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Abstract— We propose to apply the Back and Forth Nudging
(BFN) method used for geophysical data assimilations [1] to
estimate the initial state of a quantum system. We consider a
cloud of atoms interacting with a magnetic field while a single
observable is being continuously measured over time using
homodyne detection. The BFN method relies on designing an
observer forward and backwards in time. The state of the BFN
observer is continuously updated by the measured data and
tends to converge to the system’s state. The proposed estimator
seems to be globally asymptotically convergent when the system
is observable. A detailed convergence proof and simulations are
given in the 2-level case. An extension of the algorithm to the
multilevel case is also presented.

I. INTRODUCTION

Estimating the state of a quantum system is a fundamental

problem of great interest in quantum control. Amongst a

variety of applications, it is essential to verify the efficiency

of a quantum state preparation protocol [2], [3]. For this

reason, it is interesting to avoid the usual quantum state

tomography scheme which involves doing the experiment

many times and performing a strong projective measurement

of a new observable at each preparation. Indeed, since many

realizations of the preparation protocol are necessary to

obtain one state estimation, the fidelity of the preparation

protocol is averaged out over all these realizations. A new

approach overcoming this problem was proposed and verified

experimentally in [4] where a controlled evolution is applied

to an ensemble average while an observable is continuously

measured. A Bayesian filter is then used to reconstruct the

quantum state from the measurement record. In this paper,

we consider a similar setting to the one in [4], [5], [6] (see

[7] for a recent review of these papers). We propose a new

approach inspired of the BFN method used in geophysical

data assimilation [1] to reconstruct the state of the system

from the measured data. We design an observer, which is an

estimation of the quantum system’s state and feed in the data

continuously until the observer converges to the system’s

state. A similar proposal was outlined in [8]. However, the

method we propose has the advantage of extending naturally

to a multidimensional case and makes more use of the

specific dynamics which the system undergoes. We guess this

can strongly reduce the computation time of the estimation

and increase its robustness.

In section II we detail the problem settings and give the

dynamics equations of the BFN observer. Simulation plots

are then presented in section III to demonstrate the efficiency

of the state reconstruction protocol. A detailed convergence

proof of the observer is given in section IV. Finally, in

section V, we discuss the extension of this algorithm to the

multilevel case.

II. THE PROBLEM SETTING

We consider the experimental setting introduced in [4]. To
simplify the theoretical study, we suppose that the system
is a spin 1

2 system (instead of a system of total angular
momentum equal to 3 or 4 as considered in [4]). It interacts
with a magnetic field in the x-y plane: the control, and a
probe. Homodyne detection of the probe, as explained in [5]
enables a weak continuous measurement of the spin system.
We suppose that all the parameters involved in the dynamics
are known. The dynamics of the spin ensemble is described
by the master equation:

d

dt
ρ(t) = −i[Bx(t)σx + By(t)σy, ρ(t)]

+ Γ(σzρ(t)σz − ρ(t)) (1)

y(t) = Tr (σzρ(t)) .

[., .] is the Lie Bracket operator and Tr (.) is the trace
operator. We take ~ = 1. ρ(t) is the density matrix of the
average ensemble at time t. It is a 2 × 2 positive Hermitian
matrix of trace 1. y is the measurement. σx, σy and σz are
the standard Pauli matrices. Γ > 0 gives the strength of the
coupling between the probe and the system. The aim is, from
a set of data {y(t)\t ∈ [0, T ]}, to estimate the initial state of
the system ρ(0) which can be any pure or mixed state.
In order to do so we use Luenberger observers based on the
back and forth nudging (BFN) method [1], [8]. The designed
observer was first introduced, without BFN and for a non
dissipative system, in [9].
The idea is to design an observer on system (1) and another
on the same system but by changing t → T − t. And doing
this iteration n times. This is equivalent to supposing that
the system has a periodic dynamics of period 2T which is
symmetric with respect to t = T and that we are measuring
the system over a time interval [0, 2nT ]. This gives more
time for the observer to converge with a small gain and with
minimal amount of data. System (1) is referred to as the
”forward” system and the same system changing t to T − t
the ”backward” system. The index k introduced below refers
to the kth back and forth iteration of the algorithm. The letter
’f’ stands for ”forward” and ”b” for ”backward”. ρ̂ is the
designed observer.
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For the forward system consider:

d

dt
ρ̂

f

k(t) = −i[Bx(t)σx + By(t)σy, ρ̂
f

k(t)]

+ Γ(σz ρ̂
f

k(t)σz − ρ̂
f

k(t))

− (Γ + γ)σz(ŷ
f

k (t) − y(t)) (2)

ŷ
f

k (t) = Tr
(

σz ρ̂
f

k(t)
)

.

For the backward system consider:

d

dt
ρ̂

b
k(t) = i[Bx(T − t)σx + By(T − t)σy, ρ̂

b
k(t)]

− Γ(σz ρ̂
b
k(t)σz − ρ̂

b
k(t))

+ (Γ − γ)σz(ŷ
b
k(t) − y(T − t)) (3)

ŷ
b
k(t) = Tr

(

σzρ̂
b
k(t)

)

.

Noting that ρ̂b
k(0) = ρ̂f

k(T ) and ρ̂f
k(0) = ρ̂b

k−1(T ) and

γ > 0. In (2), γ′ = Γ+γ is the gain of the forward observer.

It is written in this form for the convenience of the proof.

We initialize the observer ρ̂f
0 (0) = ρ̂(0) to be Hermitian

and of trace 1. We typically take ρ̂(0) = 1
2I where I is the

identity matrix. This way we make no a priori assumption

on the initial state.

Remark 1: Notice that the observer introduced above is

trace preserving and stays Hermitian for all time. However

it does not preserve positivity.

We define for all t ∈ R
+ (k is defined as: k = E( t

2T
)

where E represents the integer part)

ρ̃(t) = ρ̂
f

k(t − 2kT ) − ρ(t − 2kT )

if t ∈ [2kT, (2k + 1)T [ (4)

ρ̂
b
k(t − (2k + 1)T ) − ρ(2(k + 1)T − t)

if t ∈ [(2k + 1)T, 2(k + 1)T [

B̃x(t) = Bx(t − 2kT )

if t ∈ [2kT, (2k + 1)T [

Bx(2(k + 1)T − t)

if t ∈ [(2k + 1)T, 2(k + 1)T [

B̃y(t) = By(t − 2kT )

if t ∈ [2kT, (2k + 1)T [

By(2(k + 1)T − t)

if t ∈ [(2k + 1)T, 2(k + 1)T [

Z(t) = Tr (σz ρ̃(t)) . (5)

Let

V : A (hermitian) → Tr
(

A2
)

,

V is definite positive. For all k ∈ N we have:

d

dt
V (ρ̃(t)) = −4ΓV (ρ̃(t)) − 2γ(Z(t))2

if t ∈ [2kT, (2k + 1)T [ (6)

= 4ΓV (ρ̃(t)) − 2γ(Z(t))2

if t ∈ [(2k + 1)T, 2(k + 1)T [ . (7)

We note, for all k ∈ N, Vk = V (ρ̃(2kT )). We define the

function g such that for all t ∈ R
+

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iterations (k)

Tr (ρ̃(2kT ))
2

Fig. 1. Notice that the upper envelope (i.e Vk = Tr
(

(ρ̃(2kT ))2
)

) goes
to zero when k goes to infinity.

g(t) = e
4Γ(t−2kT )

if t ∈ [2kT, (2k + 1)T [

e
−4Γ(t−2(k+1)T )

if t ∈ [(2k + 1)T, 2(k + 1)T [ ,

Vk+1 − Vk = −2γ(

∫ (2k+1)T

2kT

g(t)Z2(t)dt

+

∫ 2(k+1)T

(2k+1)T

g(t)Z2(t)dt) (8)

≤ 0 .

(Vk)k is a decreasing sequence which is studied in more

detail in Section IV. Before looking into the convergence

proof, we present some simulations which show the robust-

ness of the convergence of ρ̂f
k(0) towards ρ(0) when k goes

to infinity.

III. SIMULATIONS

For the simulations of figures 1, 2, 3 and 4, we take:

Γ = 0.25 kHz γ = 0.25 kHz

∀t
√

Bx(t)2 + By(t)2 = 10 kHz T = 1 ms

We take Bx(t) = B0 cos(θ(t)) and By = B0 sin(θ(t)). B0 =
10 kHz. For θ(t), at 10 equally spaced times between 0 and

T , we take a random value between 0 and 2π. Using a cubic

spline interpolation, we build θ(t) over [0, T ].

10 iterations are simulated: k = 0, .., 10. 10% Gaussian

noise was added to the measurement, Bx and By .

We initialize the estimator in the completely mixed state

ρ̂f
0 (0) = ρ̂(0) = 1

2I . We randomly initialize ρ on the

Bloch sphere by taking a random Hermitian positive matrix

satisfying: Tr
(

ρ(0)2
)

= Tr (ρ(0)) = 1.
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Fig. 2. Measurement and estimated measurement versus time. 10%
Gaussian noise was added to the data. The estimated measurement is
obtained by simulating (1) with ρ(0) = ρ

f
k
(0) and k = 10.
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Fig. 3. The density matrix of the system and its estimator at time t = 0.
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Fig. 4. The magnetic fields Bx(t) and By(t).

IV. CONVERGENCE PROOF

Theorem 1: Consider system (1) and the observers (2),

(3). Take T > 0 (which may be arbitrarily small). For

all Bx, By ∈ C2([0, T ], R) such that Bx(0) d
dt

By(0) −
By(0) d

dt
Bx(0) 6= 0 and ∀ρ̂(0) which is Hermitian and of

trace 1, we have

lim
t→∞

Tr
(

ρ̃2(t)
)

= 0 ,

where ρ̃ is defined in (4).

Remark 2: The convergence outlined in theorem 1 is in

two steps:

1) limt→∞ Z(t) = 0
2) limt→∞ Tr

(

ρ̃2(t)
)

= 0

The observer (2), (3) is designed such that we always have

convergence of the estimated measurement to the measure-

ment: limt→∞ Z(t) = 0. Since the system is observable:

(σz , σx, σy) and its commutators span the space of all trace-

less 2 × 2 Hermitian matrices, we can find fields (Bx, By)
such that limt→∞ Z(t) = 0 implies limt→∞ Tr

(

ρ̃2(t)
)

= 0.

Remark 3: Theorem 1 holds for all T > 0. However, in

the simulations above, we chose T ∼ 1/Γ. If T is too small,

we have little information on the system and therefore the

state estimation will lose robustness to noise. On the other

hand, if T is too large, the system’s state ρ(t) will converge

(because of the damping Γ) and the numerical integration of

the backwards observer (3) becomes unstable when noise is

added.

Proof:

For any piecewise continuous function f we define:

f(2kT+) = limt→2kT,t>2kT f(t).
From (8), we know that (Vk)k is a decreasing sequence.

Besides, for all k ∈ N, Vk ≥ 0, hence (Vk)k converges to

a limit that we note by V∞. Summing (8) between 0 and

N ∈ N
∗:

VN − V0 = −2γ

∫ (2N+2)T

0

g(t)Z2(t)dt

∀t ∈ R
+ g(t) ≥ 1, hence

∫ (2N+2)T

0
Z2(t)dt ≤ V0−VN

2γ
.

Since ∀t ∈ R
+ Z2(t) ≥ 0,

∫∞

0
Z2(t)dt exists and is finite.

From (6) and (7) we have ∀u ∈ [0, 2T ] and ∀k ∈ N:

V (ρ̃(2kT + u)) ≤ V (ρ̃(2kT )) , (9)

hence, for all t ∈ R
+ we have V (ρ̃(t)) ≤ V0. ρ̃ is therefore

bounded and belongs to the ball centered around 0 and of

radius V0.

We are now going to prove that (Vk)k converges to zero

when k goes to infinity, and from (9) we will conclude that

V (ρ̃(t)) converges to zero when t goes to infinity. In order

to prove the convergence of (Vk)k, we are going to prove

that Z(2kT ), d
dt

Z(2kT+), d2

dt2
Z(2kT+) all converge to zero

when k goes to infinity.

We consider Bx, By C2([0, T ], R) functions.

Z is C3 over S =
⋃

k∈N
]kT, (k + 1)T [.

B̃x, B̃y, d
dt

B̃x, d
dt

B̃y, d2

dt2
B̃x, d2

dt2
B̃y and ρ̃ are bounded

over S, therefore d
dt

ρ̃, d2

dt2
ρ̃, d3

dt3
ρ̃ are bounded over S and

therefore d
dt

Z, d2

dt2
Z, d3

dt3
Z are bounded over S. Since Z

is continuous over R
+ and d

dt
Z is bounded over S, Z

is uniformly continuous over R
+, so Z2 is uniformly
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continuous over R
+. What’s more

∫∞

0 Z2(t)dt exists and is

finite. We can conclude by applying Barbalat’s lemma [10]

that limt→∞ Z2(t) = 0 and hence

lim
t→∞

Z(t) = 0 , (10)

and in particular

lim
k→∞

Z(2kT ) = 0 . (11)

Since the derivatives of Z are not continuous over R
+

but only over S, we cannot directly apply Barbalat’s lemma

to d
dt

Z(t) and d2

dt2
Z(t).

Suppose that d
dt

Z(t) does not converge to zero when t
goes to infinity.

There exists ǫ > 0 and a sequence (tn)n such that

limn→∞ tn = ∞ and d
dt

Z(tn) > ǫ (or d
dt

Z(tn) < −ǫ which

can be treated in exactly the same way).

Since d2

dt2
Z(t) is bounded over S we have: ∃η ∈]0, T/2[

such that for all n ∈ N and t ∈ [−tmin
n , tmax

n ] | d
dt

Z(tn +
t) − d

dt
Z(tn)| < ǫ

2 . Where tmin
n = min(tn − E(tn/T )T, η)

and tmax
n = min((E(tn/T )+1)T − tn, η). E represents the

integer part.

Hence, for all t ∈ [−tmin
n , tmax

n ] we have: d
dt

Z(tn + t) =
d
dt

Z(tn)− ( d
dt

Z(tn)− d
dt

Z(tn + t)) ≥ d
dt

Z(tn)−| d
dt

Z(tn +
t) − d

dt
Z(tn)| ≥ ǫ − ǫ

2 = ǫ
2 . Also, notice that T ≥

tmin
n + tmax

n ≥ η.

|Z(tn + tmax
n ) − Z(tn − tmin

n )| =

|
∫ tn+tmax

n

tn−tmin
n

d

dt
Z(t)dt|

≥ ηǫ

2
> 0 .

This is in contradiction with (10), we therefore conclude

that

lim
t→∞

d

dt
Z(t) = 0 , (12)

and in particular:

lim
k→∞

d

dt
Z(2kT+) = 0 . (13)

Suppose that d2

dt2
Z(2kT+) does not converge to zero when

k goes to infinity, there exists ǫ > 0 and a sequence (kn)n

such that limn→∞ kn = ∞ and d2

dt2
Z(2knT +) > ǫ, since

d3

dt3
Z is bounded over S, there exists 0 < η < T such that for

all n ∈ N and 0 < t < η | d2

dt2
Z(2knT+t)− d2

dt2
Z(2knT +)| <

ǫ
2 . Hence:

| d

dt
Z(2knT + η) − d

dt
Z(2knT +)| =

|
∫ 2knT+η

2knT

d2

dt2
Z(t)dt|

≥ ηǫ

2
> 0 ,

which contradicts (12). Hence:

lim
k→∞

d2

dt2
Z(2kT+) = 0 . (14)

We note

X(t) = Tr (σxρ̃(t))

Y (t) = Tr (σy ρ̃(t)) .

We recall that from (11)(13)(14):






















lim
k→∞

Z(2kT ) = 0

lim
k→∞

d

dt
Z(2kT+) = 0

lim
k→∞

d2

dt2
Z(2kT+) = 0 .

(15)

Using (1), we find that (15) implies:


















lim
k→∞

Z(2kT ) = 0

lim
k→∞

B̃x(2kT )Y (2kT ) − B̃y(2kT )X(2kT ) = 0

lim
k→∞

d

dt
B̃x(2kT )Y (2kT ) −

d

dt
B̃y(2kT )X(2kT ) = 0 .

(16)

Notice that B̃x(2kT ) = Bx(0) and B̃y(2kT ) = By(0), the

same holds for their derivatives. We take Bx, By such that

Bx(0) d
dt

By(0) − By(0) d
dt

Bx(0) 6= 0. (16) implies:















lim
k→∞

Z(2kT ) = 0

lim
k→∞

X(2kT ) = 0

lim
k→∞

Y (2kT ) = 0 .

This is equivalent to limk→∞ V (ρ̃(2kT )) = 0. (9) enables

us to conclude that:

lim
t→∞

Tr
(

ρ̃2(t)
)

= 0 .

V. EXTENSION TO THE MULTILEVEL CASE

We now consider a system of total angular momentum F .

The dimension of the system is d = 2F +1, and the density

matrix ρ(0) belongs to the set of positive d × d Hermitian

matrices of trace 1. There are therefore d2−1 parameters to

identify. In order to extend the proof of the two level case

(d = 2) to the multilevel case, we would need to prove that

Z(t), d
dt

Z(t), .., dd
2
−2

dtd2
−2

Z(t) all converge to zero when t goes

to infinity. If the system is observable, we would be able to

conclude that we can find a control such that ρ̃(t) converges

to zero. Two complications arise from considering a system

of higher dimension:

First, the need to extract information from further derivatives

of the measurement record systematically reduces the robust-

ness of the state estimation. One direction of improvement

would be to design a nonlinear observer which preserves

positivity. Such an observer is given in [11] for a non

dissipative system (Γ = 0). The difficulty is to build an ob-

server which stays positive even in the backwards dynamics

which is unstable due to the dissipation term in Γ. Such an
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observer would reduce the size of the admissible ρ(0)s given

a noisy measurement record, the robustness will therefore

be increased. However, no dramatic improvement should be

expected since the information on some matrix elements

of ρ(0) are hidden in high derivatives of the measurement

record.

Second, although the observability criteria insures the ex-

istence of a control such that limt→∞ Z(t) = 0 implies

limt→∞ ρ̃(t) = 0, we don’t have any well known method to

find such a control. The higher the dimension, the harder it is

to find a control which makes the data y(t) informationally

complete about the initial state ρ(0).
We now give some simulations which show that our BFN

protocol still works well for a system of total angular

momentum F = 1 (d = 3). Consider the system:

d

dt
ρ(t) = −i[H(t), ρ(t)] + ΓD[O]ρ(t) (17)

y(t) = Tr (Oρ(t)) .

Where H is the system’s Hamiltonian and D[O] the Lind-

blad superoperator. We have: H(t) = gF µB(Bx(t)Fx +
By(t)Fy) + βΓFx

2. gF , µB, Γ and β are positive constants,

Bx, By are the controls and Fx, Fy, Fz are the angular

momentum operators. O is the observable, and we take

O =
√

ΓFz . D[O]ρ(t) = Oρ(t)O†− 1
2 (OO†ρ(t)+ρ(t)O†O).

The superscript † stands for conjugate transpose. The term

βΓFx
2 is necessary to insure the observability of the system

[12]. We now consider the following observers:

d

dt
ρ̂f

k(t) = −i[H(t), ρ̂f
k(t)] + ΓD[O]ρ̂f

k(t)

− γO(ŷf
k (t) − y(t)) (18)

ŷf
k (t) = Tr

(

Oρ̂f
k(t)

)

,

d

dt
ρ̂b

k(t) = i[H(T − t), ρ̂b
k(t)] − ΓD[O]ρ̂b

k(t)

− γO(ŷb
k(t) − y(T − t)) (19)

ŷb
k(t) = Tr

(

Oρ̂b
k(t)

)

,

with the conditions: ρ̂b
k(0) = ρ̂f

k(T ) and ρ̂f
k(0) =

ρ̂b
k−1(T ). We initialize the observer at ρ̂f

0 (0) = 1
3Id where

Id is the 3 × 3 identity matrix.

For the numerical simulations in figures 5, 6 and 7 we

take:

gF = 1 µBB0 = 30 Γ = 1

γ = 1 β = 10 T = 1

We take Bx(t) = B0 cos(θ(t)) and By(t) = B0 sin(θ(t)).
θ(t) is found using a numerical search routine aiming to max-

imize a certain criteria (entropy), as explained in [13]. 10%
noise is added to the controls Bx, By and 10% noise is added

to the measurement y(t). We take ρ(0) = 1
2





1 0 1
0 0 0
1 0 1





Notice that the estimated measurement is almost identical

to the measurement y(t) (figure 6). Also, the sequence
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Tr (ρ̃(2kT ))
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Fig. 5. The upper envelope is Vk = Tr
(

(ρ̃(2kT ))2
)

. Notice that it
decreases and seems to converge to zero.
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Fig. 6. Measurement and estimated measurement versus time. 10%
Gaussian noise was added to the data. The estimated measurement is
obtained by simulating (17) with ρ(0) = ρ

f
k
(0) and k = 50.
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Fig. 7. The density matrix of the system and its estimator at time t = 0.
We plot the modulus of each matrix element.

(Vk)k decreases and seems to converge to zero (figure

5). This enables us to reconstruct the initial state with a

96% fidelity where the fidelity F is computed as follows

F = Tr

(
√

√

ρ̂f
50(0)ρ(0)

√

ρ̂f
50(0)

)

[14]. More iterations

are needed than in the 2 level case (50 as opposed to 10)

to achieve a similar fidelity. Each back and forth iteration

takes about 0.1 seconds so the presented simulation takes
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about 5 seconds to run. As mentioned above, the fidelity

of the reconstruction can be increased if a better control

is found. The efficiency of the search of such a control

could be improved by using techniques such as the D-

MORPH algorithm [15]. The latter enables to find a control

which produces a desired unitary transformation. One

could therefore define a family of unitary operators

{U(t)\t ∈ [0, T ]} such that the set of observables
{

O, U(t1)
†OU(t1), .., U(td2−3)

†OU(td2−3), U(T )†OU(T )
}

spans the vector space of all traceless Hermitian d × d
matrices. And then use D-MORPH to find a control which

generates such a family {U(t)\t ∈ [0, T ]}. An approximative

model where Γ = 0 would need to be considered for the

numerical search of the control. This control can then be

used on the real system (Γ 6= 0). Another possibility would

be the use of a Lyapunov technique [16].

VI. CONCLUSION

In this paper we propose a BFN scheme to estimate the

initial state of a quantum system when a continuous mea-

surement of a single observable is given over a time interval

[0, T ]. A convergence proof and simulations are given for

the two level case, and the considered experimental settings

were similar to those in [5]. We discuss the extension of

this algorithm to the multilevel case outlining the limitations

and possible improvements of this protocol, and we present

simulations in the case of a spin 1 system. A quantitative

comparison of this method to the ones considered in [4]

and [6] in terms of estimation time and robustness will

be necessary to put forward the advantages of this state

reconstruction protocol.
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