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Abstract— This paper deals with system identification for
control of linear parameter varying systems. In practical
applications, it is often important to be able to identify small
plant changes in an incremental manner without shutting down
the system and/or disconnecting the controller; unfortunately,
closed-loop system identification is more difficult than open-
loop identification. In this paper we prove that the so-called
Hansen Scheme, a technique known from linear time-invariant
systems theory for transforming closed-loop system identifica-
tion problems into open-loop-like problems, can be extended to
accommodate linear parameter varying systems as well.

I. INTRODUCTION

Industrial control systems are typically in operation for

extensive periods of time, amongst other things due to the

fact that once a functioning system has been commissioned

and brought into operation, it is very costly in terms of

engineering manpower and loss of production output (and

hence income) to take the system out of action in order

to maintain and update it. On the other hand, most large-

scale industrial systems are subject to frequent changes and

modifications, which may change the dynamics of various

subsystems of the overall plant. Thus, it is often the case that

a control system can be improved after initial commissioning,

as more actual operation data becomes available.

Assuming that a good, or at least acceptable, model for

the original system already exists, however, it seems wasteful

to estimate the total model from scratch in case of limited

structural modifications. Motivated by this observation, we

look at incremental modelling for control of plants running

in closed loop in this paper.

In particular, we look at the so-called Hansen scheme

[1], [2], [3], which, given a nominal system model and

controller, allows open-loop-like system identification of any

‘missing’ dynamics parameterised by a stable system in a

particular feedback structure with the nominal system and

controller, the so-called dual Youla-Kucera factorisation—

see the survey paper [4] and the references therein for further

details.

In this paper, we show how the Hansen scheme can be

reformulated to deal with linear parameter varying (LPV)

systems [5], [6].

There are already a number of methods for identification of

LPV systems available in the literature. [7] presents a simple

ARX method; [8] proposes a control-oriented identification
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framework that relies on solution of a set of Linear Matrix

Inequalities. [9] considers robust invalidation of candidate

LPV models. [10] discusses an approach where linear local

models in a number of operating points are found by ap-

plying standard identifications procedures for linear systems

in time domain. Next, an LPV model with linear fractional

dependency on the measured variables is fitted with the

condition of containing all the linear models identified in

the previous step (differential inclusion). The fit is carried

out using nonlinear least squares algorithms. [11] takes a

non-parametric approach to the LPV identification problem.

[12] examines interpolation methods for SISO LPV models.

[13] shows that one can achieve bias-free estimation by using

an instrumental variables-based approach, at least in the

SISO case. [14] refines the instrumental variables method for

Box-Jenkins-type models. [15], [16], [17] and [18] propose

various subspace-based approaches to identification of LPV

systems. Finally, [19] examines how to choose optimal

orthonormal basis functions for LPV system identification.

The main contribution of the present paper is to show that

the Hansen scheme can be formulated for LPV systems in

a non-conservative setting using the notions of LPV stability

shown via polyhedral Lyapunov functions [20]. The work

presented here is related to results presented in [21] and

[22], which presented similar results in a quite general,

nonlinear setting. However, by restricting the class of systems

under consideration here, we are able to present an explicit

methodology for the identification and control design, which

is suitable for controller updating as it focuses on incremental

modelling. In principle, any of the above-mentioned methods

can be employed for LPV identification of the dual Youla-

Kucera parameter and avoid some of the specific closed-loop

difficulties.

The outline of the rest of the paper is as follows. Section

II provides some important preliminary results on the notion

of LPV stability employed in the rest of the paper. Section

III then presents a Youla-Kucera parametrisation of LPV

systems, after which Section IV shows how the Hansen

scheme is cast in this framework. Section V illustrates the

applicability of the method on a simple simulation example.

Finally, Section VI sums up the conclusions of the work.

Our notation is standard; in particular, 0 and I denote zero

and identity matrices and Fu (G,∆) denotes the upper linear

fractional transformation of G wrt. ∆, see e.g., [23, Chap.

10]. Furthermore, for x ∈ R
n ‖ · ‖∞ denotes the infinity

norm defined by ‖x‖∞ = max1≤i≤n |xi|. (·)θ indicates that

(·) depends on the parameter θ.
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II. LPV STABILITY

In this work, we consider discrete-time linear parameter-

varying (LPV) systems Gθ with a minimal state space

realisation given by matrix functions Aθ ∈ R
n×n, Bθ ∈

R
n×m, Cθ ∈ R

p×n and Dθ ∈ R
p×m, mapping an input

signal vector u ∈ R
m to an output measurement signal

y ∈ R
p. Specifically, we deal with systems of the form

Gθ : xk+1 = Aθ(k)xk +Bθ(k)uk (1)

yk = Cθ(k)xk +Dθ(k)uk (2)

where θ(k) ∈ R
q is an external scheduling parameter, which

is allowed to vary as a function of time but not as a function

of the system states x. Since we only allow θ to depend on

k, we will simply write θ rather than θ(k) in the following.

We require that θ belongs to the bounded compact set

Θ =

{

θ ∈ R
q

∣

∣

∣

∣

∣

θi ≥ 0,

q
∑

i=1

θi = 1

}

and that Aθ, Bθ, Cθ and Dθ are continuous, bounded func-

tions of θ ∈ Θ (only).

For notational convenience, we will use the shorthand

Gθ =

[

Aθ Bθ

Cθ Dθ

]

for the LPV system (1)–(2) in the sequel.1

If Dθ is nonsingular, i.e., D−1
θ is well defined for all θ,

the LPV system Gθ has an inverse operator

G−1
θ =

[

Aθ +BθD
−1
θ Cθ BθD

−1
θ

D−1
θ Cθ D−1

θ

]

in the sense that GθG
−1
θ = G−1

θ Gθ = I for any trajectory

of θ. We will ensure invertibility by construction whenever

necessary in the sequel.

With this notion of inverse LPV system in place, the upper

fractional transformation can be naturally extended from LTI

theory – see [23, Chap. 10] – to linear time varying operators.

Next, consider the autonomous LPV system xk+1 =
Aθxk along with the Lyapunov function candidate V (x) =
‖Wx‖∞, where W ∈ R

µ×n is a constant matrix of rank n.

V (x) is obviously a positive definite function with V (0) = 0.

Computing the sample-to-sample difference yields

V (xk+1)− V (xk) = ‖Wxk+1‖∞ − ‖Wxk‖∞

= ‖WAθxk‖∞ − ‖Wxk‖∞

which is negative if Aθ is sufficiently small; this can be

tested via algebraic means. If the autonomous part of an

LPV system admits such a Lyapunov function for all θ ∈ Θ,

we say that it is LPV stable.

In particular, it is known that a polytopic LPV system, i.e.,

a system where Aθ, Bθ, Cθ and Dθ are given as convex com-

binations of fixed matrices Ai, Bi, Ci and Di, i = 1, . . . , q,

admits a polyhedral Lyapunov function if the associated

1Please note that this notation should not be confused with “transfer
functions”; throughout the paper we strictly consider operators defined in
state space, as given by (1)–(2), with x0 = 0 unless otherwise noted.

matrix equalities hold for each vertex system. Furthermore, it

is shown in [20] that the existence of a polyhedral Lyapunov

function is in fact equivalent to LPV stability for polytopic

LPV systems. That is, this class of Lyapunov functions is

non-conservative, as opposed to e.g. quadratic Lyapunov

functions in the sense that one may find examples of stable

polytopic LPV systems that do not permit a quadratic Lya-

punov function, but it is not possible to find stable polytopic

LPV systems that do not permit a polyhedral Lyapunov

function. We require the following technical result:

Lemma 1: V (x) = ‖Wx‖∞ is a (polyhedral) Lyapunov

function for the polytopic autonomous LPV system xk+1 =
Aθxk if and only if there exist matrices Qi ∈ R

µ×µ such

that WAi = QiW and ‖Qi‖∞ < 1 for i = 1, . . . , q.

Proof: See [20].

Based on Lemma 1 we can show the following simple,

yet important result for connection of LPV systems.

Lemma 2: Suppose two autonomous LPV systems

x1,k+1 = A11
θ x1,k and z2,k+1 = A22

θ z2,k are LPV stable;

then for any continuous and bounded A21
θ of appropriate

dimensions, the autonomous LPV system
[

x1,k+1

x2,k+1

]

=

[

A11
θ 0

A21
θ A22

θ

] [

x1,k

x2,k

]

(3)

is also LPV stable.

Proof: According to Lemma 1, since the systems

x1,k+1 = A11
θ x1,k and z2,k+1 = A22

θ z2,k are LPV stable,

there exist matrices W 1,W 2, Q1
θ, Q

2
θ of appropriate dimen-

sions with ‖Q1
θ‖∞ < 1, ‖Q2

θ‖∞ < 1 such that
[

W 1 0
0 W 2

] [

A11
θ 0
0 A22

θ

]

=

[

Q1
θ 0
0 Q2

θ

] [

W 1 0
0 W 2

]

for θ ∈ Θ. Also, we have
∥

∥

∥

∥

[

Q1
θ 0
0 Q2

θ

]∥

∥

∥

∥

∞

< 1.

Turning to the combined system (3), if we can find a scalar

β > 0 and a θ-dependent matrix Q21
θ such that

[

W 1 0
0 βW 2

] [

A11
θ 0

A21
θ A22

θ

]

=

[

Q1
θ 0

Q21
θ Q2

θ

] [

W 1 0
0 βW 2

]

and ∥

∥

∥

∥

[

Q1
θ 0

Q21
θ Q2

θ

]∥

∥

∥

∥

∞

< 1

hold for every θ ∈ Θ, then we can conclude that the system

is LPV stable by invoking Lemma 1. Rewriting the matrix

equality above, we get
[

W 1A11
θ 0

βW 2A21
θ βW 2A22

θ

]

=

[

Q1
θW

1 0
Q21

θ W 1 βQ2
θW

2

]

which is satisfied iff βW 2A21
θ = Q21

θ W 1 ∀θ ∈ Θ.

Since W 1 has full row rank, it has a left pseudo-inverse

W 1†; thus, we may choose Q21
θ = βW 2A21

θ W 1† with β

sufficiently small to satisfy
∥

∥

∥

∥

[

Q1
θ 0

βW 2A21
θ W 1† Q2

θ

]∥

∥

∥

∥

∞

< 1 ∀θ ∈ Θ

which is always possible since A21
θ is bounded.
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III. BASIC PARAMETRISATION

In the rest of the paper, we will assume that the plant Gθ

is strictly proper, i.e.

Gθ =

[

Aθ Bθ

Cθ 0

]

(4)

and that it can be stabilised by an observer-based LPV

controller of the form

Kθ =

[

Aθ +BθFθ + LθCθ −Lθ

Fθ 0

]

(5)

for all θ ∈ Θ, where Fθ and Lθ are such that x̄k+1 = (Aθ +
BθFθ)x̄k and x̂k+1 = (Aθ + LθCθ)x̂k are LPV stable.

Any Gθ that satisfies the above assumption for any tra-

jectory of θ ∈ Θ, can be written as a right, respectively left,

coprime factorisation of the form:

Gθ = NθM
−1
θ = M̃−1

θ Ñθ (6)

where Nθ,Mθ, M̃θ and Ñθ are LPV stable operators of

a specific form given below. Correspondingly, Kθ can be

factorised as

Kθ = UθV
−1
θ = Ṽ −1

θ Ũθ (7)

with LPV stable Uθ, Vθ, Ũθ, Ṽθ. The factors are given as

[

Mθ Uθ

Nθ Vθ

]

=





Aθ +BθFθ Bθ −Lθ

Fθ I 0

Cθ 0 I



 (8)

[

Ṽθ −Ũθ

−Ñθ M̃θ

]

=





Aθ + LθCθ −Bθ Lθ

Fθ I 0

Cθ 0 I



 (9)

Then, it is possible to check that
[

I 0
0 I

]

=

[

Ṽθ −Ũθ

−Ñθ M̃θ

] [

Mθ Uθ

Nθ Vθ

]

=

[

Mθ Uθ

Nθ Vθ

] [

Ṽθ −Ũθ

−Ñθ M̃θ

]

(10)

holds; this equation is referred to as the double Bezout

identity.

We are now able to show the following result; see Figure 1.

GS,θ

Kθ

-

u

�

y

G0,θ

Kθ

-

u

�
y

Sθ

-

�

z ζ

Fig. 1. All LPV systems GS,θ stabilised by the LPV controller Kθ (left)
can be represented by a nominal system G0,θ stabilised by Kθ and a dual
Youla-Kucera parameter Sθ (right).

Theorem 1: Let Gθ = NθM
−1
θ with state space realisa-

tion (4) be LPV stabilised by a feedback controller Kθ =
UθV

−1
θ with state space realisation (5). Let Fθ and Lθ be

matrix functions such that x̄k+1 = (Aθ + BθFθ)x̄k and

x̂k+1 = (Aθ + LθCθ)x̂k are LPV stable for all θ ∈ Θ.

All such plants stabilised by Kθ can be parametrised as

GS,θ = Fu (G0,θ, Sθ), where

G0,θ =





Aθ −Lθ Bθ

−Fθ 0 I

Cθ I 0





and Sθ =

[

AS,θ BS,θ

CS,θ 0

]

is any proper LPV stable system.

Sθ is denoted the dual Youla-Kucera parameter.

Proof: We first show that under the given assumptions,

Kθ stabilises GS,θ. The upper loop in the right part of

Figure 1 is closed, yielding GS,θ in the left part of the figure:

GS,θ = Fu (G0,θ, Sθ)

=





AS,θ −BS,θFθ BS,θ

−LθCS,θ Aθ Bθ

CS,θ Cθ 0



 (11)

and when connecting Kθ as shown to this system, we obtain

the autonomous LPV system





ξk+1

ηk+1

χk+1



 =





AS,θ −BS,θFθ 0
0 Aθ + LθCθ 0

−LθCS,θ −LθCθ Aθ +BθFθ









ξk
ηk
χk





where ξ is the state vector of Sθ , χ is the controller

state vector and η = x − χ is the difference between the

state vector of G0,θ and Kθ. Since AS,θ, Aθ + LθCθ and

Aθ + BθFθ are all LPV stable, and BS,θFθ , LθCS,θ and

LθCθ are bounded for bounded θ, we can then conclude that

the closed-loop system is LPV stable by applying Lemma 2

twice in succession.

We then show that, given a Kθ = UθV
−1
θ , a nominal

Gθ = NθM
−1
θ stabilised by Kθ and a GS,θ also stabilised

by Kθ, there exists an Sθ (connected as shown in Fig. 1)

such that the interconnection of G0,θ and Sθ is identical to

GS,θ.

We construct the dual Youla-Kucera parameter as Sθ =
Fu

(

Ḡθ, GS,θ

)

, where

Ḡθ =





Aθ +BθFθ + LθCθ −Lθ Bθ

Fθ 0 I

−Cθ I 0





First, we note that the (1, 1)-block subsystem of Ḡθ is

identical to Kθ (cf. (5)); thus, since Fu (Kθ, Gθ) is LPV

stable, Sθ = Fu

(

Ḡθ, GS,θ

)

is also LPV stable. Secondly, it

is fairly easy to see that

Fu

(

G0,θ, Ḡθ

)

=

[

0 I

I 0

]
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which is the upper fractional transformation identity. Thus,

Fu (G0,θ, Sθ) = Fu (G0,θ, Sθ)

= Fu

(

G0,θ,Fu

(

Ḡθ, GS,θ

))

= Fu

(

Fu

(

G0,θ, Ḡθ

)

, GS,θ

)

= GS,θ.

which completes the proof.

Note that knowledge of a specific polytopic Lyapunov

function is not required in the proof; we simply require the

state transformations to be independent of the system states.

By Theorem 1, all LPV systems stabilized by Kθ can be

written as GS,θ = Fu (G0,θ, Sθ), with G0,θ given in the

theorem. By inspection, it is seen that

G0,θ =





Aθ −Lθ Bθ

−Fθ 0 I

Cθ I 0





=

[

−M−1
θ Uθ M−1

θ

M̃−1
θ Gθ

]

=

[

−M−1
θ Uθ M−1

θ

Vθ −NθM
−1
θ Uθ NθM

−1
θ

]

where the last equality is obtained by the Bezout identity.

Then, it can be checked that

Fu (G0,θ, Sθ) = (Nθ + VθSθ)(Mθ + UθSθ)
−1

=
(

M̃θ + SθŨθ

)−1 (

Ñθ + SθṼθ

)

(12)

This setup is depicted in Figure 2 and will be used in the

following.

-
u

- M−1

θ
- Nθ

- -
y−

?

ζ

Sθ

�Uθ

6

- Vθ

6

z

Fig. 2. Dual Youla-Kucera parametrisation of all proper polytopic LPV
plants stabilised by the LPV controller Kθ = UθV

−1

θ
.

IV. OPEN-LOOP-LIKE SYSTEM IDENTIFICATION

We assume that a nominal state space LPV model of

an existing system, Gθ , has been found. The system takes

control signals u as input, and yields corresponding output

measurements y, which are affected by additive noise ny ∈
R

p. The parameter variation θ is measurable and satisfies the

assumptions in the previous sections.

Based on this model, a stabilising observer-based LPV

controller Kθ of the form (5) with stable observer and state

feedback dynamics has been designed, for instance using the

methods in [24]. However, for some reason, e.g., monitoring

of the plant during operation, it is suspected that there is

additional un-modelled dynamics, which we wish to identify.

Since Kθ stabilises GS,θ and (12) is a full parametrisation

of all LPV systems stabilised by Kθ, Theorem 1 ensures that

there exists an (LPV stable) parameter system Sθ such that

GS,θ can be written as in (12) (or, equivalently, as in (11)).

Consider now the setup shown in Figure 3, where Kθ and

Gθ are shown in their factorised form as in (7) and (6),

respectively. n′ = (M̃θ+SθŨθ)ny is the measurement noise

that would normally affect the measurements y, relocated

in the block diagram to affect the output of the parameter

system instead, and r1 and r2 are external excitation signals.

-
r2

-u - M−1

θ
- Nθ

- -
y−

?

ζ

Sθ

?� n′

�Uθ

6

- Vθ

6

z

?� r1�Ũθ
�Ṽ −1

θ

6

Fig. 3. ‘Hansen scheme’ setup for closed-loop system identification

From the block diagram, we find the following relations:

(Nθ + VθSθ)ζ = y − Vθn
′ (13)

and

(Mθ + UθSθ)ζ = u− Uθn
′

= r2 + Ṽ −1
θ Ũθ(y + r1)− Uθn

′ (14)

Applying the LPV operators Ṽθ and Ũθ to (13) and (14),

respectively, then yields

Ṽθ(Mθ + UθSθ)ζ = Ũθ(r1 + y) + Ṽθr2 − ṼθUθn
′

Ũθ(Nθ + VθSθ)ζ = Ũθy − ŨθVθn
′

Subtracting the bottom equation from the top equation and

using the Bezout identity then results in

ζ = Ũθr1 + Ṽθr2 (15)

In a similar vein, from the block diagram, we have the

relations

Mθζ = u− Uθz

Nθζ = y − Vθz

Applying the LPV stable filters Ñθ to the top expression and

M̃θ to the bottom one, subtracting one from the other and

using the Bezout identity then results in

z = M̃θy − Ñθu (16)

Thus, ζ and z can be obtained by filtering measurements

through known, stable LPV filters. Furthermore, assuming
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ny is independent of r1 and r2, then ζ is independent of n′

as well.

As a consequence, although u and y are measured in

closed-loop, the identification of Sθ using the signals θ, z

and ζ becomes equivalent to an open-loop LPV identification

problem. Sθ can in principle be identified using any of the

methods mentioned in the Introduction. When the identifica-

tion is complete, GS,θ may then be recovered by inserting

Sθ in (12), or, more conveniently, in (11).

V. SIMULATION EXAMPLE

We consider the following unstable system with a single
time varying parameter 0 ≤ θ ≤ 1:

xk+1 = Aθxk +Buk +Kvk

yk = Cxk + vk,

Aθ =











0.9 0.05 0.1 −0.3 0.4
−0.2− 0.7θ 0.9 0 0 0

0 0.1 0.9 0.1 −0.1
0.3 + θ 0 0 0 0.3 + κ

0 0.3 −0.3 0.3 0.92 + 0.05θ











,

B =











1

0

1

−1

−1











, K =











−0.8
0.3
0

0

−0.7











,

C =
[

0 1 2 1 −1
]

,

with κ = 0.3 and E{vkv
T
k } = 10−6. We assume

that we already have a reasonably accurate nominal model

(Am,θ, Bm, Cm) of the deterministic part. Am,θ is equal to

Aθ , except that the model assumes κ = 0, while the input

and output matrices are correctly identified, i.e., Bm = B,

Cm = C.

The system is open loop unstable and only barely de-

tectable and stabilisable; in fact, although the model error

may seem small, even a slightly larger error can in fact easily

cause an unstable closed loop.

A stabilising LPV controller

xc,k+1 = (Amθ +BmFθ + LθCm)xc,k − Lθyk

uk = Fθxc,k

with

Fθ =
[

0.11− 0.27θ 0.42 −0.43 0.12 + 0.05θ 0.7
]

Lθ =











0.87− 0.37θ
−0.26− 0.77θ

−0.19
0.47 + 0.4θ

0.87











has been designed for the system. It satisfies the requirements

given in Theorem 1 for all θ ∈ [0 ; 1].
In closed loop operation, excitation in the form of white

noise with variance 1 is added to the input (r2 in Figure 3).

The full output measurement sequence is shown in Figure 4

and a zoom of the signals along with the auxiliary signals

used in the Hansen scheme is shown in Figure 5.

In all the identifications, models on the form x̂k+1 =
Âθx̂k + B̂θuk, ŷk = Ĉx̂k are assumed, with Âθ and B̂θ

depending linearly on θ.

0

0.2

0.4

0.6

0.8

1

θ

0 1000 2000 3000 4000 5000 6000 7000 8000
−300

−200

−100

0

100

200

300

400

y

sample number

Fig. 4. Measurement data for system identification. Top: θ(k); bottom: yk

−5

0

5

r 2

0

0.5

1

θ

−20

0

20

u

−200

0

200

y

−50

0

50
ζ

3000 3050 3100 3150 3200 3250 3300 3350 3400
−10

0

10

z

sample number

Fig. 5. Zoom of measurement data, indluding auxiliary signals. From top to
bottom: r2,k ; θ(k); uk; yk; ζk; zk

In order to evaluate the obtained models, the ν-gap be-

tween the model and the real system is computed. The ν-

gap is a value between 0 and 1 that expresses the difference

between two transfer functions in terms of their similarity

with respect to closed loop operation; that is, if the ν-gap

between two plant models is small, then a good controller

designed for one transfer function will also work well with

the other [25]. The ν-gap is only defined for LTI systems, so

the comparisons strictly speaking only hold for fixed values

of θ. However, to the best of the authors’ knowledge, no

other meaningful tools for comparison of closed-loop LPV

model fitness are known. Here, the ν-gap is evaluated for θ

frozen at 0, 0.5 and 1.

The identifications are performed using an increasing

number of samples, in order to evaluate how much excitation

is needed.

Two identification methods, ARX and PBSIDopt, are

tested, both in a direct form and using the Hansen scheme.

The state space matrices are found by minimising the pre-

diction error using least squares methods. Note that we do

not assume any explicit knowledge of which entries in Am

are erroneous, so a direct grey box approach is not possible.

The first identification method examined is the LPV ARX

method found in e.g. [7] and [13]. Here, the state estimate
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simply consists of delayed outputs and inputs. In the direct

application, the method is simply fed measured input and

output data and model with 5 delayed outputs and 5 delayed

inputs is identified. We assume a zero-order polynomial

dependence on θ in the identification. The dash-dot line in

Figure 6 shows the ν-gap as a function of the number of

samples used. For θ = 1 the model is acceptable, but for

θ = 0 and θ = 0.5, even large numbers of samples do

not yield acceptable models. Making delayed values of θ

available to the identification algorithm did not improve the

model, either.
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Fig. 6. ν-gap for different models identified using ARX methods, with
frozen values of θ.

Next, the ARX method is used to identify a dual Youla

parameter in a Hansen scheme. First the data is filtered as

discussed in Section IV. Then the ARX method is used to

identify Sθ, again with 5 delayed outputs and 5 delayed

inputs, which is then combined with the nominal model as

in Eqn. (11). The resulting model error is shown by the solid

lines in Figure 6. The dotted lines show the ν-gap for the

nominal model (which is approximately 0.08 for all frozen

θ), indicating that a significant improvement is achieved with

a reasonably small number of samples.
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Fig. 7. ν-gap for different models identified using PBSIDOpt, with frozen
values of θ.

The second method examined is PBSIDopt, which is

presented in an LPV version in [16]. In this approach, a

subspace method is used to construct the state estimates, and

consequently requires a lot of computational power.

First PBSIDopt (with a window length of 9) is applied

directly to the measurements to obtain a 5th order LPV

model, and the result, shown by the dash-dot lines in Figure

7, is quite poor. Changing the window length did not improve

the identification noticeably.

Next, PBSIDopt (again with a window length of 9) is

applied to obtain a 7th order LPV model of Sθ in the Hansen

scheme. The ν-gaps of the resulting model is shown with

solid lines in Figure 7; as can be seen, the ν-gap drops

below those of the nominal model when more then 3000

samples are used. The result is not as good as for the Hansen

ARX method, but it is a definite improvement over using

PBSIDopt directly.
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Fig. 8. Bode plots for different models identified using PBSIDOpt, with
θ = 0.9.

Figure 8 shows Bode plots for all the models obtained with

the maximum number of samples, with θ frozen at 0.9. The

picture is similar for all other values of θ; the Hansen scheme

is able to capture the spike, whereas the direct methods are

not.

The reason that the Hansen scheme improves on the iden-

tification is likely different for the two different identification

methods. For the ARX case, the closed-loop nature of the

data affects the direct ARX method, and the Hansen scheme

helps to decouple these effects. In PBSIDopt, the main

approximation lies in assuming that the state transition is

zero beyond the window length; in this example this is not

the case. The Hansen scheme, on the other hand, focuses on

the identification of a subsystem, where this assumption is

closer to being satisfied. Finally, it should be noted that n′

is the output noise filtered through a combination of known

factors and the unknown Sθ. As pointed out in [26], this

may be exploited in a grey box setup to further improve the

results with the Hansen scheme.
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VI. DISCUSSION

In this paper we considered incremental system identi-

fication of LPV systems that are modified during online

operation, for instance due to replacement and/or addition

of system components (so-called plug-and-play control). We

used the notion of polyhedral Lyapunov functions to prove

the existence of a dual Youla-Kucera parameter system for

proper polytopic LPV systems in a non-conservative manner.

Then we showed how the Hansen scheme can be used

for incremental system identification of such LPV systems,

taking the starting point in a nominal system model and

identifying the unknown dynamics by means of identification

of said dual Youla-Kucera parameter in an open-loop-like

setting. The method is an extension of the Hansen scheme

for LTI systems. This particular approach is suited for plug-

and-play control, where system dynamics is changed during

online operation e.g. due to replacement or introduction

of new sensors, actuators or other components; only the

changed dynamics need to be identified, while nominal plant

and controller information may be retained.
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