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Abstract— This paper considers the formation-shape control
of three agents moving in the plane. By adding an adaptive
vector perturbation to any agent’s movement direction, a novel
control strategy is proposed. It is shown that the proposed novel
bidirectional control law can not only guarantee the global
asymptotical stability of the desired formation shape, but also
ensure the collision avoidance of agents between each other.
Simulation results are provided to illustrate the effectiveness of
the control algorithm.
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I. INTRODUCTION

Formation control of multi-robot networks is an area of

ongoing research in control systems. Formation problems are

particularly interesting due to their broad range of applica-

tions in teams of UAVs performing military reconnaissance

and surveillance missions in hostile environments, satellite

formations for high-resolution Earth and deep-space imaging,

and submarine swarms for oceanic exploration and mapping.

A fundamental task for multi- agent formation is formation

shape control.

In this paper, the desired formation shape is controlled

by maintaining inter-agent relative distances. Works in this

framework have been studied in the context of graph rigidity

where a series of results have appeared in recent literature

[1]-[5]. Olfati-Saber and Murray [1] showed that proposed

control algorithm based on the inter-agents potential only

have local validity for small perturbations around the de-

sired formation due to multiple equilibria in the designed

nonlinear system [6], and the stability analysis of [1] is

not rigorous. Motivated by [1], in recent paper [4], [7],

[8], Krick et al. [4] provided a complete analysis showing

that the crucial property to achieve local stability is that the

graph corresponding to the target formation be infinitesimally

rigid. Under the assumption of infinitesimal rigidity, the set

of equilibria of the gradient dynamics corresponding to the

target formation becomes a three-dimensional equilibrium

manifold. Dimarogonas and Johansson [7], [8] examined

the stabilization issue for distance-based formations, and

they stated that the multi-agent system is globally stable

with respect to the desired formation with negative gradient

control laws if and only if the formation graph is a tree.

Cao et al. [9] designed a gradient-like control law which

could cause any initially non-collinear triangular formation to
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converge exponentially fast to a desired triangular formation.

Therefore, the global asymptotical stability of the desired

formation shape remains to be a challenging open problem.

For example, Summersy et al. [10] investigated the undesired

formation-shape of four agents with complete graph. They

showed that under certain acuteness conditions on the desired

formation shape, any possible undesired equilibrium shape

is unstable, thereby the desired shape is almost globally

asymptotically stable.

In this paper, we study the undirected triangle formation

control problem. By adding a constant vector perturbation to

any agent’s movement direction, a novel control strategy is

proposed. Based on the proposed controller, the collinear set

discussed in [4], [9] is not an invariant manifold. Further-

more, we demonstrate that the desired formation is globally

asymptotically stable, and the collision between each agent

can be avoided, too.

The rest of the paper is organized as follows: the problem

statement is given in Section 2. The control law and stability

analysis are presented in Section 3. Simulation is included

in Section 4 and the results are summarized in Section 5.

II. PROBLEM STATEMENT

We consider a formation comprising three agents, each

agent is described by a single integrator model:

ṙi = vi, (1)

where ri = [rxi, ryi]
T denotes the position of agent i, vi =

[vxi, vyi]
T denotes the velocity input of agent i, i = 1, 2, 3;

let r = [rT
1 , rT

2 , rT
3 ]T , v = [vT

1 , vT
2 , vT

3 ]T , rij = ri − rj .

1

23

Fig. 1. Formation consisting of three agents

Figure 1 illustrates an undirected formation in the plane

consisting of three mobile autonomous agents labeled 1, 2,

3. Each agent can only communicate with a specific subset

Ni ⊂ N . By convention, i /∈ Ni. The desired formation

can be encoded in terms of an undirected graph, from now

on called the formation graph G = (N, E), whose set of

vertices N = {1, 2, 3} is indexed by the team members,
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and whose set of edges E = {(i, j) ∈ N × N | j ∈ Ni}
contains pairs of vertices that represent inter-agent formation

specifications. Each edge (i, j) ∈ E is assigned to a scalar

parameter dij = dji, representing the desired distance which

agents i, j should converge to. Here, dij , (i, j) ∈ E is a

positive constant. Denote by αij = ||rij ||2 the distance of

any pair of agents in the group. The formation potential

function between agents i and j with j ∈ Ni is defined

as in references [7] and [8]:

Vij =
(αij − d2

ij)
2

αij

, Vi =
∑

j∈Ni

Vij(αij). (2)

Obviously, Vi is zero if all the neighbors are located

apart from agent i by the distance required by the desired

formation, and goes to infinity if any of the neighbors

approaches agent i with zero-distance. We also define

ρij
∆
=

∂Vij(αij)

∂αij

=
α2

ij − d4
ij

α2
ij

. (3)

Note that ρij = ρji, j ∈ Ni.

The formation control problem is to design a distance-

based undirected control law

vi = hi(rij), j ∈ Ni,

such that for any initial condition ri(0) ∈ R2, i = 1, 2, 3,

three agents can achieve the globally asymptotically stable

formation, i.e.

lim
t→∞

(||rij || − dij) = 0, j ∈ Ni,

and no collision happens between each two agents, or there

does not exist a time t = t1 > 0 so that

||rij(t)|| = 0,

where (i, j) ∈ E.

Remark 1: Compared to the exiting works [3], [9] where

the desired distances between agents have to satisfy the tri-

angle inequality, our approach doesn’t require the condition.

In other words, the desired formation-shape in this paper can

be a line or a triangle. Formation control of agents moving

in a line has important application in practice such as small

satellites formation SAR in Line to observe earth, so the

achievement of line formation also has practical significance.

III. CONTROLLER DESIGN AND STABILITY

ANALYSIS

A. Gradient Method

Early work with formation shape control includes [4], [7]-

[9]. They all proposed a negative gradient control algorithm

for the formation control problem. The control law was as

follows:

vi = −∇ri
Vi = −

∑

j∈Ni

∇ri
Vij(||rij ||), i = 1, 2, · · · , N,

(4)

where Vij(rij) is a suitable formation potential function

between agents i and j.

In [9], Cao et al. proposed a directed triangle formation

control scheme. Under the proposed control law (4), the

complete set of equilibrium points of the overall system is:

E = E1 ∪ M, (5)

where E1 = {r | ||rij || = dij } is the desired equilibrium

points set, M = {r | r ∈ L, r12ρ12 = r23ρ23 = r31ρ31 } de-

notes the set that three agents positions are collinear and

move at the same velocity, L = {r| rank[r12 r23 r31] < 2} is

the set corresponding to three agent positions in the plane

which are collinear.

It is shown in [9] that when the three agents are initially

collinear, they always remain collinear forever and the for-

mation can’t converge to the desired triangle formation.

In [4], Krick et al. designed an n-agent undirected for-

mation control law based on the negative gradient control

algorithm, too. When the number of agents is 3, the complete

set of equilibrium points of the overall system is the same as

equation (5), but M denotes the set that three agents positions

are collinear and stationary. However, when the the number

of agents is more than 3, in addition to the unexpected set

M , there exists other unexpected equilibrium points set.

In [7], [8], Dimarogonas and Johansson showed that if

the formation graph is a tree, the set E1 = E is the

unique desired equilibria set of the overall system. When

the formation graph contains cycle, it is not a tree and the

desired formation is thus not globally stable due to multiple

equilibria in the designed nonlinear system.

Therefore, when the formation graph contains cycle, how

to design a global stabilizer is a challenging and meaningful

work.

B. Design of Global Stabilizer

In order to achieve the globally asymptotically stable

formation, we design a novel undirected formation control

strategy based on relative positions by adding a constant

vector perturbation to any agent’s movement direction. The

control law vi is as follows:

v1 = −∇r1
V1 − 2k12ρ12a − 2|k′

12ρ12|s
= −2(r12 + k12a)ρ12 − 2r13ρ13 − 2s|k′

12ρ12|, (6)

v2 = −∇r2
V2 = −2r23ρ23 − 2r21ρ21, (7)

v3 = −∇r3
V3 = −2r31ρ31 − 2r32ρ32, (8)

where a is a unit constant vector perturbation added to the

movement direction of agent 1, 0 < k12 < k′
12, ∇r1

V1 =
[

∂V1

∂rx1

∂V1

∂ry1

]T

, s = [sgn(∇r1
V1)x sgn(∇r1

V1)y]T .

Under the controllers (6)-(8), because of the non-zero

constant vector perturbation, the collinear set L discussed in

[9] is not an invariant manifold. In other words, even if the

agents are initially collinear, they will not remain collinear

forever.

To understand why L is not invariant, first note that for

any two vectors p, q ∈ R2, det[p q] = pT Gq, where

G =

[

0 1
−1 0

]

.
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From this fact and r12 + r23 + r31 = 0 it follows that

det[r12 r23] = −det[r12 r31] = −det[r23 r31].

Hence, the definition of L imply that

L = {rij | det[r12 r23] = 0} .

But along with (6)-(8), we have

d
dt

det[r12 r23] = d
dt

(rT
12Gr23)

= −4(ρ12 + ρ23 + ρ31) det[r12 r23]
−2k12ρ12(a + ssgn(k12ρ12))

T Gr23.

Thus, if det[r12 r23] = 0 at t = 0, det[r12 r23] isn’t

identically equal to zero for any t > 0 because of a +
ssgn(k12ρ12) 6= 0. Therefore L is not invariant as claimed.

Furthermore, observe that the equilibrium points of the

overall system are those values of the r for which

v = −2RT ρ = 0, (9)

where

ρ = [ρ12 ρ13 ρ23]
T ,

RT =





r12 + k12a + k′
12sgn(ρ12)s r13 0

r21 0 r23

0 r31 r32



 .

Remark 2: Under the existing controllers based on neg-

ative gradient algorithm [4], the overall system can also be

written as the equation (9), and the matrix R is the rigidity

matrix discussed in [5]. When the three agents are collinear,

the rank of R is 2, then v = 0, we can’t have ρ = 0, every

point in the manifold E is an equilibrium point of the overall

systems, and the undesired equilibrium points of the overall

system exist.

Then we analyze the rank of matrix R under the proposed

controllers (6)-(8), it is crucial in the stability analysis.

Let R1 = [rT
12 + k12a + k′

12sgn(ρ12)s rT
21 0]T ,

R2 = [0 rT
23 rT

32]
T , R3 = [rT

13 0 rT
31]

T . Because

k12a + k′
12sgn(ρ12)s isn’t equal to zero and its value is

related to state, it is obvious that vectors R1, R2 and R3

are not associated with each other. Therefore, whether the

three agents are collinear or not, the rank of matrix R is 3,

and it is a full row-rank matrix. From the equation (9), we

have ρ = 0, which implies every point in the manifold E1

is an equilibrium point of the overall systems.

Later in the paper it will be shown that the converse is

also true. In other words, the complete equilibria set of the

overall system is E1 which is the unique desired equilibria

set.

C. Stability Analysis

In this section we show that under the proposed gradient

control with perturbation, the equilibrium corresponding to

the desired formation is unique and globally asymptotically

stable.

Theorem 1: Assume that the system (1) evolves under

the control law (6)-(8), with the potential function Vij as

equation (2). Then the desired formation is globally asymp-

totically stable, and collision between each agent is avoided.

Proof: To present the proof of Theorem 1, we need to do

some preparing work. Let the Lyapunov function candidate

be chosen as the following nonnegative function:

V (rij(t)) =
3

∑

i=1

Vi =
3

∑

i=1

∑

j∈Ni

Vij(αij). (10)

From the definition of V , we know that the function V is

continuous, but not continuously differentiable everywhere

due to the proposed discontinuous controller. Therefore, we

introduce the LaSalles invariant principle for autonomous

non-smooth systems by Shevitz and Paden [11] to analyze

the stability of the overall system. And the uniqueness

of solutions is guaranteed by the definition of Filippov

solutions, along with the measurability assumption of f(x)
in [12].

Since V is smooth and hence regular, while its generalized

gradient [13] is a singleton which is equal to its usual

gradient everywhere in the state space: ∂V = ∇V =

∇
3
∑

i=1

Vi. Due to Vi being symmetric with respect to rij and

the fact that rij = −rji, it has

∇rij
Vij = ∇ri

Vij = −∇rj
Vij .

Because the proposed controller is discontinuous, we use

the Theorem 2.2 in [11] to calculate the time derivative of

V (rij(t)). Then, we have

V̇ (rij) = 2
3

∑

i=1

(∇ri
Vi)

T ṙi

⊂
3

∑

i=1

(∇ri
Vi)

T K[vi] (11)

= −2
3

∑

i=1

||∇ri
Vi||2 − 4k12ρ12(∇r1

V1)
T a

−4k′
12|ρ12|(∇r1

V1)
T K[s],

where where K[vi] is called Filipov set-valued mapping, it

is defined in detail in [12]. In the above analysis (11) we

have used Theorem 1(7) in [14] to calculate the inclusions

of the Filippov set. Since K[sgn(x)]x = |x| [14], the choice

of equations (6)-(8) results in

V̇ (rij) = −2
3

∑

i=1

||∇ri
Vi||2 + 4|k12ρ12|(∇r1

V1)
T a

−4|k′
12ρ12|[|(∇r1

V1)x| + |(∇r1
V1)y|]

≤ −2

3
∑

i=1

||∇ri
Vi||2 + 4|k12ρ12| · ||∇r1

V1|| · ||a||

−4|k′
12ρ12|[|(∇r1

V1)x| + |(∇r1
V1)y|]

≤ −
3

∑

i=1

||∇ri
Vi||2 ≤ 0, (12)

so that the generalized derivative of V reduces to a singleton.

The equation (12) implies that V is nonincreasing across
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the trajectories of the closed-loop system, i.e., V (rij(t)) ≤
V (rij(0)) for all t ≥ 0. Therefore, we have the following

lemma.

Lemma 2: Consider system (1) driven by the controllers

(6)-(8). Then the set S = {rij | V (rij) ≤ V0 < ∞} is

positively invariant for the trajectories of the closed-loop

system.

Proof: The set {rij}, which makes V (rij) ≤ V0 < ∞,

for any constant V0 > 0, is closed by continuity. From

equation (2) and (10), we know ||rij || is bounded, then

the set S = {rij | V (rij(t)) ≤ V0 < ∞} is compact. More-

over, since V is nonincreasing, we have that V (rij(t)) ≤
V (rij(0)), here, V (rij(0)) ≤ V0. According to the definition

of positively invariant set in [15], we can conclude that

S = {rij | V (rij(t)) ≤ V0 < ∞} is positively invariant set

for the trajectories of the closed-loop system.¤

The next result involves the fact that with this choice of

formation potential, communicating agents do not collide and

there is a minimum separation distance between them when

the system starts within S:

Lemma 3: Consider system (1) driven by the controllers

(6)-(8), with potential function as in (2), and starting from a

set of initial conditions S = {rij | V (rij) ≤ V0 < ∞}. Then

it holds that

−
√

V0 +
√

V0 + 4d2
ij

2
≤ ||rij(t)|| ≤

√
V0 +

√

V0 + 4d2
ij

2
,

(13)

for all (i, j) ∈ E and all t ≥ 0.

Proof: For any rij(0) ∈ S, the time derivative of V (rij(t))
remains non-positive for all t ≥ 0, by virtue of (12). Hence

V (rij(t)) ≤ V (rij(0)) ≤ V0 < ∞ for all t ≥ 0. Moreover,

since V (t) =
3
∑

i=1

∑

j∈Ni

Vij(αij), we have that Vij(αij) ≤ V0,

so that

−
√

V0 +
√

V0 + 4d2
ij

2
≤ ||rij(t)|| ≤

√
V0 +

√

V0 + 4d2
ij

2
.

It is easily seen that
−
√

V0+
√

V0+4d2

ij

2
is strictly positive.

Therefore, no collision happens between any two agents.¤

Lemmas 2 and 3, along with the non-smooth LaSalles in-

variant principle [11] imply that the system converges to the

largest invariant subset of the set Ω =
{

rij

∣

∣

∣
0 ∈ V̇ (rij(t))

}

,

and all agents eventually stop at steady state.

Next, we will show that in the invariant set Ω, all the

agents’ velocities are equal to zero, and the complete equi-

libria set of the overall systems is E1.

Since at steady state, we have

V̇ (rij(t)) = W1 + W2,

where

W1 = −2
3

∑

i=1

||∇ri
Vi||2,

W2 = −4|ρ12|[k′
12(|(∇r1

V1)x|+|(∇r1
V1)y|)−k12(∇r1

V1)
T a].

Since W1 ≤ 0, W2 ≤ 0, we have that

0 ∈ V̇ (rij(t)), i.e., W1 = 0, W2 = 0,

so that

v̄i = 0 or v̄i = 0, ρ12 = 0, i = 1, 2, 3,

where v̄i = −∇ri
Vi = −

∑

j∈Ni

∇ri
Vij(αij) = −

∑

j∈Ni

2ρijrij .

Therefore, we have

Ω = {rij | v̄i = 0 or v̄i = 0, ρ12 = 0, i = 1, 2, 3} .

In Ω, the agent dynamics become the following two

situations:

Case 1: v̄i = 0, ρ12 = 0.

From the equations (6)-(8), it is obvious that we have

ρ23 = 0, ρ31 = 0.

Case 2: v̄i = 0.

Since v2 = v3 = 0, v23 = v2 − v3 = 0, we have that r23

is a constant vector, due to the fact that

v2 = −2r23ρ23 − 2r21ρ21 = 0,

then r21 is a constant vector, so that v21 = 0 and v1 = 0.

Because v̄i = 0, v = 0, and the matrix R is a full row-rank

matrix, along with the equation (9), we have ρ = 0, it is

equal to ρ12 = 0, ρ23 = 0, ρ31 = 0.

From equation (3), we have αij = d2
ij , i.e., ||rij || = dij ,

then Ω = {rij | ||rij || = dij }, for all (i, j) ∈ E. Moreover,

we deduce that no solution other than ||rij || = dij can

stay forever in Ω. Hence, the desired formation is globally

asymptotically stable, and collision between each agent is

avoided.¤

IV. SIMULATIONS

In this section we provide some simulation examples to

support the derived results. The equations of motion are given

by (1).

Case 1: When the agents’ initial state are:

r1(0) = [0, 0]T , r2(0) = [1, 1]T , r3(0) = [2, 2]T .

Obviously, they are initially collinear. And the desired dis-

tance between a pair of agents are d12 = d23 = d31 = 3. Un-

der the negative gradient control law proposed in [4, 9], they

remain collinear forever, and the formation can’t converge to

the desired one. However, when the control law is given by

(6)-(8), and the constant vector perturbation added to the

movement direction of agent 1 is a = [sinπ/6, cos π/6]
T

,

the movement trajectories of agents and the distance ||rij ||
shown in Figures 2 and 3 demonstrate that three agents

achieve the desired triangular formation. Figures 4 and 5

demonstrate that the velocity vxi along the x-axis and vyi

along the y-axis tend to zero at the stable state.

4011



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

agent 1
agent 2
agent 3
the initial position
the final position

Fig. 2. Movement trajectories of agents

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

t/s

||
r ij||

||r
12

||

||r
23

||

||r
31

||

Fig. 3. Distance between any two agents ||rij ||

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−60

−50

−40

−30

−20

−10

0

10

20

30

40

t/s

v
x
i, 

v
y
i

agent 1
agent 2
agent 3
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Case 2: In this case, the agents’ initial positions are:

r1 = [0.5, 0.6]T , r2 = [0.7, 0.6]T , r3 = [0.6, 0.8]T .

They are close enough to each other. The desired distance

is d12 = 1, d23 = 2, d31 = 3. It is obvious that the

desired final position of the agents are collinear. Such a

collinear formation with a desired distance constraint can not

be defined under the control laws proposed in the existing

references, e.g., [4], [7]-[9]. Now, we apply the controller

proposed in this paper, the constant vector perturbation is

chosen as same as case 1. From the movement trajectories

of agents in Figures 6 and the distance ||rij || in Figures 7, we

can conclude that three agents achieve the desired collinear

formation and never collide between each other. Based on

Figures 8 and 9, the velocity vxi along the x-axis and vyi

along the y-axis converge to zero at the stable state.

In summary, whether the initial states are collinear or not,

the proposed control scheme can guarantee that the three

agents achieve the desired formation shape, and the collision

between each pair of agents is avoided.
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Fig. 5. Movement trajectories of agents

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

t/s

||
r ij||

||r
12

||

||r
23

||

||r
31

||

Fig. 6. Distance between any two agents ||rij ||

V. CONCLUSIONS

In this paper, we have proposed a novel control law that

maintains the formation shape of three autonomous agents
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in the plane. The proposed controllers can ensure the global

asymptotical stability of the desired formation and collision

avoidance of agents between each other. Extension of the

proposed control scheme to systems with more than three

agents is a very interesting and challenging problem for the

future study.

REFERENCES

[1] R. Olfati-Saber and R. Murray, ”Distributed cooperative control of
multiple vehicle formation using structural potential functions”, in

Proceedings of the 15th IFAC World Congress, Barcelona, Spain, 2002,
pp. 1-7.

[2] J. Baillieul and A. Suri, ”Information patterns and hedging Brocketts
theorem in controlling vehicle formations”, 43rd IEEE Conference

Decision and Control, Paradise Island, Bahamas, 2004, pp. 556-563.

[3] B.D.O. Anderson, C. Yu, and S. Dasgupta, ”Control of a three coleader
persistent formation in the plane”, Systems and Control Letters, vol.
56, no. 10, pp. 573-578, 2007.

[4] L. Krick, M. Broucke, and B. Francis, ”Stabilization of Infinitesimally
Rigid Formations of Multi-Robot Networks”, International Journal of

Control, vol. 82, no. 3, pp. 423-439, 2009.

[5] C. Yu, J. M. Hendrickx, B. Fidan, and V. Blondel, ”Three and higher
dimensional autonomous formation: rigidity, persistence and structural
persistence”, Automatica, vol. 43, no. 3, pp. 387-402, 2007.

[6] M. C. Gennaro, L. Iannelli, and F. Vasca, ”Formation control and
collision avoidance in mobile agent systems”, in Proceedings of

the IEEE International Symposium on Intelligent Control and 13th

Mediterranean Conference on Control and Automation, Limassol,
Cyprus, 2005, pp. 27-29.

[7] D. V. Dimarogonas, and K. H. Johansson, ”On the stability of distance-
based formation control”, in proceedings of the 47th IEEE Conference

on Decision and Control, Cancun, Mexico, 2008, pp. 1200-1205.

[8] D. V. Dimarogonas, and K. H. Johansson, ”Further results on the
stability of distance-based Multi-Robot Formations”, 2009 American

Control Conference, St. Louis, MO, 2009, pp. 2972-2977.

[9] M. Cao, A. S. Morse, C. Yu, B.D.O. Anderson, and S. Dasgupta,
”Controlling a triangular formation of mobile autonomous agents”, in

Proceedings of the IEEE Conference on Decision and Control, New
Orleans, LA, USA, 2007, pp. 3603-3608.

[10] T. H. Summersy, C. Yu, B. D. O. Anderson,and S. Dasgupta, ”For-
mation shape control: Global asymptotic stability of a four-agent
formation”, 48th IEEE Conference on Decision and Control and 28th

Chinese Control Conference, Shanghai, P.R. China, 2009, pp. 3002-
3007.

[11] D. Shevitz, B. Paden. Lyapunov stability theory of nonsmooth systems.
IEEE Transactions Automatic Control, vol. 49, no. 9, pp. 1910-1914,
1994.

[12] A. Filippov. Differential Equations With Discontinuous Right-Hand

Sides, Norwell, MA: Kluwer, 1988.

[13] F. Clarke, Optimization and Nonsmooth Analysis, Reading, MA:
Addison-Wesley, 1983.

[14] B. Paden, and S. S. Sastry, ”A calculus for computing Filippov’s
differential inclusion with application to the variable structure control
of robot manipulators”, IEEE Transactions on Circuits System, vol.
34, no. 1, pp. 73-82, 1987.

[15] M. Krstic, I. Kanellakopoulos, and P. V. Kokotocic, Nonlinear and

Adaptive Control Design, New York: Wiley, 1995, pp. 22-25.

4013


