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Abstract— This paper presents a novel model-free iterative
learning control algorithm for linear time-invariant systems
with actuator constraints. At every trial, a finite impulse
response filter to update the system input is computed by solving
a convex optimization problem that minimizes the next trial’s
tracking error while accounting for actuator constraints. The
presented iterative learning control algorithm is validated on
a linear motor positioning system. Experimental results show
the ability of the proposed model-free algorithm to learn the
optimal system input in the presence of cogging forces and
actuator input constraints.

I. INTRODUCTION

Iterative learning control (ILC) is an open-loop control
strategy that aims at improving the tracking performance
of a system executing the same task repeatedly under the
same operating conditions. The system input is updated
iteratively, i.e. from trial to trial, to improve the accuracy
of the desired motion [1], [2]. Using this technique, accurate
tracking can be obtained even when the system dynamics are
uncertain. Reported applications of ILC include machine tool
axes [3] and wafer stage motion systems [4], which involve
linear motor systems that typically suffer from cogging
disturbances [5]. Besides motion control, ILC has also been
successful in other domains such as active noise control [6]
and chemical process control [7].

When designing an ILC algorithm the aim is to use
the error information from previous trials as efficiently as
possible in order to achieve a minimal tracking error in
as few iterations as possible. The simplest ILC law uses a
PID-type learning filter, which consists of a proportional,
integral and derivative gain on the tracking error to update
the system input. More advanced learning laws [1] include
plant inversion methods, quadratically optimal design (Q-
ILC), H∞ design methods and other optimization-based
approaches [8], [9], [10]. These methods use a plant model
and possibly also uncertainty models to ensure (robust)
monotonic convergence.

Contrary to the variety of model-based ILC methods,
model-free methods are rare in the ILC literature [11]. Model-
free ILC algorithms have the advantage of being applicable to
different machines without having to perform identification
experiments over and over again. Another shortcoming of
classical ILC methods is that the desired trajectory is assumed
to be realizable given the actuator constraints, whereas
in many situations this is not known beforehand. Only
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Fig. 1. Open-loop discrete-time LTI system P (q).

few methods consider actuator constraints [12]. This paper
presents an ILC algorithm for linear time-invariant (LTI)
systems that overcomes both these shortcomings. In addition
to the theory behind the novel model-free ILC algorithm, the
paper also presents the experimental validation on a perma-
nent magnet linear motor. Two test cases show the ability of
the proposed method to deal with actuator constraints and
repeating disturbances such as actuator cogging.

The paper is organized as follows. Section II details the
theory behind the presented model-free ILC algorithm and
analyzes the influence of noise and disturbances on the
performance. Section III discusses the linear motor test setup
and presents the experimental results. Finally, section IV
summarizes the conclusions.

II. A MODEL-FREE ILC ALGORITHM

This section presents the fundamental principle of the
model-free ILC algorithm and extends the proposed method
for systems with measurement noise and trial-invariant dis-
turbances. At the end of this section the application to closed-
loop systems is discussed.

A. Fundamental principle of the model-free ILC algorithm

Consider the open-loop, single-input single-output (SISO),
discrete-time, LTI system P (q) in Fig. 1. P (q) has input:

uj(k), k ∈ {1, 2, . . . , N},

output:

yj(k), k ∈ {τ + 1, τ + 2, . . . , τ +N},

desired output:

yd(k), k ∈ {τ + 1, τ + 2, . . . , τ +N},

and tracking error ej(k) = yd(k) − yj(k), where subscript
j ∈ {0, 1, 2, . . .} denotes the trial number, k refers to the
discrete time instants, q is the one-sample advance operator,
τ denotes the relative degree of P (q) and N denotes the
number of samples per trial.

A widely used ILC update formula is

uj+1(k) = Q(q)[uj(k) + L(q)ej(k)], (1)
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where Q(q) is the robustness filter and L(q) the learning
filter. The design of L(q) usually requires nominal plant
knowledge since this filter relates ej(k) to uj+1(k), whereas
the design of Q(q) uses uncertainty models to ensure robust
monotonic convergence.

Contrary to the design of iterative learning controllers
given by (1), the proposed ILC method relies only on the
linearity and time-invariance of the system. The system
input is updated using a linear combination of previous
system inputs convoluted with a trial-varying, but linear
time-invariant, causal finite impulse response filter (FIR-filter)
αj(q) of length N :

uj+1(k) = uj(k) + ulc(k) ∗ αj(k). (2)

In this formula ulc(k) represents any linear combination
of the previous trials’ input signals u0(k), u1(k), . . . , uj(k),
αj(k) denotes the impulse response of αj(q), and ∗ denotes
the discrete-time convolution operator.

When updating the input signal uj(k) using (2), the
corresponding output yj+1(k) is predicted by only relying
on the system’s linearity and time-invariance:

ŷj+1(k) = yj(k) + ylc(k) ∗ αj(k), (3)

where ylc(k) denotes a linear combination of previous trials’
output signals y0(k), y1(k), . . . , yj(k) that is composed in
the same way as the linear combination ulc(k) used in (2),
and ŷj+1(k) denotes the prediction of the output of trial
j+1 for input uj+1(k), obtained without the use of a system
model. At every iteration, the FIR-filter αj(q) is computed by
solving a convex optimization problem as explained below.

Using the lifted system representation [13], which is used
in the remainder of this paper, the update law (2) is rewritten
as:

uj+1(1)
uj+1(2)

...
uj+1(N)


︸ ︷︷ ︸

uj+1

=


uj(1)
uj(2)

...
uj(N)


︸ ︷︷ ︸

uj

+


ulc(1) 0 · · · 0
ulc(2) ulc(1) · · · 0

...
...

. . .
...

ulc(N) ulc(N − 1) · · · ulc(1)


︸ ︷︷ ︸

Ulc


αj(1)
αj(2)

...
αj(N)


︸ ︷︷ ︸

αj

, (4)

where Ulc denotes the lower-triangular Toeplitz matrix of
ulc(k). Analogous to (4), the predicted output of trial j + 1
is rewritten as:

ŷj+1 = yj +Ylcαj = yj +Ajylc, (5)

where

Ylc =


ylc(τ + 1) 0 · · · 0
ylc(τ + 2) ylc(τ + 1) · · · 0

...
...

. . .
...

ylc(τ +N) ylc(τ +N − 1) · · · ylc(τ + 1)



denotes the lower-triangular Toeplitz matrix of ylc(k) and Aj

denotes the lower-triangular Toeplitz matrix of αj(k).
Between two trials the trial-varying FIR-filter αj(q) is

computed by solving the following convex optimization
problem:

minimize
αj∈RN

‖yd − ŷj+1‖2

subject to ŷj+1 = yj +Ylcαj

uj+1 = uj +Ulcαj

|uj+1| ≤ u
|δuj+1| ≤ δu.

(6)

The `2-norm of the predicted next trial’s tracking error is
minimized taking into account linear inequality constraints
on uj+1(k) and δuj+1(k) = uj+1(k)−uj+1(k−1) to avoid
saturation of the actuators. When this convex optimization
problem is solved and thus the optimal FIR-filter αj(k) is
known, the next trial’s input signal is calculated using (4).

Although any update law of the form (4) allows the output
of an LTI system to be predicted without the use of a
system model, some particular choices for ulc(k) result in
update laws with important advantages. For now, consider
the following simple update laws:

ulc(k) = u0(k) : uj+1 = uj +U0αj , (7)

ulc(k) = uj(k) : uj+1 = uj +Ujαj . (8)

After the first trial, when computing u1, both update laws are
equivalent and make use of the initial input signal u0. The
proposed method, using update law (7) or (8), can be shown
to converge in only one iteration to the minimal tracking
error, provided that (i) Y0 is a full-rank matrix, and (ii)
no measurement noise or disturbances are present. The first
condition is sufficient to ensure that e0 = yd − y0 is in the
column range of Y0. The lower-triangular Toeplitz matrix
Y0 is of full rank if and only if y0(τ + 1) 6= 0, therefore
u0(1) must be nonzero 1. This way, the condition on the
rank of Y0 restricts the choice of the first trial’s input signal
u0(k). The second condition ensures that the predicted output
ŷ1 = y0 +Y0α0 is exactly equal to the true output of trial
j = 1, and the minimal value of the objective function of the
optimization problem is the true minimal rms value of the
tracking error for the imposed bounds on the actuator input.
This globally optimal solution is found since optimization
problem (6) is convex.

In practice, however, measurement noise and disturbances
are present and more iterations are needed to converge to
the optimal system input. At iterations j > 1, update law
(7) and (8) and hence the corresponding ILC algorithms are
different. In the case of update law (7), Ylc = Y0 is of full
rank at every trial along the learning process as long as the
initial input signal u0(k) satisfies u0(1) 6= 0. In the case
of update law (8), this necessary condition to converge to
the optimal system input might not be satisfied further on in
the learning process since Ylc = Yj results from a previous

1It is assumed that the system’s initial conditions are zero.
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Fig. 2. Open-loop discrete-time system P (q) with measurement noise
nj(k).

iteration’s optimization problem and is not free to choose.
For this reason, update law (7) is preferred.

B. Obtaining accurate output predictions in case of mea-
surement noise

This section discusses the influence of measurement noise
on the model-free ILC algorithm and proposes an essential
modification to the algorithm.

Consider the LTI system P (q) in Fig. 2 with input uj(k),
true output yj(k), measured tracking error em

j (k) and mea-
sured output ym

j (k) = yj(k) + nj(k), which is corrupted by
zero-mean measurement noise nj(k) with standard deviation
σn.

Since the true noise-free output yj is not known, the
predicted plant output ŷj+1 is computed from the measured
output signals ym

j and ym
0 :

ŷj+1 = ym
j +Ym

0αj ,

= yj + nj +Y0αj +N0αj ,
(9)

where N0 and Ym
0 respectively denote the lower-triangular

Toeplitz matrices of n0(k) and ym
0 (k). The difference be-

tween the true output yj+1 and the predicted output ŷj+1 is
called the prediction error of trial j + 1 and is denoted by
epr
j+1. The update relation (7) still yields

yj+1 = yj +Y0αj , (10)

whereby the prediction error of trial j + 1 is given by:

epr
j+1 = yj+1 − ŷj+1 = −nj −N0αj . (11)

Consequently, the objective function of optimization program
(6) amounts to

‖yd − ŷj+1‖ =
∥∥yd − yj+1 + epr

j+1

∥∥ , (12)

and hence the prediction error hinders the model-free ILC
algorithm from further reducing the tracking error. Therefore
it is necessary to constrain this error.

From (11) the standard deviation of the prediction error at
sample k of trial j + 1 can easily be derived:

σepr
j+1(k)

= σn

√
1 + ‖αj(1, . . . , k)‖2. (13)

The largest standard deviation of the prediction error is found
at the last sample of the trial, k = N :

σepr
j+1(N) = σn

√
1 + ‖αj‖2. (14)

This analysis shows that adding the convex constraint

‖αj‖2 ≤ t (15)

P (q) +
+

+−
uj(k) yj(k)

d(k) yd(k)

ej(k)

Fig. 3. Open-loop discrete-time system P (q) with a trial-invariant output
disturbance d(k).

to optimization program (6) limits the standard deviation
of the prediction error by σn

√
1 + t and hence allows the

model-free ILC algorithm to further reduce the tracking error.
Hence, in case of measurement noise, the following con-

vex optimization program is solved between two trials to
obtain the optimal FIR-filter αj(q) and thus also the updated
input signal uj+1(k):

minimize
αj∈RN

‖yd − ŷj+1‖2

subject to ŷj+1 = ym
j +Ym

0αj

uj+1 = uj +U0αj

|uj+1| ≤ u
|δuj+1| ≤ δu
‖αj‖2 ≤ t.

(16)

In addition to the beneficial effect on the prediction error, the
constraint on ‖αj‖2 also limits the change in input signal
U0αj from one trial to the next trial. Consequently, the
constraint on ‖αj‖2 influences the convergence speed of the
ILC algorithm. The upperbound on ‖αj‖2 regulates the trade-
off between convergence speed and accuracy of the output
prediction.

C. Dealing with trial-invariant disturbances

In the previous section the model-free ILC algorithm was
adapted for tracking problems where measurement noise is
present. In many real-life applications, however, the output
also suffers from trial-invariant disturbances. Contrary to
measurement noise, these trial-invariant disturbances can be
compensated using iterative learning controllers.

Consider again an LTI system P (q) with a certain trial-
invariant output disturbance dj(k) = d(k), for all j =
0, 1, 2, . . . (see Fig. 3). Using the lifted-system represen-
tation, the system dynamics, including the trial-invariant
disturbance d(k), are written as follows:

yj = Puj + d, (17)

where P denotes the lower-triangular Toeplitz matrix of the
impulse response of the system P (q).

Since the model-free ILC algorithm assumes the system
dynamics to be LTI, again a prediction error arises in the
objective function of the optimization program when update
law (7) is used. Combining (17) and (10) results in the
predicted output:

ŷj+1 = yj +Y0αj ,

= P(uj +U0αj) + d+Dαj ,
(18)
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where D denotes the lower-triangular Toeplitz matrix of
d(k), whereas the actual output is:

yj+1 = P(uj +U0αj) + d. (19)

The resulting prediction error is:

epr
j+1 = yj+1 − ŷj+1 = Dαj . (20)

Constraining the `2-norm of αj would again reduce the
prediction error at the cost of convergence speed.

In the presence of trial-invariant disturbances, however,
more appropriate choices of the update law, resulting in
more accurate output predictions and therefore also faster
convergence, can be made.

Consider the following specific case of (4):

ulc(k) = uj(k)− uj−1(k) + γu0(k), (21)

where γ ≈ 0.01 . . . 0.1, yielding:

uj+1 = uj +Aj(uj − uj−1 + γu0). (22)

The predicted output of trial j + 1 for the system described
by (17) is:

ŷj+1 = yj +Aj(yj − yj−1 + γy0),

= Puj + d+Aj(P(uj − uj−1 + γu0) + γd),
(23)

whereas the actual output is:

ŷj+1 = P(uj +Aj(uj − uj−1 + γu0)) + d. (24)

Consequently the resulting prediction error is:

epr
j+1 = yj+1 − ŷj+1 = γAjd. (25)

This analysis shows that update law (22) reduces the
prediction error due to trial-invariant disturbances and still
allows Ylc to be of full rank at every trial along the learning
process. The scalar γ is the second tuning parameter of
the model-free ILC algorithm next to t, the upperbound on
the `2-norm of αj , and regulates the trade-off between the
prediction error due to trial-invariant disturbances and the
ability to reduce the next iteration’s tracking error. Both
tuning parameters are allowed to vary from iteration to
iteration.

To summarize, in the presence of measurement noise and
trial-invariant disturbances the following convex optimization
problem is solved to obtain the optimal FIR-filter and hence
also the updated input signal uj+1(k):

minimize
αj∈RN

‖yd − ŷj+1‖2

subject to ŷj+1 = ym
j + (Ym

j −Ym
j−1 + γYm

0 )αj

uj+1 = uj + (Uj −Uj−1 + γU0)αj

|uj+1| ≤ u
|δuj+1| ≤ δu
‖αj‖2 ≤ t.

(26)

−+ C(q)
|u| ≤ u

|δu| ≤ δu
P (q)

rj(k) uj(k) yj(k)

+
+

ym
j (k)

nj(k)

Fig. 4. Closed-loop discrete-time system with actuator constraints.

D. Application to closed-loop systems with actuator con-
straints

In most applications, ILC is combined with feedback
control since an iterative learning controller cannot com-
pensate for nonrepeating disturbances. Consider the closed-
loop system in Fig. 4 with actuator constraints u and δu,
controller C(q), plant P (q), reference signal rj(k), actuator
input uj(k), output yj(k) and measured output ym

j (k) =
yj(k)+nj(k). The difference with the aforementioned open-
loop systems is that in the closed-loop case the reference
signal rj(k) is updated in order to track a given desired
output yd(k), taking into account the constraints on the
actuator input uj(k), whereas in the open-loop case the
actuator input itself is updated.

When the actuator constraints are active and thus the input
signal uj(k) is clipped, the relation between the reference
signal rj(k) and the output yj(k) of the closed-loop system
in Fig. 4 becomes nonlinear. Still, even when the actuator
constraints are active, the plant P (q) itself is LTI. Therefore
exactly the same optimization program as in the open-loop
case can be used to obtain an optimal FIR-filter to construct a
predicted next trial’s actuator input ûj+1(k) that satisfies the
actuator constraints. The only required adjustment for closed-
loop systems is that the next trial’s reference trajectory
rj+1(k) is calculated after solving convex optimization prob-
lem (26). The next trial’s reference signal that corresponds
to the predicted next trial’s actuator input ûj+1(k) and the
predicted next trial’s output ŷj+1(k) is given by:

rj+1 = C−1ûj+1 + ŷj+1, (27)

where C denotes the lower-triangular Toeplitz matrix of the
impulse response of controller C(q) and ûj+1, ŷj+1 are
given by an appropriate update law.

III. EXPERIMENTAL VALIDATION

This section presents the experimental validation of the
proposed model-free ILC algorithm on a linear motor posi-
tioning system. Section III-A describes the linear motor test
setup. Section III-B discusses the experimental results of a
first test case where the system is able to track the reference
trajectory without hitting the actuator bounds. The results
show the ability of the proposed algorithm to deal with actua-
tor cogging. Section III-C presents the experimental results of
a second test case where the proposed ILC algorithm manages
to achieve a minimal tracking error taking into account the
imposed bounds on the actuator input.
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Fig. 5. Linear motor test setup.
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Fig. 6. Tracking error to a smooth reference trajectory.

A. Experimental setup

The experimental validation is performed on a current-
controlled permanent-magnet linear motor depicted in Fig. 5.
The position of the carriage of the linear motor is measured
using a linear encoder and fed back to an already available
position controller. The position measurement is subject to
output noise with an rms value of approximately 0.12 µm.
The limiting factor concerning the remaining tracking error,
however, is not the measurement noise but the repeatability
of the closed-loop system, which is approximately 1 µm. In
this paper, all experiments are performed with a sample time
of 2ms.

In permanent-magnet linear motors cogging is considered
as the main disturbance [14]. Cogging forces are considered
as a combination of two types of ripple: position ripple and
force ripple. The position ripple is the necessary force to keep
the carriage of the linear motor at a certain position, with zero
motor input current. This disturbance force only depends
on the position and does not depend on the input current.
The force ripple is caused by the variation of the motor
constant with the position. Therefore this disturbance force
is position-dependent and proportional with the motor input
current [5]. To illustrate the effect of the cogging disturbance
on the measured output, a smooth reference trajectory is
applied to the closed-loop system. Fig. 6 shows the applied
reference trajectory and the corresponding tracking error. The
tracking error contains a repetitive pattern with a spatial
frequency that corresponds to the width of the permanent
magnets. For this smooth reference trajectory, the cogging

0 0.2 0.4 0.6 0.8

0
0.02
0.04
0.06
0.08

Time (s)

y d
(m

)

Fig. 7. Desired output yd(k).

emax (µm) erms (µm)

Feedback only 1736 931
Trial 20 4.3 1.9

TABLE I
COMPARISON OF THE PEAK VALUE AND RMS VALUE OF THE TRACKING

ERROR BEFORE AND AFTER LEARNING FOR A FORWARD AND

BACKWARD MOTION OF 7 cm.

forces already result in a peak tracking error of 170 µm.

B. Cogging compensation

Since the reference trajectory is updated from trial to
trial, the cogging disturbance is not entirely trial-invariant.
However, the more the algorithm converges to the optimal
solution, the smaller the update of the reference trajectory
and hence also the trial-to-trial variation of the cogging
disturbance will be. Close to the optimal solution cogging
disturbances can be considered trial-invariant, and hence
iterative learning controllers are able to compensate for
cogging disturbances.

Fig. 7 shows the desired output yd(k), which is a forward
and backward motion of 7 cm that needs to be executed in
0.8 seconds. Before every iteration the carriage is returned
to the same starting position (within 0.3 µm) because of the
position-dependency of the cogging disturbance.

During the first trial of the learning process a reference
signal with a rich frequency content, satisfying r0(1) 6= 0,
is applied to the system. When calculating the second trial’s
reference signal, update law (7) is used because experimental
data from only one previous iteration are available. From
then on, the model-free ILC algorithm uses the update law
given by (22) with γ = 0.05 and the upperbound t on ‖αj‖2
equal to 0.3. Fig. 8 shows the rms value of the tracking
error as a function of the trial number and table I compares
the peak value and rms value of the tracking error before
and after learning. Fig. 9 shows the remaining tracking error
of the 20th trial. Further reduction of the tracking error is
hardly possible due to the limited repeatibility of the test
setup. These results show that the proposed model-free ILC
algorithm is able to compensate for cogging disturbances.

C. Optimal reference tracking taking into account actuator
constraints

The following experimental results show the ability of the
proposed method to learn a reference trajectory leading to the
minimal rms value of the tracking error taking into account

4291



1 5 10 15 20

10−3

10−4

10−5

10−6

Iteration

e r
m

s
[m

]

Fig. 8. Rms value of the tracking error as a function of the trial number.
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Fig. 9. Tracking error of the 20th trial.

actuator constraints. The desired output is again a forward
and backward motion that needs to be executed in 0.8 s but
the distance is increased to 10 cm such that the constraints
on the actuator input become active.

The model-free ILC algorithm, which uses the update law
given by (22) with t = 0.3 and γ = 0.1, reaches convergence
in 17 iterations. Fig. 10 shows the remaining tracking error
e17 and the actuator input u17 of the 17th iteration. Cogging
is compensated at time instants when no actuator constraints
are active. Only when the actuator input hits its bounds, the
tracking error is an order of magnitude larger than the noise
level.

IV. CONCLUSION

This paper presents a model-free ILC algorithm for LTI
systems with actuator constraints. Between two trials the
system input is updated using an optimal trial-varying FIR-
filter, obtained by solving a convex optimization problem
that minimizes the next trial’s tracking error. This convex
optimization problem allows accounting for linear actuator
constraints.

The effect of measurement noise on the next trial’s refer-
ence signal is reduced by constraining the standard deviation
of the prediction error. The upperbound on this convex
constraint regulates the trade-off between convergence speed
and accuracy of the output prediction. The influence of trial-
invariant disturbances on the output prediction is analyzed
and learning laws that yield smaller prediction errors and
therefore also faster convergence are proposed.

The experimental validation on a linear motor test setup
shows the ability of the proposed model-free ILC algorithm
to deal with cogging disturbances and actuator constraints.
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