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Abstract— Simulating the turbulence effect on ground tele-
scope observations is of fundamental importance for the design
and test of suitable control algorithms for adaptive optics
systems. In this paper we propose a multiscale approach for
efficiently synthesizing turbulent phases at very high reso-
lutions: First, the turbulence is simulated at low resolution
taking advantage of a previously developed method for gen-
erating phase screens, [2]. Then, high resolution phase screens
are obtained as the output of a multiscale linear stochastic
system. The multiscale approach significantly improves the
computational efficiency of turbulence simulation with respect
to recently developed methods [1],[2],[8]. Furthermore, the
proposed procedure ensures good accuracy in reproducing the
statistical characteristics of the turbulent phase.

I. INTRODUCTION

Motivated by the increasing importance of adaptive optics

(AO) systems for improving the real resolution of large

ground telescopes, in this paper we address the problem of

turbulence simulation to provide a test bed for the design of

control strategies for AO systems.

The presence of wind and local temperature changes cause

rapid changes in the atmosphere’s refraction index, [14].

Thus, when the wavefront signal arriving from a star object

enters the terrestrial atmosphere it is distorted proportion-

ally to the length of its optic path, and depending on the

encountered refraction index. Consequently, the atmospheric

turbulence effect is mainly to delay the light beams of

different phases. Therefore, the flat wavefront surface of a

light beam arriving from a star is no longer flat when it is

detected on the telescope pupil: This significantly reduces

the real resolution of the telescope.

The atmospheric turbulence effect can be modeled as a

randomly changing phase delay added to the light beams

phase. Such delay, which we will also call turbulent phase,

can be statistically characterized as a zero-mean second order

random process. Similarly, a phase screen can be defined

as the set of phase values which affect the light beams

wavefront arriving on the telescope.

Commonly used methods for the turbulent phase simu-

lation are based on the fast Fourier transform (FFT). On

the positive side, such methods allow to quickly generate

turbulence samples which perfectly match the theoretical

turbulent phase statistical characteristics. On the other hand,

since they generate all the samples together, they can be used

only for synthesizing finite dimensional phase screens.
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Industriali, Università di Padova, Stradella San Nicola 3, 36100 Vicenza,
Italy angelo.cenedese@unipd.it

The interest in studying the performances of AO control

algorithms in long simulations led to different approaches

for simulating the turbulence: Recently proposed procedures,

[1],[2],[8], exploit a suitably defined linear dynamic system

to model the spatio-temporal dynamic of the turbulent phase

along the wind direction. Then, such dynamic system, driven

by white noise, is used to produce, possibly infinitely long,

sequences of phase screens samples.

In this paper we propose a new approach which combines

the method described above, [1],[2],[8], with a multiscale

stochastic model: The first is used to compute a low resolu-

tion version of the phase screen, while the latter provides

an efficient way to obtain high resolution phase screens

starting from the results of the first. The overall algorithm is

computationally more efficient than those in [1],[2],[8], and,

as shown in Section V, it accurately reproduces the desired

turbulence statistical characteristics.

The multiscale approach proposed here, is similar to

already considered multiscale models [11],[3],[5],[9],[7]: As

in [5] we a priori fix a multiresolution representation of

the turbulence (e.g. a wavelet decomposition, [6],[12]) and

similarly to [7] we exploit local spatial predictions to reduce

the spatial correlation of the considered signal. However,

differently from previously considered approaches, the error

process obtained after prediction is modeled like a moving

average process, leading to an efficient way for matching the

theoretical turbulence statistical characteristics at each scale

of the representation.

The contribution of this paper is twofold: First, the integra-

tion of spatio-temporal models [1],[2],[8] with a multiscale

stochastic model, which allows to more efficiently synthesize

phase screens. Second, the proposed multiscale approach

shall be of some interest in the multiscale realization theory:

Developments on this aspect are still under investigation.

The paper is organized as follows: Section II introduces

the turbulence spatio-temporal statistical characteristics. In

Section III we introduce a multiscale representation of the

turbulent phase. Then, in Section IV we present the main

results, proposing a new multiscale stochastic model of the

atmospheric turbulence. Finally, in Section V we discuss the

results of some simulations.

II. TURBULENT PHASE CHARACTERIZATION

The turbulent phase is assumed to be zero-mean stationary

and spatially homogeneous. Let u and v be two unit vectors

indicating two orthogonal spatial directions, as in Fig. 1, and

let φ(u, v, t) be the value of the turbulent phase on the point

(u, v) at time t on the telescope aperture plane, where u and

v are the coordinates of the point along u and v. Then, the
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covariance between two values of the turbulence, φ(u, v, t)
and φ(u′, v′, t), depends only on the distance, r, between the

two points: Cφ(r) = E[φ(u, v, t)φ(u′, v′, t)],∀(u, v, u′, v′),
such that r =

√

(u − u′)2 + (v − v′)2.

(a) (b) (c)

Fig. 1. (a) Coordinates on the telescope image domain. (b) Two points,
(u, v) and (u′, v′), separated by a distance r on the telescope aperture
plane. (c) An example of phase screen.

According to the Von Karman theory, the shape of the

spatial covariance function, Cφ(·), is completely character-

ized by the values of two physical parameters, r0, the Fried

parameter, and L0, the outer scale ([14], [4]):

Cφ(r) =

(

L0

r0

)5/3
η

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

, (1)

where K·(·) is the MacDonald function (modified Bessel

function of the third type), and η is a constant.

Furthermore, the turbulent phase is supposed to be nor-

mally distributed [13], hence the second order statistics are

sufficient to completely describe its statistical properties.

From a temporal point of view, the turbulence is typically

modeled as a (linear) superposition of a finite number l of

independent layers, moving at different altitudes, with differ-

ent energies and velocities. A commonly agreed assumption

considers that each layer translates in front of the telescope

pupil with constant velocity vi (Taylor approximation [14]).

III. MULTISCALE APPROACH FOR TURBULENT

PHASE SIMULATION

Since the layers are independent here we consider the

problem of simulating a single layer. Furthermore, we as-

sume that the wind direction associated to the considered

layer is parallel to the v vector, i.e. vi = vi,vv, vi,v 6= 0.

Without loss of generality, we assume the phase screen

(Fig. 1(c)) to be represented as an r × c matrix containing

the turbulent phase values. The, physical dimension of each

pixel in the matrix is ps × ps.
Then, simulating new values of the turbulence is equiva-

lent to generating new columns of the phase screen matrix

and properly shifting the window corresponding to the tele-

scope aperture. Thus, to simplify the notation, hereafter we

omit the time coordinate t from equations, and we focus on

the goal of generating an r × c phase screen (where c can

go to infinity and r can be chosen arbitrarily large).

In this framework, the turbulent phase can be treated as a

realization of a zero-mean wide-sense stationary stochastic

process ϕ. Then, the problem of phase screen synthesis can

be stated as the simulation of ϕ. Recently proposed meth-

ods, [1],[2],[8], perform such simulation using a properly

computed linear dynamic system:
{

χs(u + 1) = Asχs(u) +Ksξ(u)
ϕ(u) = Csχs(u) + ξ(u)

(2)

where ϕ(u) is a vector containing the values of the uth

column of the synthesized turbulent phase, χs is the state

of the linear system and ξ is a zero-mean Gaussian white-

noise process.

The advantage of using (2) for turbulence simulation is

twofold: It accurately reproduces the turbulence temporal

dynamic and it can be used to produce infinite sequences

of phase screens.

On the other hand, if ns, the size of the state χs, is

proportional to the number of rows, r, in the phase screen

(i.e. assuming ns = O(r)), then the computational complex-

ity of generating a new column of turbulent phase values

with (2) is O(n2
s). Similarly, the computational complexity

for generating an r × c matrix of turbulent phase values is

O(r2c).
In addition, similar considerations hold also for the com-

putational load and memory requirements for computing the

parameters of system (2).

Since in practical applications r can assume very large

values, in such cases this method results to be impracticable,

e.g. as long as r ≈ 1000 or larger.

Hence, in this paper we propose a different approach,

decomposing the problem of turbulence simulation in a two

step procedure:

• Simulate the turbulent phase at low resolution, rs × cs
(rs ≪ r, cs ≪ c) with (2) as in [1],[2],[8].

• Use a multiscale stochastic model to produce high

resolution samples of the turbulence (taking as input

the low resolution samples computed at the previous

step).

Assume that each scale of the multiscale representation

doubles the turbulence resolution, and that rs is chosen

independently on r, then M , the number of scales used

in the multiscale model, is set as the least integer greater

than or equal to log2(r/rs), e.g. M(r) = ⌈log2(r/rs)⌉ and

r ≤ rs2
M(r). Then, the number of operations required for

simulating the low resolution phase screen (associated to

the high resolution r × c phase screen) with (2) is linearly

proportional to r2scs: Since rs is constant and independent

on r, and cs = c/2M , then the computational complexity

of this part of the algorithm is O(c). Notice that the second

step of the procedure produces r × c phase screens, so its

computational complexity is at least O(rc), and hence the

computational complexity of the first step is negligible.

The aim of the above two step procedure is to efficiently

produce infinite sequences of phase screens while preserving

the original statistical characteristics of the turbulence. Thus,

the multiscale model shall be designed to be iteratively called

after the use of system (2) to produce high resolution samples

consistent with those previously generated.

Multiscale stochastic models have been widely studied in

literature: The approach followed in this paper is similar to
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those in [11],[3],[5],[9],[7]. The aim is that of computing a

multiscale model which match some desired statistics.

Similarly to [5], we consider a multiscale linear decom-

position of the signal: The resulting representation is formed

by coefficients describing the characteristics of the phase

screen at different scales. For simplicity of exposition, here

we assume to use an Haar decomposition of the turbulent

phase, as in Fig. 2.

low-pass horizontal vertical diagonal

i = 0

i = 1

i = 2

Fig. 2. Haar wavelet decomposition of a phase screen. i is the scale index,
and M = 2. The figures of the ith row represent respectively: (from left to
right) the low-pass version of the current phase screen, the details on the
horizontal, vertical, and diagonal direction at scale i.

Specifically, at level i of the multiscale representation the

turbulent phase is decomposed in four sets of coefficients,

corresponding respectively to a low-pass representation of

the turbulence, and the details along the horizontal, vertical

and diagonal directions (see Fig. 2). Let the order i of

the representation level be larger for scales associated to

higher resolution. Furthermore, let xli(u, v) be the low-pass

coefficient at scale i and spatial position (u, v). Similarly,

let xji (u, v), j = {h, v, d} be the value of the coefficient

for the horizontal, vertical and diagonal directions at scale

i and spatial position (u, v). Let M be the scale associated

to the highest resolution, then xlM (u, v) = φ(u, v), ∀(u, v).
Conversely, scale 0 is the lowest resolution scale.

Then, xji (·, ·), j = {l, h, v, d} can be obtained (by means

of the Haar transform) from xli+1(·, ·) as follows:








xli(u, v)
xhi (u, v)
xvi (u, v)
xdi (u, v)









= C









xli+1(2u, 2v)
xli+1(2u, 2v + 1)
xli+1(2u+ 1, 2v)

xli+1(2u+ 1, 2v + 1)









,

and conversely








xli+1(2u, 2v)
xli+1(2u, 2v + 1)
xli+1(2u+ 1, 2v)

xli+1(2u+ 1, 2v + 1)









= C⊤









xli(u, v)
xhi (u, v)
xvi (u, v)
xdi (u, v)









,

where

C =
1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









,

and C−1 = C⊤.

Let xi be the vector containing all the coefficients at scale

i, i.e. xji (u, v), ∀(u, v), j = {l, h, v, d}, i 6= M , while

for i = M it contains xlM (u, v), ∀(u, v). Then, for each

i, the relation between xi+1 and xi is linear and can be

expressed in terms of the C matrix. In particular, recursively

repeating this consideration xi can be obtained as a linear

transformation of xM .

Furthermore, xlM (u, v) = φ(u, v), ∀(u, v), thus the sec-

ond order statistics of xM can be computed from (1). Since

xM is Gaussian, then xi is Gaussian ∀i ≤ M . Therefore,

the second order statistics of each xi can be derived from

(1) using linear transformations.

In fact, C automatically determines the second order

statistics for all xi, i ≤M .

Thus, the goal is to define, for each i, 0 ≤ i < M − 1, a

proper stochastic model which takes as input xi and provides

an output which matches the second order statistics of xi+1.

Such model will be formulated in Section IV.

Three observations are now in order: First, since the

process at different scales has different statistics, the values

of the parameters in model of Section IV will usually be

scale dependent.

At scale 0, xl0(u, v), ∀(u, v), is computed by means

of the dynamic system (2). Hereafter, we assume that the

parameters of system (2) are computed as described in [2]

from the second order statistics of xl0. Alternatively, the

parameters of (2) can be computed as in [1],[8]. Then, the

multiscale model of Section IV will be iteratively used after

that system (2) has generated one (or more) new column.

Finally, even if for simplicity of exposition the Haar

transform has been used, in practice different choices may be

considered. In particular, the local transformation matrix C
can be scale dependent, Ci, and in some application it shall

be convenient to choose it ad hoc. For instance, since usually

xli(u, v), x
h
i (u, v), x

v
i (u, v), x

d
i (u, v) are highly correlated,

Principal Component Analysis (PCA) can be used to have

a dimensional reduction on the number of coefficients to be

generated at each scale.

IV. MULTISCALE STOCHASTIC MODEL

In this section we present a multiscale stochastic system

which models the relation between xi−1 and xi.
For simplicity of exposition we discard the border effect,

that is we assume that the domain of the process at each

scale is an infinite grid. Moreover, being the domains actually

discrete, and Cφ(r) ≈ 0 for large r, then the process at

each scale can be conveniently modeled as a homogeneous

and isotropic Markov random field (MRF). Moreover, for

simplicity of notation, in this section we consider the 1D

case.

Using the 1D Haar transform, at scale i the process is

formed by {xli(·)} and {xvi (·)}, where xli can be computed

by means of xi−1: {xli(·)} contains the same information of

xi−1, then, the aim of this section can be reformulated as

statistically modeling {xvi (·)} given the values of {xli(·)}.

Let ψ be a MRF, and let the neighborhood, N(ū), of the

point u be defined as N(ū) =
{

u | 0 < |u− ū| ≤ d̄
}

, for
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a certain neighborhood size d̄. Then, as shown in [16], the

value of the MRF at the generic point ū, can be expressed

as the best linear prediction of ψ(ū) given the values of its

neighbors N(ū) plus an “innovation” process eψ(ū):

ψ(ū) =
∑

u∈N(ū)

aψ|ū−u|ψ(u) + eψ(ū) , (3)

where {aψj } are suitable coefficients which yield the best

(spatial) linear prediction of ψ(ū) given the values of its

neighbors. Furthermore,

E[eψ(ū)eψ(u)] =







σ2
eψ ū = u

−a|ū−u|σ
2
eψ u ∈ N(ū)

0 otherwise

. (4)

Motivated by (3), we consider a prediction based model

for xvi . Let Ni(ū) be the vector containing the following

coefficients: {xli(u) such that u ∈ Ni(ū)}, where Ni(ū) =
{

u | 0 < |u− ū| ≤ d̄i
}

, and the size of the neighborhood,

di, can be different at different scales.

Furthermore, let Ai be the matrix which yield to the best

linear prediction of xvi (ū) given Ni(ū), then:

xvi (ū) = AiNi(ū) + evi (ū) . (5)

In analogy with (3), (5) can also be expressed in

autoregressive-like form:

xvi (ū) =
∑

u∈Ni(ū)

avi,|ū−u|x
l
i(u) + evi (ū) ,

where {avi,u} are the coefficients contained in Ai properly

sorted.

Similarly to [7], the neat effect of using a linear (spa-

tial) prediction is that of partially decorrelating xvi (ū) from

{xli(·)}. In practice, the value of d̄i is a design parameter

which shall be chosen sufficiently large to have an effective

prediction and an adequate decorrelation. On the other hand,

d̄i provides a bound on the computational complexity of the

synthesis algorithm, then it is necessary to choose a tradeoff

value of d̄i to have both a good matching of the desired

statistics and a sufficiently low computational complexity.

As in (4), typically evi (u) is not independent on evi (u
′) for

u 6= u′. In fact, evi (·), like xi and xi−1, is an homogeneous

and isotropic random field, and E[evi (ū)e
v
i (u)] vanishes for

sufficiently large |ū − u|. The covariances of evi (·) can be

computed as follows:

E[evi (ū)e
v
i (u)] = E[xvi (ū)x

v
i (u)] −AiE[xvi (ū)Ni(u)]

−AiE[Ni(ū)x
v
i (u)] +AiE[Ni(ū)Ni(u)

⊤]A⊤
i

(6)

where the values of the expectations can be easily obtained

from the covariances of xi.
Let Re,i(r, u) = E[evi (u + r)evi (u)]. In fact, Re,i(r, u)

does not depend on u, then hereafter we omit to write the

u: Re,i(r, u) = Re,i(r). Moreover, it is simple to prove that

Re,i(r) = Re,i(−r).
Hereafter it is assumed that the spatial correlations of the

process evi can be expressed as the convolution product of a

kernel and itself but considered in reverse order. When this

is not the case, then if the domain of the kernel is sufficiently

large, such approximation typically leads to small errors

because Re,i(r) vanishes quite fast as r becomes large. Then,

the process evi can be conveniently modeled as a moving

average (MA) process:

evi (u) =
∑

k∈N̄

(u)θi,kǫi(u− k) , (7)

where ǫi is a zero-mean Gaussian white-noise process, N̄(u)
is a suitable neighborhood of u, and {θi,·} are the MA

coefficients.

The computation of proper values of the parameters {θi,·}
to make the covariances of the MA process match those in (6)

is a problem already investigated in literature (it is equivalent

to the minimum length correlation extension problem). The

problem can be solved as in [15] finding the sequence {θi,·}
of minimal length ensuring the match. However, the method

presented in [15] is quite laborious in the multidimensional

case, hence we proceed in a different way. Assume to have

considered a neighborhood N̄(·) which is sufficiently large

to contain the domain of the coefficients {θi,·}. Then, they

can be computed very quickly as follows [10]:

• Let re be a vector containing the finite symmetric

covariance sequence of Re,i(·) 6= 0.

• re is formed by the covariances of evi (·) in (7), then

re = g ∗ ḡ, where g is a vector containing the MA

coefficients {θi,·}, and ḡ contains the same coefficients

of g but in reverse order.

• Let F(g) be the fast Fourier transform (FFT) of g.

Then, from the convolution property of the FFT: F(g ∗
ḡ) = F(g) · F(g), where in the last equation “·”
indicates the element by element multiplication.

• Since Re,i(·) is even and real, then re and F(re) are

symmetric and real vectors.

• From the above considerations: F(re) = F(g ∗ ḡ) =
F(g) · F(g).

• From the properties of stationary processes it is simple

to prove that each component of the vector F(re) is

positive.

• Finally, each component of F(g) is obtained taking the

square root of the corresponding component in F(re),
and g (and consequently {θi,·}) is obtained computing

the inverse FFT of F(g).

The above procedure does not necessarily lead to the opti-

mal set of parameters (the minimum length sequence which

reproduces the desired covariances), however it quickly pro-

vides a solution.

Then, the synthesis procedure iteratively executes the

following steps:

1) System (2) produces new low-resolution samples,

{xl0(u)}u=u1:u2
.

2) for i = 0 : M − 1

- use Ai to compute predictions {x̂vi (u)}u=u1:u2

of the new values of {xvi (u)}u=u1:u2
based on

{xli(u)}u=1:u2
.
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- generate new values of ǫi(·) sampling from a zero-

mean white-noise random generator.

- compute {evi (u)}u=u1:u2
filtering ǫi(·).

- compute the details at scale i, as

xvi (u) = x̂vi (u) + evi (u), u = u1 : u2 ,

and combine {xvi (u)}u=u1:u2
with

{xl0(u)}u=u1:u2
to obtain {xli+1(u)}u=2u1:2u2+1.

end

3) φ(u) = xlM (u), ∀u.

The above procedure can be adapted to the 2D case with

minor changes. The main computational cost of the algorithm

is due to filtering operations. Since the number of coefficients

in the Haar description of the phase screen is equal to the

size of the phase screen itself, and since the dimensions of

the neighborhood {Ni} and {N̄i} do not depend on r and

c, then, the number of operations needed for generating an

r × c matrix of turbulent phases is O(rc).

V. SIMULATIONS AND DISCUSSION

In this section we investigate the performances of the

proposed method in a case of study: We simulate the

atmospheric turbulence for a telescope with diameter d = 8
meter, and we set L0 = 50m, r0 = 0.2m. Specifically, we

generate a 3840 × 3840 pixels phase screen corresponding

to a 8 × 8 m2 area, as shown in Fig. 3 (bottom).

Without loss of generality, as in Section III we have

assumed that the wind direction is parallel to v. Then, we

have simulated the turbulence at low resolution, rs × cs, as

described in [2], setting rs = 60, and consequently M = 6
(so 3840 = 2Mrs). In this simulation cs = 60, however the

method described in this paper can generate infinitely long

sequences of columns, hence the turbulence can be simulated

for whatever choice of c and cs. The low resolution generated

phase screen is shown at the top of Fig. 3.

The neighborhood size, d̄i, for (5) is set to 5 for each i =
0, . . . ,M . Furthermore, the prediction error in (5), modeled

as in (7), has only local covariances different from zero, i.e.

Re,i(r) vanishes quickly as r becomes larger, then we set

N̄i(u, v) = Ni(u, v).
The multiscale model of Section IV generates the high

resolution phase screen, bottom of Fig. 3, retaining the

low spatial frequencies characteristics computed with [2]

however adding high spatial frequencies details. To make

clear the effect of the multiscale model, in Fig. 4 we zoom

on a 2.1 × 2.1 m2 window of Fig. 3 and we compare the

generated phase screen at low (scale 0) and the high (scale

M = 6) resolution. Notice that the pixel dimension at low

resolution is 0.13 × 0.13m, while at high resolution it is

ps × ps, where ps ≃ 0.0021m.

In Fig. 5 we compare the statistics of the generated phase

screen with the theoretical ones: Astronomers commonly

describe the turbulent phase spatial statical characteristics

by means of the structure function, Dφ(·), which can be

computed as:

Dφ(r) = 2(Cφ(0) − Cφ(r)) . (8)

Fig. 5 compares the sample estimates of the structure func-

tion, obtained from a synthesized phase screen, with those

computed by means of (8). As shown in [2], it is more

difficult for methods based on (2) to correctly reproduce

the structure function along the wind direction than along

its orthogonal direction: Then, in Fig. 5 we compare the

structure functions along the wind direction.

We stress the fact that the sample structure function in

Fig. 5 has been estimated using just a 960×960 phase screen:

Despite the estimates are obtained using a relatively small

number of correlated phase samples, they are close to the

theoretical structure function values.

It is worth to notice that while in Section IV we have

discarded the border effect, in practical applications this has

to be handled: This can be easily done for instance simulating

the turbulence on an oversized area and then discarding the

additional points on the borders.

To conclude, we examine the proposed synthesis algorithm

from a computational point of view. Since the dimension of

telescopes is ever growing, and an accurate spatial descrip-

tion of the values of the turbulence phase allows to more

precise evaluations of the AO system performances, then

in the following we derive the computational complexity

of the overall algorithm in generating a long sequence of

high resolution phase screens (i.e. r is large and c goes to

infinity) with respect to both r and c. Since the value of

rs is fixed, then, as shown in Section III, the computational

complexity of generating the rs × cs low resolution phase

screen with (2) is O(c). On the other hand, the synthesis

of the multiscale coefficients is O(rc) (Section IV), thus

the overall computational complexity of the algorithm is

O(rc). Thus, the proposed approach significantly reduces the

computational load of (2) (which is approximatively O(r2c),
Section III) for the synthesis of high resolution phase screens.

Similar considerations can be repeated for the problem of

computing the parameters of the multiscale model: At each

scale the computation of the parameters of (5) and (7) involve

the use of only local statistics, thus without requiring large

amounts of memory nor of time.

VI. CONCLUSIONS

In this paper we have proposed a new method for simu-

lating high resolution phase screens. Such method is based

on the combination of a dynamic system [2],[1],[8], which

simulates the low-resolution temporal dynamic of the turbu-

lence, with a multiscale stochastic model, which generates

the high-resolution details of the turbulent phase.

The resulting procedure, which can be used for simulating

infinite sequences of turbulent phases, ensures that the gen-

erated samples reproduce with high accuracy the theoretical

statistics of the turbulence.

On the other hand, the overall computational complexity of

the synthesis procedure is particularly appealing thanks to the

great ability of multiscale models to capture the turbulence

spatial statistical characteristics in a compact and efficient

representation.
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Fig. 3. Phase screen synthesis, 8 × 8 m2 window: (top) low resolution
xl

0
, 60× 60 pixels, and (bottom) high resolution xl

6
, 3840× 3840 pixels.
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