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Abstract—In this paper, we examine the problem of UAV
flocking in the presence of wind gusts. Firstly, we model a
velocity consensus-based leader-follower system exposed to gust
disturbances and design an optimal controller, in the linear
quadratic sense, to improve velocity tracking. We then proceed
to examine topological features that promote the performance of
such optimal controllers to design a network rewiring protocol
for improved system performance. Finally we present a novel
partitioning schemed, dubbed leader partition, in order to fuse
“similar” states in the network, forming a graph theoretic
method for model reduction.

Index Terms—Leader-Follower consensus; UAV flocking;
Consensus protocol; Model reduction; Adaptive graphs; Co-
ordinated control over networks

I. INTRODUCTION

Consensus provides a framework for simple but effective

distributed information-sharing and control for networked,

multi-agent systems in settings such as multi-vehicle control,

formation control, swarming, and distributed estimation; see

for example, [1], [2]. One of the popular adaptions of

traditional consensus is leader-follower dynamics [3], where

leader agents within the network can control the network by

exploiting the other agents’ consensus dynamics and network

topology. In this paper, we investigate the relationship be-

tween the network topology and the modeling and controller

design of a leader-follower system. In this work, an LQG

controller is applied to a leader-follower model and topologi-

cal features that improve controller performance, measured in

terms of the trace of the controllability gramian, are employed

to rewire the network to improve performance. Finally, a

network topology based model reduction is proposed that

takes advantage of symmetries or near-symmetries in the

network.

UAV flocking, the case study of this paper, is an example of

a leader-follower model and involves the distribution of tasks,

normally performed by one central aerial vehicle, to many

smaller vehicles which are coordinated by leaders among the

flock. One of the costs of such an architecture is increased

susceptibility to external disturbances such as wind gusts.

We model the UAV flocking with leader-follower dynamics

running a consensus-based protocol with the objective of

reaching agreement on their velocity. In the meantime, in

light of the presence of wind gusts, an LQG controller is

implemented on the leader agents to reject the effect of wind

gust disturbance on the overall network.
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The concept of designing topologies to optimize for cer-

tain metrics has been addressed in [4] for maximizing the

second smallest eigenvalue of the graph Laplacian, in [5]

for optimizing the network H2 performance, and in [6] for

maximizing the largest eigenvalue of the graph Laplacian,

each using optimization techniques over weighted graphs.

Intuitive based methods of network reconfiguration have been

designed to improve network resilience, for example using

thresholding methods to decide when to alter the topology

[7]. Our approach is to perform edge trades to optimize the

trace of the controllability gramian. In an optimization setting

this would require NP-hard mixed-integer programming.

Traditional methods of model reduction such as balanced

realization, balanced residualization and Hankel norm ap-

proximations [8] are purely system-based with minimal,

if any, network interpretation. The significance of network

symmetry and its role in controllability have recently been

investigated [2], [9], and provides a natural extension of

system based to network structure based model reduction.

Preliminary work in this direction was undertaken by [10]

using single leader-follower systems. We extend the approach

for multi-leader scenarios.

The paper is organized as follows. §II contains the problem

formulation and relevant background. A UAV flock exposed

to wind gusts is introduced and an LQG controller is designed

for disturbance rejection. An analysis of the trace of the

controllability gramian is presented in §III, its relationship

to the effective resistance is established and subsequently

used to design a network rewiring protocol to improve LQG

performance. §IV presents a network partitioning technique

that can be used for fusing nodes to form a reduced model

system but without losing the graph theoretic interpretation

of the dynamics. We conclude the paper with a few remarks

in §VI.

II. BACKGROUND AND MODEL

We provide a brief background on the models that will

be used in this paper, including abbreviated descriptions on

graphs and the consensus protocol in its controlled versions.

First we introduce the notation: ‖·‖2 and ‖·‖∞ denote the Eu-

clidean and infinity norms respectively; tr(·) denotes the trace

of a matrix; |·| denotes the cardinality of a set; � denotes

positive semidefinite ordering of matrices; 1 := [1, . . . , 1]
T

.

An undirected graph G = (V,E) is defined by a node

set V with cardinality n, the number of nodes in the graph,

and an edge set E comprised of pairs of nodes, where nodes

vi and vj are adjacent if {vi, vj} ∈ E ⊆ [V ]
2
.1 A special

1The notation [V ]2 refers to the set of two-element subsets of V .
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Fig. 1. Example of leader-follower notation.

family of graphs is tree graphs T where all two node pairs

are connected by exactly one simple path.

We denote the set of nodes adjacent to vi as N (vi) and the

minimum path length, induced by the graph G, between nodes

vi and vj as d (vi, vj). The degree δi of node vi is the number

of its adjacent nodes. The degree matrix ∆(G) ∈ R
n×n is

a diagonal matrix with δi at position (i, i). The adjacency

matrix is a n×n symmetric matrix with [A(G)]ij = 1 when

{vi, vj} ∈ E and [A(G)]ij = 0 otherwise. The combinatorial

Laplacian is defined as L(G) = ∆(G)−A(G) ∈ R
n×n which

is a (symmetric) positive semi-definite matrix.

Now consider xi(t) ∈ R to be the i-th node’s (or for our

case agent’s) state at time t. The continuous-time consensus

protocol is defined as ẋi(t) =
∑

{i,j}∈E (xj(t)− xi(t)). In

a compact form with x(t) ∈ R
n, the collective dynamics

is represented as ẋ(t) = −L(G)x(t) with L(G) being the

Laplacian of the underlying interaction topology [1].

We next introduce a model for leader-follower consensus

over a graph Ğ = (V̆ , Ĕ) associated with a pair R = (R, ER),
where R ∈ V̆ is the cardinality r leader agent set and ER ⊆ Ĕ
is the set of edges used by the leader agents to inject signals

into the network. It is assumed that for a leader agent rj ∈ R
the same signal uj(t) ∈ R is delivered along every edge

adjacent to it. The remaining edges and agents of Ğ form

the subgraph G, with the exception of those edges between

leaders which are removed. Figure 1 provides a graphical

representation of this notation and setup.

The resulting leader-follower system now assumes the

form,

ẋ(t) = A(G,R)x(t) +B(R)u(t) := f(x(t), u(t)), (1)

where B(R) ∈ R
n×r with [B(R)]ij = 1 when {rj , vi} ∈ ER

and [B(R)]ij = 0 otherwise, and

A(G,R) := − (L(G) +M (R)) ∈ R
n×n, (2)

where M (R) ∈ R
n×n with [M (R)]ii = δri , where δri is

the number of leaders adjacent to vi and [M(R)]ij = 0
otherwise. We define δvj as the number of non-leader agent

adjacent to rj . We distinguish two special cases of this setup;

one in which there is exactly one leader for each edge ER and

so a distinct control signal is delivered through each edge,

denoted with the leader pair Rd, and one where there exists

only one leader node so a common signal is delivered through

each edge, denoted with pair Rc. We also denote the set of

agents vi such that {rj , vi} ∈ ER by π (ER); this is the set

of agents that directly connect to leader agents.

We recognize A (G,R) in (2) as the Dirichlet matrix, or

grounded Laplacian [11]. The spectrum of A (G,R) relates

closely to the spectrum of L(G). In this way, the structure of

the underlying graph is related to the dynamics of model (1).

It is known, for example, that the matrix A(G,R) of model

(1) is negative definite (and so invertible) if the original graph

is connected [12]. In the next section we proceed to disturb

the leader-follower system with a wind gust.

A. Wind Model

A vertical wind gust wg is not white, but has a power

spectral density given in Dryden form [13] as

Φw(ω) = 2Lσ2 1 + 3L2ω2

(1 + L2ω2)
2 , (3)

with w the frequency in rad/s, σ the turbulence intensity, and

L the turbulence scale length divided by true airspeed.

The power spectral density (3) can be factored as Φw(s) =
Hw(s)Hw(−s), where [13]

Hw(s) = σ

√
6

L

s+ 1/L
√
3

s2 + 2s/L+ 1/L2
.

A realization of Hw(s) is

ż =

[
0 1

− 1
L2 − 2

L

]
z +

[
0
1

]
w := Awz +Bww

wg = γ
[

1
L
√
3

1
]
z := Cwz,

where w is white noise input with zero mean and unit

variance W and γ := σ
√
6/L.

We model the effect of the gust on vehicle i as ẋi =
fi(x, u) + hiwg, where hi ∈ R is specific to agent i’s gust-

vehicle interaction.
Assume that the same gust acts upon all agents in the

network and that each follower agent is modeled as a single
integrator and has adopted a consensus algorithm for velocity
alignment (x state) as in (1). Therefore fi(x(t), u(t)) =
[f(x(t), u(t))]i and the full dynamics are
[

ẋ
ż

]
=

[
f(x(t), u(t))

ż

]
+

[
H
0

]
wg

=

[
A(G,R)x+B(R)u

Awz +Bww

]
+

[
H
0

]
Cwz

=

[
A(G,R) Az

0 Aw

] [
x
z

]
+

[
B(R)
0

]
u+

[
0
Bw

]
w

:= A

[
x
z

]
+ Bu+Gw (4)

where H = [h1, . . . , hn]
T

and Az = HCw.

B. LQG Controller

We now investigate controlling the vehicle velocities of

the wind gust disturbed system (4) using an LQG control

framework. We assume that the agent states of the system

can be sensed with some measurement noise v which is

uncorrelated zero-mean, Gaussian, white noise random vector

with correlation matrix V , as such y = C
[

x
z

]
+ v, where

C =
[
In×n 0n×2

]
.
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As A(G,R) is negative definite it has only negative eigen-

values. Examining Aw, λi(Aw) = − 1
L

for i = 1, 2 and as

L > 0, it follows that Aw has only negative eigenvalues.

Therefore the state matrix A is stabilizable and detectable

so a stabilizing compensator can be formed. Hence given a

performance measure

J = lim
t→∞

E
{
xTQx+ uTRu

}
,

a compensator that minimizes J with optimal performance

cost

J∗ = tr(PKfV KT
f ) + tr(SQ), (5)

with Kc = R−1BTP and Kf = SCTV −1, the compensator

and filter gains, and P and S obtained by solving appropriate

algebraic Riccati equations [8].

We now present a protocol to supplement the agent dynam-

ics control of LQG with an edge trading, adaptive topology

controller to improve this nominal LQG performance.

III. ADAPTIVE TOPOLOGY CONTROLLER

As a group of networked UAVs do not require physical

interconnections for their coordinated behavior, they have

the advantage that their inter-vehicle communications can be

rewired. This observation leads us into our next form of gust

correction, namely via an adaptive topology controller. We

present a system-theoretic metric, that can be exploited to

adapt the network topology with the objective of improving

the nominal LQG performance. The controllability gramian,

defined as PT (A,B) :=
´ T

0
eAτBBT eA

T τdτ for system (4),

proves to be particularly suitable for such an analysis, and

specifically, tr(P∞(A,B)) as our scalar metric motivated by

the following observations:

a) The H2 norm for our system is

‖G(s)‖2 =
√

tr (CP∞ (A,B) CT )

=
√

tr (P∞ (A(G,R), B(R))),

where the state-space realization is G(s) = C (sI −A)
−1 B.

b) The energy of the states at the output from a unit

impulse input u when x(0) = 0 is

ˆ ∞

0

x(t)Tx(t)dt =
m∑

i=1

‖zi(t)‖22 (6)

= tr(P∞(A(G,R), B(R))),

where the zi(t)’s are the output vectors resulting from ap-

plying a unit impulse along each of the orthogonal bases of

the input space R
m.

We note that P will be dependent on G and R, and as we

will be focusing on the steady state case, i.e., T → ∞, we

henceforth denote P∞(A(G,R), B(R)) = P (G,R).
We proceed to analyze this metric for our two special

leader agent cases Rc and Rd.

Proposition 1: For a connected graph G, and a common

signal delivered by all leaders then

tr(P (G,Rc)) =
1

2
|ER| .

Proof: As the leaders are all delivering a common signal

is is equivalent to fusing the leaders together, subsequently

we have B(Rc) = B(Rd)1. Further, as A(G,R) is only

dependent on G and δri then A(G,Rc) = A(G,Rd) and so

A(G,Rc)
−1B(Rc) = A(G,Rd)

−1B(Rd)1 = −1 hence

tr(P (G,Rc)) = tr(B(Rc)
T

ˆ ∞

0

e2A(G,Rc)τdτB(Rc))

= −1

2
tr(B(Rc)

TA(G,Rc)
−1B(Rc))

=
1

2
tr(1TB(Rd)

T
1) =

1

2
|ER| .

Remark 1: The implication of Proposition 1 is that for

the case of a single leader then tr(P (G,R)) = 1
2δ(r1), so

selecting the agent within the network with the highest degree

will maximize the H2 norm of the system, regardless of the

structure of the network.

Further, it has previously been established that the diagonal

of −A(G,Rd)
−1 where A(G,Rd), has a resistive electrical

network interpretation [11]. In this setup, the agents V
and R, defined in §II, represent connection points between

resistors corresponding to the edges E and ER. In addi-

tion, all connection points corresponding to the set R are

electrically shorted. The effective resistance between two

connection points in an electrical network is defined as

the potential drop between the two points, when a 1 Amp

current source is connected across the two points. The i-th
diagonal element of −A(G,Rd)

−1 is the effective resistance

Eeff (vi) between the common shorted external agents R and

vi. It has previously been shown [12] that tr(P (G,Rd)) =
− 1

2 tr
(
M (Rd)A(G,Rd)

−1
)
= 1

2

∑
vi∈π(ER) Eeff (vi).

We now relate the controllability gramian of a generic R
with control signal u ∈ R

|R| and Rc and Rd with control

signals uc ∈ R and ud ∈ R
|ER|, respectively. We design these

special leader sets by fusing all the leaders in R (in R) to

form Rc (and thus a common control signal is sent along

all ER) and designating a distinct leader for each ER in R
to form Rd. Consequently, B(Rc) = B (R)1 and B (R) =
H1B(Rd)H2 where H1 ∈ R

n×n is diagonal with [H1]i =√
δri , and H2 ∈ R

|Rd|×|R| with [H2]ij = 1√
δv
j

if (rj , vi) ∈
ER and [H2]ij = 0. As A(G,R) is only dependent on G and

δri then A(G,R) = A(G,Rc) = A(G,Rd).
We can now use these properties to bound tr(P (G,R))

for a generic R.

Lemma 2: For a graph G and leader set R,

1

2 |R| |ER| ≤ tr(P (G,R)) ≤ 1

2

∑

vi∈π(ER)

αiEeff (vi) ,

where αi =
∑

(rj ,vi)∈ER
δvj , i.e., αi is the sum the non-leader

degree for each leader attached to vi.
Proof: For a impulse applied along the basis

1√
|R|

1 of R
|R| let the impulse response applied to

system (A (G,R) , B (R)) be z1(t) and the remaining

bases have impulse responses z2(t), . . . , z|R|(t).

Therefore, tr(P∞(A(G,R), 1√
|R|

B(R)1)) = ‖z1(t)‖22 ≤
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∑|R|
i=1 ‖zi(t)‖

2
2 = tr (P (G,R)) from (6). Similarly,

tr (P (G,R)) = tr(P∞(A(G,R), H1B(Rd)H2)) ≤
tr(P∞(A(G,R), H1B(Rd))).

Now,

tr(P∞(A(G,R),
1√
|R|

B(R)1)) =
1

|R| tr(P (G,Rc)).

Applying Proposition 1 the lower bound follows.

Similar to the proof of Proposi-

tion 1, tr(P∞(A(G,R), H1B(Rd))) =
− 1

2 tr
(
B(Rd)H1H

T
1 B(Rd)

TA(G,Rd)
−1

)
. Let

M := B(Rd)H1H
T
1 B(Rd)

T , we note that M is a

diagonal matrix with [M ]ii = δvj if (rj , vi) ∈ ER and

[M ]ii = 0, otherwise and so

[
MA(G,Rd)

−1
]
ii

=

{
αi

[
A(G,Rd)

−1
]
ii
= −αiEeff (vi) if vi ∈ π (ER)

0 otherwise.

The upper bound of the lemma follows.

Remark 2: An in depth analysis of tr(P (G, R̃d)) was

undertaken for the specialized class of graphs trees T [12].

To apply some of these results to more generalized connected

graphs we consider any spanning tree T of a connected

graph G. In terms of our electrical resistance analogy, the

resistor network corresponding to T is formed by removing

resistors from the resistor network corresponding to G. From

[14], applying Rayleigh’s Monotonicity Principle leads to

tr(P (G, R̃d)) ≤ tr(P (T , R̃d)), i.e., the metrics on a graph

are bounded above by the corresponding measures on their

respective spanning trees.

We now propose a protocol over the spanning trees of G
with the objective of increasing tr (P (G,R)) via increasing

|ER| and Eeff (vi) for all vi ∈ π (ER) as illustrated through

Lemma 2. The protocol involves edge trades between neigh-

boring agents executed concurrently and/or in a random agent

order while maintaining a connected tree at each iteration.

The approach is to randomly select a spanning tree T of G
apply Protocol 1 for some number of edge trades and then

repeat with a new spanning tree. In the following protocol,

we denote by I (vi) the set of all agents that are neighbors

of vi and lie on the shortest path between vi and any rj ∈ R.

In this direction, let us first define the special set of agents

that lie on any of the shortest paths between agents in R as

main path agents, i.e., those agents such that are leader or

with |I (vi)| > 1. The protocol involves two conditions; one

to increase the degree of agents in R thus increasing |ER|,
the other to increase the effective resistance for agents in set

π (ER). We have previously presented the following lemmas

and we refer to reader to [12] for the corresponding proofs.

Lemma 3: [12] Under both conditions of Protocol 1, |ER|
only increases.

Lemma 4: [12] For a tree T , under the second conditions

of Protocol 1, Eeff (vi) for vi ∈ π (ER), monotonically

increases.

Lemma 3 involves compressing the network about the main

path agents. On the other hand, Lemma 4 involves adding

Protocol 1 Increasing tr(P (T ,R)) edge swap

foreach Agent vi do

if {vk} = I(vi), ∃vj ∈ N (vi) and vj 6= vk then
E → E \ {vi, vj} ∪ {vj , vk}

end

if |I(vi)| > 1, ∃vj , vk ∈ N (vi), vj ∈ I(vi) and vk /∈
I(vi) then

E → E \ {vi, vj} ∪ {vj , vk}
end

end

agents to the main path of T and in doing so elongates the

main path.

We now proceed to address the order of the LQG con-

troller, specifically, applying model reduction so as to achieve

lower order controllers for the networked UAVs.

IV. MODEL REDUCTION

The LQG, and more generally the H2 design framework,

produce controllers of order at least equal to that of the

underlying plant, and usually higher because of the inclusions

of dynamic weights. The corresponding control laws may be

too involved with regards to practical implementation and

simpler designs are then sought. For this purpose, one can

either reduce the order of the plant model prior to controller

design, or reduce the controller in the final stage, or both.

We will be examining the case where the plant model is

reduced a priori specifically using model truncation but in

such a way that the reduced order system corresponds to a

leader-follower graph.

Model truncation involves partitioning the state vector x

into

[
x1

x2

]
where x2 is the vector of n − k states which

will be removed rearranging the system model such that,
[

ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [ x1

x2

]
+Du.

A k-th order truncation subsequently produces the approxi-

mate model,

ẋ1 = A11x1 +B1u

y = C1x1 +Du,

with transfer function Ga(s) = C1 (sI −A11)
−1

B1 +D. A

common error metric is the error with respect to the Hankel

norm and infinity norm between new full model system

G(s) and truncated model Ga(s), i.e., ‖G(s)−Ga(s)‖H
and ‖G(s)−Ga(s)‖∞, respectively. The Hankel and infin-

ity norm of any stable transfer function E(s) is defined

as ‖E(s)‖H :=
√

maxi |λi (PPobs)| and ‖E(s)‖∞ :=
maxw σ̄ (G(jw)) , where P and Pobs are the controllability

and observability gramian of E(s) respectively and σ̄ (·)
denotes the singular value of a matrix. The optimal k-th order

truncation GH
a (s) with respect to the Hankel norm is

∥∥G(s)−GH
a (s)

∥∥
H

= σk+1, (7)
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where σk =
√

λk (PPobs). Another common form of trun-

cation is balance truncation and balanced realization GB
a (s)

which boasts the bound
∥∥G(s)−GB

a (s)
∥∥
∞ ≤ 2 (σk+1 + · · ·+ σn) . (8)

These methods and their corresponding performance guaran-

tees will be used as benchmarks for our truncation method.

For descriptions of these and forms of truncation we refer

the reader to [8].

We now proceed with a graph based form of model

truncation. A partition of a graph is the grouping of nodes

into subsets called cells. The i-th cell is denoted Ci. An

equitable partition is one in which each node in Cj has

the same number of neighbors in Ci for all i, j. A distance

partition is one in which each cell is composed of all nodes

the same distance from some node vi. We define a distance

partition over Ğ \ Er defined with respect to the leaders,

where Ğ \ Er is the graph Ğ without those edges connected

between leaders. If each leader is the sole member of a

cell and a cell with more than one member exists and the

partition is equitable then it has been shown that the graph

is uncontrollable [9] and as such there exists a non-empty

uncontrollable subspace which can be truncated from the

model without introducing any model error. Further it was

shown that symmetry within the graph structure with respect

to the leader agents induce an equitable partition [9].

We now have a framework to generate a graph based

reduced model by fusing together the states of all agents

within a cell. Specifically the reduced model’s states are

zj = 1
|Cj |

∑
vi∈Cj

xi for all j, i.e., the average state value

within the cell. For the case where the partition is an equitable

distance partition with respect to some ri, then the same

partition will be generated if it was calculated with respect to

any rj . Further as mentioned above, this model reduction has

exactly the same input-output characteristics as the full state

system, i.e., no model error is introduced. This method for

model reduction was introduced for a single leader in [10].

As most leader-follower systems do not have an equitable

distance partition, the partition depends on the selection of

the leader ri that defines it. To remove this dependence

and provide equal contribution from all leaders we slightly

adapt the distance partition and name the adaption a leader

partition. We define this new partition as follows.

Definition 1: A leader partition is composed of cells such

that all nodes are initially designated to leader cells C̃j ,

where nodes who share the same closest leader are grouped

together, i.e., C̃j = {vi : rj = argminkd(rk, vi)} . If nodes

are equidistant between a set of leaders then membership in

one of the corresponding leader cells is randomly chosen.

Each leader cell C̃j is then distance partitioned with respect

to their corresponding leader node rj to form leader partition

cells.

Our model reduction procedure is to fuse the states of the

all agents within each of the leader partition cells. In the

case where the leader-follower system contains an equitable

distance partition then combinations of the leader partition

cells form the distance partition cells. Consequently, the

leader partition model reduction would introduce no model

errors. The worth of this model reduction process is that it

exploits the structural components of the graph when they

are close to symmetric, introducing only small model errors

corresponding to ignored asymmetries.

The reduced order model has system matrices

Ar = STA (G,R)TTS ∈ R
nr×nr

Br = STB (R) ∈ R
nr×r

Cr = TTS ∈ R
n×nr ,

where S ∈ R
nr×nr , nr are the number of cells in the leader

partition, [S]ii =
1√
|Ci|

, T ∈ R
nr×n and [T ]ij = 1 of vi ∈

Cj and [T ]ij = 0 otherwise.

Graphically, Ã = TA (G,R)TT and B̃ = TB (R),
correspond to the state matrix of the reduced order leader-

follower graph
˜̆G =

(
Ṽ , Ẽ

)
. This can be graphically formed

by fusing the nodes of Ğ corresponding to the leader partition

and reweighting the edges accordingly. Therefore, each node

in
˜̆G corresponds to a fused cell and the weight on edge

(vi, vj) ∈ Ẽ, w̃ij , is equal to the number of edges between

nodes in Ci and in Cj in Ğ.
The interpretation of Ar and Br is a graph with self loops

and can be formed by reweighting the edges of
˜̆G from w̃ij

to wij such that wij = 1√
|Ci||Cj |

w̃ij , for vi, vj /∈ R and

wij = 1√
|Ci|

w̃ij for vj ∈ R otherwise. For the self loops

one has,

wii =
1

|Ci|

∑

vj 6=vi

w̃ij −
∑

vj 6=vi

wij

=
1

|Ci|

∑

vj 6=vi

w̃ij −
1√
|Ci|

(
∑

vj /∈R∪{vi}

1√
|Cj |

w̃ij +
∑

vj∈R

w̃ij)

Among the benefits of this type of reduction is a simple

graphical approach to model reduction compared to tra-

ditionally more numerically intense model reduction, e.g.,

balanced residualization, as well as the potential to apply

graph theoretic analysis on the reduced model.

V. SIMULATIONS

The stabilizing compensator in §II was applied to the 40-

agent UAV network in Figure 2 with 3 leaders exposed to

wind gusts with parameters; Q = I37×37, R = 10I3×3,V =
0.1I37×37, H = 1, W = 1, L = 3.49 and σ = 10. The

performance with respect to the average state and control

with a desired hover command (x = 0) are compared to the

grounded signal control in Figure 5.

Protocol 1 was applied to the spanning tree of the leader-

follower graph Ğ. It was run over 10 spanning trees of Ğ and

involved 231 edge trades. The resultant leader-follower model

had a tr (P (G,R)) = 18.3 compared to the original system

with 5.3. The resultant graph and its response to wind gusts

are displayed in Figure 3a) and 5, respectively. The optimal

performance cost J∗ as defined in (5) decreased from 18329

to 586.
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Fig. 2. Agent graph with leader agents (squares).
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Fig. 3. (a) The resultant leader-follower network after applying Protocol 1

to 10 spanning trees of the graph in Figure 2. (b) Reduced weighted agent
graph corresponding to Ar and Br with leader agents (squares). Edges from
an agent to itself (a self loop) are denoted by a circle around the agent.

The leader partition model reduction was applied to

the original network reducing the order of the system

from 37 to 7. The model reduced graphs correspond-

ing to Ar, Br is displayed in Figure 3b). The singu-

lar value and impulse response for a selected agent with

respect to each of the controls are compared for the

full state and reduced state system in Figure 4. Apply-

ing the norm metrics we have ‖G(s)−Ga(s)‖H = 0.45
and ‖G(s)−Ga(s)‖∞ = 2.57 compared to our bench-

marks (7) and (8) with
∥∥G(s)−GH

a (s)
∥∥
H

= 0.03 and∥∥G(s)−GB
a (s)

∥∥
H

≤ 0.11. The reduced model was used

to produce an LQG compensator and its performance was

compared to the full state compensator in Figure 5.

VI. CONCLUSION

The main objective of the present work is to propose a

network-theoretic approach for the efficient control of leader-

follower systems. In particular, the paper first presents an

LQG controller formulation for UAV flocking with leaders

in the presence of wind gusts. We then proceeded to utilizes

the network topology and in particular, adaptively evolve its

structure to improve the nominal controller’s performance

and design. Network properties pertaining to symmetry and

agent partitioning provided a network-centric method for

model reduction, providing the benefits of decreased con-

troller model order while retaining a graph topology of the

reduced system.
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