone LKF in

parallel to the DEI, i.e., only step 1 of Algorithm V.1. Hence,

if µi and Σi denote the state-estimates of the stand-alone LKF

as performed by node i, then they are updated as follows,

Λi[k] = AΣi[k−1]A⊤+Q,

Σi[k] =
(

Λ−1
i [k]+C⊤

i R−1
i Ci

)−1

,

µi[k] = Σi[k]
(

Λ−1
i [k]Aµi[k−1]+C⊤

i R−1
i yi[k]

)

.

(7)

The asymptotic property of Σi[k] was analyzed in [12].

Therein, it was established that the following result, where

Σi[∞] := limk→∞ Σi[k] and Ψi := AΣi[∞]A⊤+Q, holds.

Proposition V.2 If (A,Ci) is an observable pair and

λq

(

A−AΨiC
⊤
i (CiΨiC

⊤
i +Ri)

−1Ci

)

≤ 1, for all q ∈ Z[1,n],

then Σi[∞] exists and satisfies Σ−1
i [∞] = Ψ−1

i +C⊤
i R−1

i Ci.

Before Pi f
of the DEI is related to Σi of the stand-alone

LKF, let us start by deriving certain bounds on both Pi[k] and

Pi f
[k]. The first set of bounds depends on state-covariances

of node i and its direct neighboring nodes, i.e., all nodes

within Ni(0,1).

Lemma V.3 Let each node i perform the DEI. Then Pi f
[k]�

Pj[k] and Pi[k+1]� APj[k]A
⊤+Q, for all j ∈Ni(0,1), k ∈ Z+.
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Lemma V.3 is proven in Appendix A. Notice that this lemma

also indicates that the received state-covariances of a node i

are bounded by their neighboring state-covariances as well.

If, for example, node j ∈ Ni(2) is a direct neighbor of a

certain node h ∈ Ni(1), i.e., j ∈ Nh(1), then Lemma V.3 can

be used to establish that Ph[k]� APj[k−1]A⊤+Q. Moreover,

since node h is a direct neighbor of node i, the same lemma

also gives that Pi f
[k]� Ph[k]. Hence, although node j ∈Ni(2)

is not a direct neighbor of node i, there exists a bound

on Pi f
[k] depending on Pj[k − 1]. In the next lemma, this

principle is extended to prove that Pi f
[k] is bounded by a

prediction of Pj[k − m] to the k-th sample-instant for any

node j ∈Ni(m+1). Notice that the value of m is such that the

graph-distance between nodes i and j is equal to m+1.

Lemma V.4 Let each node i perform the DEI. Then Pi f
[k]�

AmPj[k −m](Am)⊤ +∑m−1
c=0 AcQ(Ac)⊤ holds for all k ∈ Z≥m,

j ∈Ni(m+1) and all m ∈ Z≥1.

Lemma V.4 is proven in Appendix B. Notice that, since Pj

depends on R j, this lemma guarantees that y j, for all j ∈
N , contribute to improving pi(x[k]) at each node i. Hence,

the proposed DKF algorithm enjoys the global covariance

property. The derivation of the asymptotic bounds on Pi f

continues by relating Pi f
to Σi of the stand-alone LKF.

Lemma V.5 Let each node i perform the DEI and the stand-

alone LKF. Then Pi[1] =Σi[1] and Pi[k]�Σi[k], for all k∈Z≥2.

Lemma V.5 is proven in Appendix C. Now the main result

on the asymptotic analysis of the DEI can be stated, for

which Pi f
[∞] := limk→∞ Pi f

[k] and Σ̃ j ∈ R
n×n, for all j ∈ N

and m ∈ Z≥1 such that Σ j[∞] exists, is defined as follows

Σ̃ j :=

{

Σ j[∞] if j ∈Ni(0,1),

AmΣ j[∞](Am)⊤+∑m−1
c=0 AcQ(Ac)⊤ if j ∈Ni(m+1).

Theorem V.6 Let each node i perform the DEI and the stand-

alone LKF and suppose that the hypothesis of Proposition V.2

holds. Then it holds that Pi f
[∞]� Σ̃ j for all j ∈N .

Proof: Using the definition of Σ̃ j, let us first prove that

Pi f
[∞] � Σ j[∞] holds for all j ∈ Ni(0,1). Lemma V.3 and

Lemma V.5 give that for all j ∈ Ni(0,1) and k ∈ Z+ it holds

that Pi f
[k]�Pj[k] and Pj[k]�Σ j[k]. Hence, also Pi f

[k]�Σ j[k]
holds for all j ∈ Ni(0,1) and k ∈ Z+. This inequality can be

rewritten as Pi f
[k]−Σ j[k]� 0, and thus,

Pi f
[k]−Σ j[k]+Σ j[∞]−Σ j[∞]� 0, ∀ j ∈Ni(0,1), k ∈ Z+.

(8)

Proposition V.2 gives that limk→∞(Σ j[k]−Σ j[∞]) = 0. Hence,

if k → ∞, then (8) yields limk→∞(Pi f
[k] − Σ j[∞]) � 0.

As Σ j[∞] is a constant, this inequality is equivalent to

limk→∞ Pi f
[k]−Σ j[∞]� 0 and thus,

Pi f
[∞]� Σ j[∞], ∀ j ∈Ni(0,1). (9)

Next, it is shown that for all j ∈ Ni(m+1) and m ∈ Z≥1,

Pi f
[∞]� AmΣ j[∞](Am)⊤+∑m−1

c=0 AcQ(Ac)⊤ holds. Let us start

from Lemma V.4, which for all m ∈ Z≥1 and k ∈ Z≥m gives

the following inequality, i.e.,

Pi f
[k]� AmPj[k−m](Am)⊤+

m−1

∑
c=0

AcQ(Ac)⊤, ∀ j ∈Ni(m+1).

Using Lemma V.5, i.e., Pj[k−m] � Σ j[k−m], in the above

inequality gives that for all m ∈ Z≥1 and k ∈ Z≥m it holds

that

Pi f
[k]� AmΣ j[k−m](Am)⊤+

m−1

∑
c=0

AcQ(Ac)⊤, ∀ j ∈Ni(m+1).

As m < ∞, we have that limk→∞ k − m = ∞. Therefore,

similarly as to (8) and (9) one can derive that

Pi f
[∞]� AmΣ j[∞](Am)⊤+

m−1

∑
c=0

AcQ(Ac)⊤, ∀ j ∈Ni(m+1),

holds for any m ∈ Z≥1, which completes the proof.

Notice that in Theorem V.6 it is assumed that the hypothe-

sis of Proposition V.2 is satisfied for all j ∈N . However, the

same theorem also proves that Pi f
[∞] is already a bounded

matrix if there exists only one bounded matrix Σ j[∞], for any

j ∈N , as m < ∞, which is formally stated next.

Proposition V.7 Let there exists at least one node j ∈N , for

which the hypothesis of Proposition V.2 holds. Then Pi f
[∞]≺

Σ̃ j is a bounded matrix for all i ∈N .

Remark V.8 A possible extension to Algorithm V.1 is in-

corporating y j[k], for all j ∈ Ni(1), in the LKF of a node

i. This extension can be used if for none of the nodes

i ∈ N the stand-alone LKF yields a bounded Σi[∞]. Then

one can choose a node j ∈ N , for which all the nodes h ∈
N j(1) sent their local measurements yh[k] on top of ph(x[k]).
Incorporating these measurements in the LKF of node j is

equivalent to extending y j with y j(1) := (yh1
, . . . ,yhL

)⊤, for

all hl ∈ N j(0,1) and L := ♯N j(0,1). The neighboring nodes

h ∈ N j(1) can thus be chosen so that node j satisfies the

hypothesis of Proposition V.2, due to which Theorem V.6

gives that Pi f
, for all i ∈N , is asymptotically bounded. 2

Remark V.9 A non-observable pair (A,C j) implies that

Σ−1
j [∞] � 0 rather than Σ−1

j [∞] ≻ 0. Hence, the inverse of

the covariance matrix Σ̃ j, i.e., Σ̃−1
j , does exists for all nodes

j independent of whether the hypothesis of Proposition V.2

holds or not. For Pi f
[∞] to be bounded it should satisfy

P−1
i f

[∞] ≻ 0. Since the statement of Theorem V.6 can be

rewritten into P−1
i f

[∞]� Σ̃−1
j , for all j ∈N , Pi f

[∞] is bounded

if
(

∑ j∈N Σ−1
j [∞]

)

≻ 0. Notice that is similar to the condition

for stability of the centralized Kalman filter. 2

VI. ILLUSTRATIVE CASE STUDY

The estimation error of the proposed DEI algorithm is

compared to alternative DKF algorithms. The benchmark ap-

plication is a platoon of four vehicles, in which each vehicle

has a cooperative adaptive cruise controller [13]. The main

reason for choosing this application is that the controller in
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each vehicle requires an estimate of the kinematic state x

of the leading vehicle in the platoon, which is defined as

its longitudinal position and speed. The goal is to estimate

the state-vector in each vehicle, for which x[0] =
(

10
15

)

. In

this example, the acceleration of the leading vehicle is set

to a(t) = 0.1+ 3sin(0.2t) and its continuous-time process-

model is defined as the double integrator, i.e.,

ẋ(t) :=

(

0 1

0 0

)

x(t)+

(

0

1

)

a(t).

The sampling-time is 0.1 seconds. As a result, the discrete-

time process-model of (1) is defined with A =
(

1 0.1
0 1

)

and

w(t) =
(

0.005
0.1

)

a(t), due to which Q = 10−3
(

0.1 2.5
2.5 50

)

.

Each vehicle can only communicate with its front and rear

vehicle. Hence, the graph-model G(V,E) of this network

yields V := {v1,v2,v3,v4} and E := {(vi,v j)|(i− j)2 = 1},

for all i, j ∈ Z[1,4]. A vehicle measures its own position and

speed and the distance to the vehicle in front. Notice that due

to this dispersion of the sensors we have that the process-

model of (1) for vehicles 1 and 2 is such that C1 =
(

1 0
0 1

)

and

C2 = (1 0). The corresponding covariance of d1 and d2 is set

to R1 =
(

0.05 0
0 0.05

)

and R2 = 0.5, respectively. Vehicles 3 and

4 have no sensors related to vehicle 1. Therefore, the process-

model of (1) for vehicles 3 and 4 uses C3 = C4 = (0 0)
and R−1

3 = R−1
4 = 0. Three different DKF algorithms are

compared: (i) DEI as defined in Algorithm V.1; (ii) a DKF,

denoted as DCI, which is similar to DEI only that state-fusion

is done according to covariance intersection of [7] instead of

EI; (iii) the DKF as presented in [3], denoted as DIF, which

performs a stand-alone LKF at each vehicle/node i on all

measurements y j ∈Ni(0,1). Notice that, due to the dispersion

of sensors and communication, vehicles 1 and 2 in the DIF

both perform a centralized Kalman filter.

Initial values are set to x̂i[0] =
(

10
15

)

and Pi[0] =
(

10 0
0 10

)

for all i ∈Z[1,4]. The estimation-error of vehicles 2 and 4 are

presented in Figure 2. However, the DIF of vehicle 4 does

not receive any measurements of the first vehicle. Hence, x

is not observable in vehicle 4 and we will omit the results

of the DIF in plots (C) and (D) of Figure 2.

Figure 2 shows that the DEI clearly outperforms the DCI

in both vehicles. This is mainly a result of the employed

fusion method covariance intersection in the DCI, which

does not take the mutual information explicitly into account

as EI does. Instead, the fused estimate is parameterized as a

consensus of the original estimates while minimizing Pi f
. As

such, pi f
(x[k]) resembles to a consensus of all the different

local estimates in the network. Since vehicles 3 and 4 have

no measurements depending on x, their local estimation error

is high, which then merges into vehicles 1 and 2 as a result

of covariance intersection. Further, notice that the DEI and

the DIF have comparable estimation results in vehicle 2.

This is because the DEI in vehicle 2 extracts the exclusive

information of vehicle 1, i.e., y1 and R1. These are exactly the

same variables that are exchanged in the DIF, due to which

the DEI and the DIF of vehicle 2 result in almost the same

estimate. However, as the DIF exchanges measurements, the

state-vector is only observable in the first three vehicles of
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Fig. 2. The squared estimation-error at vehicles 2 and 4.

a platoon. Hence, the DEI outperforms the DIF as well.

VII. CONCLUSIONS

In this paper, a novel distributed Kalman filtering algo-

rithm was proposed to attain global covariance. This means

that all the measurements in the sensor network improve

the local estimate at any other node in the network. In

the considered DKF set-up each node performs two steps

iteratively, i.e., it runs a Kalman filter using local measure-

ments and then fuses the resulting estimate with the ones

received from the neighboring nodes. The distinguishing

aspect of the set-up was a novel state fusion method, i.e.,

ellipsoidal intersection. The main contribution consisted of

a proof that the proposed DKF algorithm, in combination

with ellipsoidal intersection for fusion, enjoys the global

covariance property. The advantages of developed DKF

with respect to alternative DKF algorithms were illustrated

for a benchmark example. Future work is concerned with

establishing convergence of the state-covariances in case the

state is not locally observable for all nodes.
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APPENDIX

A. Proof of Lemma V.3

We will first prove that Pi[k+1]� APj[k]A
⊤+Q, in case

Pi f
[k] � Pj[k] holds, both for all j ∈ Ni(0,1) and k ∈ Z+.

Algorithm V.I gives that P−1
i [k+ 1] = (APi f

[k]A⊤+Q)−1 +

C⊤
i R−1

i Ci. As R−1
i ≻ 0 and thus C⊤

i R−1
i Ci � 0, it follows that

Pi[k+1]� APi f
[k]A⊤+Q.

Therefore, if Pi f
[k] � Pj[k], for all j ∈ Ni(0,1) and k ∈ Z+,

then also Pi[k+ 1] � APj[k]A
⊤+Q holds for all j ∈ Ni(0,1)

and k ∈ Z+.

The second part is to show that Pi f
[k]� Pj[k] holds for all

j ∈Ni(0,1) and k∈Z+. From Algorithm V.I it follows that this

holds if Pi(l) � Pj(l) and Pi(l) � Pi(l−1) hold for all l ∈ Z[1,L].

Notice that in the lth fusion-cycle, i.e., with Pi(l−1) and Pj(l)

as the initial covariances, we have that Γ(l) and Pi(l) represent

the mutual and fused covariance, respectively. Hence, the

result of Criterion IV.1, which was proven for EI in [9], can

be applied by substituting Pi =Pi(l−1), Pj =Pj(l), Γ=Γ(l) and

Pi f
= Pi(l). With these substitutions Criterion IV.1 gives that

Pi(l) � Pj(l) and Pi(l) � Pi(l−1), which completes the proof.�

B. Proof of Lemma V.4

Let us recall the inequality that needs to be proven, i.e.,

Pi f
[k]� AmPj[k−m](Am)⊤+

m−1

∑
c=0

AcQ(Ac)⊤, (10)

for all j ∈Ni(m+1) and k ∈Z≥m. Also, let Nh(1) represent the

set of all direct neighboring nodes of a node h. Furthermore,

let M ⊂ N denote a subset of nodes. Then it follows that

{∪h∈MNh(0,1)} denotes the set of all the nodes h ∈M and

all the nodes j that are a direct neighbor of a node h ∈M.

The proof of (10) proceeds by induction. The first step, for

which m = 1 in (10), is to prove that Pi f
[k]� APj[k−1]A⊤+

Q, for all j ∈ Ni(2) and k ∈ Z≥1. Let a node h ∈ Ni(1) be

given. Substituting node i with node h in Lemma V.3 gives

Ph[k]� APj[k−1]A⊤+Q, ∀ j ∈Nh(0,1),k ∈ Z≥1. (11)

Notice that, as h ∈ Ni(0,1), Lemma V.3 implies that Pi f
[k]�

Ph[k] holds for all h ∈ Ni(0,1) and k ∈ Z+. Combining this

inequality with (11) yields that for all k ∈ Z≥1 it holds that

Pi f
[k]� APj[k−1]A⊤+Q, ∀ j ∈ {∪h∈Ni(1)

Nh(0,1)}. (12)

Notice that j ∈ {∪h∈Ni(1)
Nh(0,1)} implies that (12) holds for

all the nodes j, such that the graph distance d(vi,v j)≤ 2. This

means that {∪h∈Ni(1)
Nh(0,1)} = {∪m≤2Ni(m)}, and because

Ni(2) ⊂ {∪m≤2Ni(m)}, also (12) holds for all j ∈Ni(2).

The second step is to show that (10) holds for any m ≥ 2,

by assuming that (10) holds for m−1. This latter assumption

gives that, for all h ∈Ni(m) and k ∈ Z≥m−1, it holds that

Pi f
[k]� Am−1Ph[k−m+1](Am−1)⊤+

m−2

∑
c=0

AcQ(Ac)⊤. (13)

Substituting node i with node h in Lemma V.3 gives

Ph[k−m+1]� APj[k−m]A⊤+Q, ∀ j ∈Nh(0,1). (14)

When substituting (14) into (13) we have that for all j ∈
{∪h∈Ni(m)

Nh(0,1)} and k ∈ Z≥m it holds that:

Pi f
[k]� Am−1

(

APj[k−m]A⊤+Q
)

(Am−1)⊤+
m−2

∑
c=0

AcQ(Ac)⊤

= AmPj[k−m](Am)⊤+
m−1

∑
c=0

AcQ(Ac)⊤. (15)

Similar to the first step, Ni(m+1) ⊂ {∪h∈Ni(m)
Nh(0,1)} holds.

Therefore, the inequality of (15) also holds for all j ∈
Ni(m+1), which completes the proof. �

C. Proof of Lemma V.5

The equality Pi[1] = Σi[1] follows directly from the fact

that the DEI and the stand-alone LKF use the same equations

to determine Pi[1] and Σi[1], respectively, and Pi[0] = Σi[0].
The inequality Pi[k]� Σi[k], for all k ∈ Z≥2, is proven by

induction. From Algorithm V.1 and (7) one obtains that

P−1
i [k] =

(

APi f
[k−1]A⊤+Q

)−1

+C⊤
i R−1

i Ci,

Σ−1
i [k] =

(

AΣi[k−1]A⊤+Q
)−1

+C⊤
i R−1

i Ci.

(16)

The first is step to prove that Pi[2]� Σi[2]. From Pi[1] = Σi[1]
together with Lemma V.3, i.e. Pi f

[k] � Pi[k], we have that

Pi f
[1]� Σi[1]. Hence, it also holds that (APi f

[1]A⊤+Q)−1 �
(

AΣi[1]A
⊤+Q

)−1
. Using this inequality in (16) results in

P−1
i [2]� Σ−1

i [2] and thus, Pi[2]� Σi[2].
The second step is to prove that Pi[k]� Σi[k], if Pi[k−1]�

Σi[k−1] holds. Lemma V.3, i.e., Pi f
[k]� Pi[k], gives that the

latter inequality results in Pi f
[k−1]� Σi[k−1]. Hence, it also

holds that (APi f
[k − 1]A⊤ + Q)−1 �

(

AΣi[k−1]A⊤+Q
)−1

.

Using this inequality in (16) gives that P−1
i [k]� Σ−1

i [k] and

thus, Pi[k]� Σi[k], which completes the proof. �
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