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Abstract— The standard ISS small-gain theorem and the
recently-developed iISS small-gain theorem assume that sys-
tem components are characterized in a symmetric way with
respect to the equilibrium. Dissipative properties of a nonlinear
system is usually asymmetric. Formulating them into sym-
metric properties sometimes causes crucial conservativeness.
The purpose of this paper is to develop a technique to take
the asymmetry into account in stability analysis of time-delay
systems. The result is based on decomposition of a system into
integral input-to-state stable dynamic components and static
components characterized in an asymmetric way with respect to
the equilibrium. A Lyapunov-Krasovskii functional establishing
robustness with respect to disturbances in the presence of time-
delays is constructed, and its effectiveness is illustrated by a
network flow control example. The proposed iISS methodology
covers a broader class of systems than existing approaches
based on operator norms or the ISS gain.

I. INTRODUCTION

As recent technology and society have tended to focus

on systems of larger scale, coping with time-delays and

nonlinearities has become more important. One of major

approaches to stability and robustness of such systems is the

small-gain technique which makes use of gain-type proper-

ties belonging to the concept of dissipation. Nonlinearities

suggest the use of gain functions which are not linear.

The input-to-state stability (ISS) provides us with such a

frameworks [22]. The integral input-to-state stability (iISS)

extends the idea of ISS to a broader class of nonlinearities

[1]. Both ISS small-gain and iISS small-gain theorems are

available in the literature [14], [25], [15], [21], [7], [10].

The small-gain analysis is based on decomposition of a

system into subsystems, and dissipation properties of the

individual subsystems are aggregated to establish the stability

and robustness of the overall system. Naturally, dissipation

properties of nonlinear systems are nonlinear, which appears

as asymmetry of the dissipativity with respect to equilibria.

The standard formulation of small-gain theorems relies on

ISS and iISS properties of subsystems characterized in a

symmetric way. Therefore, the loop gain computed is a

function which is symmetric with respect to the equilibrium.

Application of symmetric dissipation and loop gains some-

times results in an useless answer to the problem of stability

and robustness analysis.

This paper aims at proposing a small-gain methodology

to make use of asymmetry in verifying stability and ro-
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bustness of nonlinear time-delay systems consisting of iISS

dynamic components (functional differential equations) and

static components (functional algebraic equations). Since

components which are not necessarily ISS hamper existing

trajectory-based treatments, this paper develops a new way to

construct Lyapunov-Krasovskii functional. As an application

of the developed methodology, a network flow control system

proposed in [16] is studied in this paper, and it is shown that

the flow control system is robust with respect to disturbances

in the presence of arbitrarily large time-delays in communi-

cation and processing if utility and penalty functions satisfy

a certain criterion.

Notation: The logical sum and the logical product are

denoted by ∨ and ∧, respectively. For a real vector x ∈ R
n,

the symbol |x| stands for the Euclidean norm. A function

ω : R+ := [0,∞) → R+ is said to be positive definite if

it is continuous and satisfies ω(0) = 0 and ω(s) > 0 for

all s > 0, and written as ω ∈ P . A function is of class K
if it belongs to P and is strictly increasing; of class K∞ if

it is of class K and is unbounded. A continuous function

ω : R → R is said to be of both-sided class K and written

as ω ∈ BK if both ω(s) and −ω(−s) are class K functions

for s ∈ R+. The class BK∞ and class BP are defined in a

similar manner.

II. TIME-DELAY SYSTEMS: INTERCONNECTION

THROUGH ASYMMETRIC DISSIPATION INEQUALITIES

We consider the system described by

ẋ0(t) = f0(x0,t, x1,t, ..., xK,t, r0(t)), t ≥ 0

xk(t) = fk(x0,t, rk(t)), k = 1, 2, ...,K (1)

x0,0 = ξ0,0, xk,0 = ξk,0,

where xi(t), i = 0, 1, ...,K, are real vector-valued functions

of time and written as xi(t) ∈ R
ni with positive integers

ni. The signals ri(t) ∈ R
mi , i = 0, 1, ...,K, are external

inputs (measurable, locally essentially bounded). For t ∈
R+, xi,t : [−∆, 0] → R

ni denotes the function given by

xi,t(τ) = xi(t+ τ), where ∆ > 0 is the maximum involved

delay. Let Cni
denote the space of continuous functions

mapping the interval [−∆, 0] into R
ni . For φi ∈ Cni

, we

use ‖φi‖∞ = sup−∆≤θ≤0 |φi(θ)|. Suppose that ξ0,0 ∈ Cn0
,

and that f0 : Cn0
× Cn1

× ... × CnK
× R

m0 → R
n0 and

fk : Cn0
× R

mk → R
nk , k = 1, 2, ...,K, are functionals

which are Lipschitz on any bounded set. It is also assumed

that f0(0, 0, ..., 0, 0) = 0 and f1(0, 0) = 0 thus ensuring

that x0(t) = 0 is the solution corresponding to zero input

and zero initial conditions. The state vector of the overall
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system is xt = x0,t. Let the entire disturbance be in the

vector form of r(t) = [r0(t)
T , r1(t)

T , ..., rK(t)T ]T ∈ R
m,

m = m0 + m1 + ... + mK . The components described

by fk, k = 1, 2, ...,K, are static in the sense that xk(t)
is uniquely determined for t ∈ R+ by x0,t and rk(t), and

no initial function of xk is involved in the xk(t)-equation.

Note that the x0(t)-equation requires xk(t) in the interval of

[−∆, 0). We suppose that ξk,0 ∈ Cnk
satisfies the matching

condition ξk,0(0) = fk(ξ0,0, rk(0)). The coupled equations

of (1) are not troubled with any algebraic loop since the

x0-subsystem has no direct-feed-through term and the xk-

subsystems which are static have no self-feedback terms.

We use the following three groups of functions:

Assumption 1: (i) The functional Ma,0 : Cn0
→ R+

and the functions γ
a,0

, γa,0 : R+ → R+ are continu-

ous and satisfy

γ
a,0

∈ K∞, γa,0 ∈ K∞ (2)

γ
a,0

(|φ0(0)|)≤Ma,0(φ0)≤γa,0(‖φ0‖∞), ∀φ0∈Cn0
. (3)

(ii) The functionals M0,k : Cn0
→R and the functions γ

0,k
:

R
n0 →R, k=1, 2, ...,K, are continuous and satisfy

γ
0,k

(0) = 0 (4)

γ
0,k
(φ0(0))(M0,k(φ0)−γ

0,k
(φ0(0))) ≥ 0, ∀φ0∈Cn0

. (5)

(iii) The functionals Mk : Cnk
→R and the functions γ

k
:

R
nk →R, k=1, 2, ...,K, are continuous and satisfy

γ
k
(0) = 0 (6)

γ
k
(φk(0))(Mk(φk)− γ

k
(φk(0))) ≥ 0, ∀φk ∈ Cnk

. (7)

These functions have yet to be determined. Note that the

range of the pair (M0,k,γ
0,k

) and the pair (Mk,γ
k
), k =

1, 2, ...,K, is two-sided, while the range of (Ma,0,γ
a,0

,γa,0)

is one-sided. We assume that the x0-subsystem is iISS with

respect to input (x1, ..., xK , r0) and state x0 as follows:

Assumption 2: There exist a locally Lipschitz functional

V0 : Cn0
→ R+, a continuous functional α0 : Cn0

→ R+,

α̂0 ∈ P , σ0,k,j ∈ BK, σr,0 ∈ K ∪ {0}, α0, α0 ∈ K∞,

a continuous functional Ma,0 : Cn0
→ R+, continuous

functions γ
a,0

, γa,0 : R+ → R+, continuous functionals

Mk : Cnk
→ R, continuous functions γ

k
: R

nk → R and

S0,k,j ∈ {0, 1} for k = 1, 2, ...,K and j = 0, 1, . . . , h + hd

such that

α0(Ma,0(φ0)) ≤ V0(φ0) ≤ α0(Ma,0(φ0)), ∀φ0 ∈ Cn0

(8)

D+V0(φ0, φ1, ..., φK , r0) ≤ ρ0(φ0, φ1, ..., φK , r0),

∀φi ∈ Cni
, i = 0, 1, ...,K, ∀ r0 ∈ R

m0 (9)

and (2), (3), (6), (7) hold, where ρ0 : Cn0
×Cn1

× ...×CnK
×

R
m0 → R is defined by

ρ0(φ0, φ1, ..., φK , r0) = −α0(φ0) + σr,0(|r0|)

+

K
∑

k=1

{

S0,k,0

∣

∣σ0,k,0(Mk(φk))
∣

∣

+

h
∑

j=1

S0,k,j

∣

∣

∣

∣

σ0,k,j

(

γ
k
(φk(−∆j))

)

∣

∣

∣

∣

+

h+hd
∑

j=h+1

S0,k,j

∫ 0

−∆j

∣

∣

∣

∣

σ0,k,j

(

γ
k
(φk(τ))

)

∣

∣

∣

∣

dτ

}

(10)

α̂0(Ma,0(φ0)) ≤ α0(φ0) (11)

for some ∆j ∈ (0,∆], j = 1, 2, . . . , h+hd with non-negative

integers h and hd. By h= 0 (resp., hd = 0), we mean that

the first (resp., second) sum in terms of j in (10) vanishes.

In Assumption 2, the derivative D+V0(φ0, φ1, ..., φK , r0)
is defined by

D+V0(φ0, φ1, ..., φK , r0) = lim sup
h→0+

V0(φ
h
0 )− V0(φ0)

h

φh
0 (s)=

{

φ0(s+ h), s ∈ [−∆,−h),
φ0(0)+(s+h)f0(φ0, ..., φK , r0),s ∈ [−h, 0] .

This derivative plays a central role in the Lyapunov-

Krasovskii methodology [2]. The functional V0 is chosen

locally Lipschitz according to [18], [19]. We next character-

ize the xk-subsystems for k = 1, 2, ..,K as follows:

Assumption 3: There exist αk, σk,j ∈ BK, continuous

functions σr,k : Rmk → R, continuous functionals M0,k :
Cn0

→ R, continuous functions γ
0,k

: R
n0 → R and

Sk,j ∈{0, 1} for k=1, 2, ...,K and j=0, 1, ..., h such that

σr,k(0) = 0 (12)

Mk(φk)ρk(φk, φ0, rk) ≥ 0, ∀φ0 ∈ Cn0
, rk ∈ R

mk (13)

and (4)-(5) hold, where ρk : Cnk
×Cn0

×R
mk →R is

ρk(φk, φ0, rk) = −αk(Mk(φk)) + Sk,0σk,0(M0,k(φ0))

+
h
∑

j=1

Sk,jσk,j

(

γ
0,k

(φ0(−∆j))
)

+ σr,k(rk), (14)

and ∆j ∈ (0,∆], j = 1, 2, . . . , h, Mk : Cnk
→R and γ

k
:

R
nk →R are defined in Assumption 2. By h = 0, we mean

that the first sum in terms of j in (14) vanishes.

Furthermore, we assume the following.

Assumption 4: If

h+hd
∑

j=1

S0,k,j > 0 holds for an integer k =

1, 2, ...,K, it holds that xk(t) = fk(x0(t)).

Assumption 4 guarantees that the Lyapunov-Krasovskii

functional Vcl to be constructed for the entire system (1)

is a functional of φ0 and independent of the disturbance rk.

In contrast to the symmetric formulation in [12], [11], this

paper employs σ0,k,j ∈ BK and α0 : Cn0
→ R+ so that the

functional ρ0 is allowed to be asymmetric with respect to
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the origin. In a similar manner, the functions αk, σk,j ∈ BK
allow the functional ρk to be asymmetric for k = 1, 2, ...,K.

III. ASYMMETRIC SMALL-GAIN CONDITION

For k = 1, 2, ...,K, define

σ0,k(s) =
h
∑

j=0

S0,k,jσ0,k,j(s) +

h+hd
∑

j=h+1

S0,k,j∆jσ0,k,j(s)

(15)

vk=

h
∑

j=0

Sk,j (16)

which are class BK functions. We also employ the functions

ηk(s)=











lim
s→−∞

σ0,k(s) , s∈ (−∞, αk(−∞)]

σ0,k ◦ α−1

k (s) , s∈ (αk(−∞), αk(+∞))
lim

s→+∞
σ0,k(s) , s∈ [αk(+∞),∞)

(17)

for k = 1, 2, ...,K. Let

Fi,j(τ) =
−τ

∆j

+ (1 + ǫi)
τ +∆j

∆j

, i = 0, 1, ...,K, (18)

where the positive real numbers ǫi have yet to be determined.

The following is the main result which establishes iISS and

ISS properties of the system (1) and constructs a Lyapunov-

Krasovskii functional.

Theorem 1: Assume that

lim
s→+∞

αk(s) = +∞ ∨ lim
s→+∞

σ0,k(s) < +∞ (19)

lim
s→−∞

αk(s) = −∞ ∨ lim
s→−∞

σ0,k(s) > −∞ (20)

for k = 1, 2, ...,K. Suppose that there exist α̃0,k ∈ BK,

c0,k > 1 and ck > 1, k = 1, 2, ...,K, such that

K
∑

k=1

∣

∣α̃0,k(M0,k(φ0))
∣

∣ ≤ α0(φ0), ∀φ0 ∈ Cn0
(21)

h
∑

j=0

∣

∣c0,kσ0,k ◦ α−1

k ◦ ckvkSk,jσk,j(s)
∣

∣ ≤
∣

∣α̃0,k(s)
∣

∣,

∀s∈R. (22)

Then the system (1) is iISS with respect to input r and state

x. In addition, an iISS Lyapunov-Krasovskii functional is

Vcl(φ0) = V0(φ0)

+

K
∑

k=1

{ h
∑

j=1

S0,k,j

∫ 0

−∆j

F0,j(τ)
∣

∣σ0,k,j

(

γ
k
(φk(τ))

)

∣

∣dτ

+

h+hd
∑

j=h+1

S0,k,j

∫ 0

−∆j

F0,j(τ)

∫ 0

τ

∣

∣σ0,k,j

(

γ
k
(φk(θ))

)

∣

∣dθdτ

+ (1+ǫ0)
h
∑

j=1

Sk,j

∫ 0

−∆j

Fk,j(τ)
∣

∣ηk

◦ (1+ζk)vσk,j(γ
0,k

(φ0(τ)))
∣

∣dτ

}

, (23)

where

0 < ζk ≤ ck − 1, k = 1, 2, ...,K (24)

0 < ǫ0, 0 < ǫk, 0 < (1+ǫ0)(1+ǫk) < c0,k. (25)

Furthermore, the system (1) is ISS with respect to input r and

state x, and the function (23) is an ISS Lyapunov-Krasovskii

functional in the case of α̂0 ∈ K∞.

The pair of (21) and (22) in Theorem 1 forms an asym-

metric small-gain condition. The functions σ0,k, αk, σk,j ,

α̃0,k and the functional M0,k are bidirectional, so that the

loop gain does not have to be symmetric with respect to the

origin. It can be seen in the proof of Theorem 1 that ck = 1
and ζk = 0 can be used in the case of σr,k = 0.

Remark 1: The existence of c0, ck > 1 fulfilling (22) does

not require

lim
s→∞

αk(s)=∞ ∨ lim
s→∞

αk(s)>vkSk,j lim
s→∞

σk,j(s) (26)

since (19) and (20) are assumed. The properties (19) and

(20) ensure that the inverse operation of αk is not necessarily

well-defined for the entire R in (22).

Remark 2: The formulation this paper employs has redun-

dancy in dividing a time-delay system into an x0-subsystem

and xk-subsystems. Although different decompositions may

result in Lyapunov-Krasovskii functionals and small-gain

conditions essentially in the same form, the conservativeness

stemming from the non-unique decomposition varies. The

search for a decomposition minimizing the conservativeness

is an interesting subject of further study.

Remark 3: The definition of the functions Mk, M0,k and

γ
k
, γ

0,k
in (7) and (5) allows the dissipation properties

with (10) and (14) to be asymmetric. The supply rates

(10) and (14) reduce to the symmetric ones in [11] if we

restrict γ
k
(φk(τ)) and γ

0,k
(φ0(τ)) satisfying (7) and (5) to

γ
k
(|φk(τ)|), γ

0,k
(|φ0(τ)|) satisfying

M0,k(φ0) ≥ γ
0,k

(|φ0(0)|), ∀φ0 ∈ Cn0

Mk(φk) ≤ γ
k
(|φk(0)|), ∀φk ∈ Cnk

with γ
k

and γ
0.k

∈ K∞. In such a case, the small-

gain condition consisting of (21) and (22) reduces to the

symmetric one in [11].

IV. PROOF OF THEOREM 1

The properties (19) and (20) imply ηk ∈ BP for each

k = 1, 2, ...,K, and they are non-decreasing. The function

ηk is of class BK if αk ∈ BK∞. From (5) and (7), we have

D+Vcl(φ0, φ1, ..., φK , r0) ≤ ρ̄0 + β, (27)
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where

Gj(φ0, φ1, ..., φK) =
K
∑

k=1

{

S0,k,j

ǫ0
∆j

∫ 0

−∆j

∣

∣

∣
σ0,k,j

(

γ
k
(φk(τ))

)∣

∣

∣
dτ

+ Sk,j

(1+ǫ0)ǫk
∆j

∫ 0

−∆j

∣

∣

∣

∣

ηk◦

(1+ζk)vkσk,j

(

γ
0,k

(φ0(τ))
)

∣

∣

∣

∣

dτ

}

Hj(φ1, ..., φK) =
K
∑

k=1

S0,k,j

ǫ0
∆j

∫ 0

−∆j

∫ 0

τ

∣

∣

∣
σ0,k,j

(

γ
k
(φk(θ))

)∣

∣

∣
dθdτ

ρ̄0(φ0, φ1, ..., φK , r0) = −α0(φ0) + σr,0(|r0|)

+ (1+ǫ0)

K
∑

k=1

|σ0,k(Mk(φk))|

−

h
∑

j=1

Gj(φ0, φ1, ..., φK)−

h+hd
∑

j=h+1

Hj(φ1, ..., φK)

β(φ0) = (1+ǫ0)

K
∑

k=1
{ h
∑

j=1

(1+ǫk)Sk,j |ηk ◦ (1+ζk)vkσk,j(M0,k(φ0))|

− Sk,j

∣

∣

∣
ηk ◦ (1+ζk)vkσk,j

(

γ
0,k

(φ0(−∆j))
)∣

∣

∣

}

.

From (13), the non-decreasing property of ηk and ηk(0) = 0
it follows that

ρ̄0 + β ≤ −α0(φ0) + σr,0(|r0|)−

h
∑

j=1

Gj −

h+hd
∑

j=h+1

Hj + β

+(1+ǫ0)

K
∑

k=1

∣

∣

∣

∣

∣

ηk ◦

(

σr,k(rk) + Sk,0σk,0(M0,k(φ0))

+

h
∑

j=1

Sk,jσk,j

(

γ
0,k

(φ0(−∆j))
)

)

∣

∣

∣

∣

∣

. (28)

Using ck − 1 ≥ ζk > 0, (22), the non-decreasing property of

ηk defined in (17), we can verify that there exists µ ∈ (0, 1)
such that

β + (1+ǫ0)

K
∑

k=1

∣

∣

∣

∣

ηk ◦

(

σr,k(rk) + Sk,0σk,0(M0,k(φ0))

+
h
∑

j=1

Sk,jσk,j

(

γ
0,k

(φ0(−∆j))
)

)
∣

∣

∣

∣

≤ β + (1+ǫ0)

K
∑

k=1

{

Sk,0

∣

∣

∣

∣

ηk ◦ (1 + ζk)vkσk,0(M0,k(φ0))

∣

∣

∣

∣

∣

+

h
∑

j=1

Sk,j

∣

∣

∣

∣

∣

ηk ◦ (1 + ζk)vkσk,j

(

γ
0,k

(φ0(−∆j))
)

∣

∣

∣

∣

+
∣

∣

∣
ηk ◦ (1 + 1

ζk
)σr,k(rk)

∣

∣

∣

}

≤ (1+ǫ0)

K
∑

k=1

{ h
∑

j=0

(1+ǫk)
∣

∣σ0,k ◦ α−1

k ◦ (1 + ζk)vk

· Sk,jσk,j(M0,k(φ0))
∣

∣+
∣

∣

∣
ηk ◦ (1 + 1

ζk
)σr,k(rk)

∣

∣

∣

}

≤ (1+ǫ0)

K
∑

k=1

{

(1+ǫk)

c0,k
|α̃0,k(M0,k(φ0))|

+
∣

∣

∣
ηk ◦ (1 + 1

ζk
)σr,k(rk)

∣

∣

∣

}

≤ µα0(φ0) + (1+ǫ0)
K
∑

k=1

∣

∣

∣
ηk ◦ (1 + 1

ζk
)σr,k(rk)

∣

∣

∣
. (29)

Here, the property (21) is used in the last inequality. The

inequality (27) and substitution of (29) into (28) yield

D+Vcl ≤ −(1− µ)α0(φ0)−

h
∑

j=1

Gj −

h+hd
∑

j=h+1

Hj

+ σr,0(|r0|) + (1+ǫ0)

K
∑

k=1

∣

∣

∣
ηk ◦ (1+ 1

ζk
)σr,k(rk)

∣

∣

∣
. (30)

Thus, by virtue of the Lyapunov-type characterizations pre-

sented in [20], [12], the property (30) together with (12),

(11), (4), (6), Assumption 4 and 1 ≤ Fi,j(τ) ≤ 1 + ǫi, ∀τ ∈
[−∆j , 0] implies that Vcl given in (23) is an iISS Lyapunov-

Krasovskii functional for (1). Furthermore, the functional Vcl

is an ISS Lyapunov-Krasovskii functional if α̂0 ∈ K∞.

V. AN EXAMPLE: NETWORK FLOW CONTROL

This section investigates robustness of a flow control

algorithm for communication networks proposed in [16]. The

algorithm is based on a static optimization problem and a

dynamic stabilization which provides an update law to drive

the flow into the desired operating point determined by the

optimization problem. The aim of the flow control is to

allocate the available bandwidth to N competing users within

the limits of link capacities. Let R denote a routing matrix

describing the user-link connection as

Rji =

{

1 If the i-th user uses the j-th link

0 otherwise
.

It is assumed that each user uses fixed links at any given

time, i.e., Rji’s are constant. Let xi, i = 1, 2, ..., N , denote

the sending rate of users. Then the link rate yi, i = 1, 2, ..., L,

satisfies

y = Rx (31)

x = [x1, x2, ..., xN ]T , y = [y1, y2, ..., yL]
T .

Consider

pj = hj(yj), p = [p1, p1, ..., pL]
T , (32)

where hi(yj) is the penalty function that enforces the capac-

ity constraint of the j-th link. The link price pi is sent back

to the users by

q = RT p, q = [q1, q1, ..., qN ]T . (33)
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The primal algorithm proposed in [16] updates the sending

rate xi based on the price feedback qi as follows:

ẋi = λi

(

dUi(xi)

dxi

− qi

)+

xi

, i = 1, 2, ..., N (34)

Here, λi > 0, i = 1, 2, ..., N , are design parameters The

function Ui(xi) is called the utility function describe how

happy each user is. The capacity of the links prevent the users

from maximize Ui(xi) without limit, which is approximately

described by the penalty functions [16]. The projection

(fi(xi))
+
xi

=

{

0 if xi = 0 and fi(xi) < 0
fi(xi) otherwise

guarantees the non-negativity of xi’s, i.e., each xi(t) remains

non-negative for all t ≥ 0 for arbitrary xi(0) ≥ 0, i =
1, 2, ..., N , which holds naturally. We assume that each

Ui(xi) is twice continuously differentiable and satisfies

d2Ui(xi)

dx2
i

< 0, ∀xi ∈ R+

lim
xi→0

Ui(xi) = −∞, lim
xi→∞

dUi(xi)

dxi

≤ 0,

while each penalty function hi(yj) is a non-decreasing

continuous function on R+ and satisfies

hj(0) ≥ 0, lim
yj→∞

hj(yj) > 0.

These assumptions guarantee the existence of an equilibrium

x∗. In the presence of time-delays in the communication

between users and links, the model (34) becomes

ẋi(t) = λi

(

dUi(xi(t))

dxi

− qi(t−∆i) + di(i)

)+

xi

, i = 1, 2, ..., N. (35)

The signals di(t) ∈ R, i = 1, 2, ..., N , are disturbances.

Notice that the delays in the forward and backward paths

can be combined into the round trip delays ∆i without loss

of generality since the xi-equations (34) by themselves are

decoupled from each other. The lumped notation only shifts

the initial conditions of x componentwisely in time. Define

Wi(xi − x∗
i ) =

1

λi

∫ xi

x∗

i

dUi

dxi

(x∗
i )−

dUi

dxi

(s)ds.

Using Young’s inequality, we obtain

Ẇi ≤ −

(

1

2
− δ

)(

dUi

dxi

(x∗
i )−

dUi

dxi

(xi(t))

)2

+
1

2
(qi(t−∆i)− q∗i )

2+
1

4δ
di(t)

2 (36)

along the solution xi(t) of (35), for 0 < δ < 1/2, where q∗i >
0 corresponds to the equilibrium x∗

i . We use x̃i = xi − x∗
i

and q̃i = qi − q∗i . The inequality (36) indicates that the xi-

subsystem (35) is iISS with respect to input (q̃i, di)[1], [20].

The xi-subsystem is not ISS if dUi/dpi is bounded [23],

[20]. For the network flow control system, the dynamic part

corresponding to the x0-subsystem in Sections II and III is

(35) where [x̃1, x̃2, ..., x̃N ]T and [q̃1, q̃2, ..., q̃N ]T are its state

vector and feedback input vector, respectively. The static part

corresponding to the xk-subsystems in Sections II and III is

obtained from (31), (32) and (33) as

q̃i = χi(x), i = 1, 2, ..., N, (37)

where χi : R
N
+ → R is

χi(x)=[R1i, R2i, ..., RLi]











h1([Rx]1)− h1([Rx∗]1)
h2([Rx]2)− hj([Rx∗]2)

...

hL([Rx]L)− hL([Rx∗]L)











.

To apply Theorem 1 to the flow control system, take

K = h = N, hd = 0, V0(x̃) =

N
∑

i=1

Wi(x̃i)

φ0 = [φ0,1, φ0,1, ..., φ0,N ]T

α0(φ0) =

N
∑

i=1

(

1

2
−δ

)(

dUi

dxi

(x∗
i )−

dUi

dxi

(φ0,i(0)+x∗
i )

)2

α̃0,k(s) =
c

2
s2, c > 1

M0,k(φ0) = χk(φ0(0) + x∗), Mk(φk) = φk(0)

vk = 1, αk(s) = s, , σr,k = 0

Sk,0= 1, σk,0(s) = s, Sk,j= 0, j = 1, 2, ..., h

S0,k,0 = 0, S0,k,j =

{

1 if j = k
0 otherwise

,

σ0,k,j(s) =

{

1

2
s2sgn(s) if j = k

0 otherwise

σ0,k(s) =
1

2
s2sgn(s), σr,0 =

s2

4δ
,

where φ0 and φk corresponds to x̃(t + τ) and q̃k(t + τ),
respectively, where τ ∈ [−∆, 0] and k = 1, 2, ..., N . Notice

that the choices α0(φ0) and M0,k(φ0) are asymmetric with

respect to the equilibrium. Requiring the utility and penalty

functions to be almost symmetric is unrealistic for mean-

ingful flow optimization, which implies that an symmetric

small-gain analysis becomes purely local. By virtue of the

development in the previous section, we obtain the following

theorem allowing for the asymmetry.

Theorem 2: If the utility functions Ui(xi), i = 1, 2, ..., N ,

and the penalty functions hj(yj), j = 1, 2, ..., L, satisfy

N
∑

i=1

(

dUi

dxi

(x∗
i )−

dUi

dxi

(xi)

)2

≥ c
N
∑

i=1

χi(x)
2

, x ∈ R
N
+ (38)

for some c > 1, then the primal flow control system is iISS

with respect to input d and state x̃ for arbitrary time-delays.

In addition, it is ISS with respect to input d and state x̃ if

lim
xi→∞

dUi

dxi

(xi) = −∞. (39)

The unboundedness property (39) is not met by typical

choices of the utility functions such as Ui(xi) = −ai/xi,

Ui(xi) = ai log xi , Ui(xi) = ai tan
−1(xi/ai), ai > 0,
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[24], [17]. Therefore, ISS approaches naturally fail to verify

robustness properties with respect to disturbances in the

presence of large time-delays(see e.g. [5]). In contrast, the

iISS approach proposed in this paper demonstrates that the

flow control system implementing these utility functions can

possess robustness in the sense of iISS regardless of time-

delays. It is stressed that the iISS property implies global

asymptotic stability of the equilibrium.

In comparison with preceding studies [26], [5], [4], [6],

the iISS framework developed in this paper not only allows

us to make use of nonlinearity efficiently, but also address

arbitrarily large time-delays and disturbances simultaneously.

The basic idea of the approach formulated rigorously in this

paper has been used for stability analysis of a power control

algorithm for CDMA wireless communication [13]. Deriving

a Lyapunov-Krasovskii functional instead of using trajectory-

based approaches is the key to the stability analysis without

imposing the ISS requirement on the utility functions.

VI. CONCLUDING REMARKS

This paper has presented an asymmetric small-gain condi-

tion for verifying the iISS of the nonlinear time-delay system

consisting of an iISS dynamical subsystem and a static

subsystem. The time-delays are allowed to be both discrete

and distributed. An iISS Lyapunov-Krasovskii functional has

been derived. The iISS framework enables us to deal with a

much broader class of nonlinearities than existing approaches

based on operator norms or the ISS gain. An example of

network flow control has illustrated how the asymmetric iISS

characterization reduces potential conservativeness in global

stability and robustness analysis of a time-delay system

subject to disturbances. Extension to time-varying delays

along the line of [11] is straightforward.

For interconnections consisting only of dynamical subsys-

tems, the utilization of asymmetric small-gain characteriza-

tion remains unsolved. It is known that, for the interconnec-

tion of two iISS dynamical subsystems, a Lyapunov function

can be constructed as a sum of nonlinearly transformed

Lyapunov functions Vi of the individual subsystems, i.e.,

V = F1(V1) + F2(V2) (see e.g. [7], [10]). Incorporation

of the asymmetry into such a construction is not at all

straightforward unless we restrict the transformations F1 and

F2 to linear functions. For nonlinear systems, limiting the

transformations to linear functions in constructing Lyapunov

functions often results in far too conservative stability criteria

[3]. In [8], it is shown that, for a special class of intercon-

nected systems, the utilization of the asymmetry can be still

combined with nonlinear F1 and F2. Extending this idea to

time-delay systems is a topic of further study.
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