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Abstract— This paper studies the problem of network-
induced delay and packet dropout compensation for continuous-
time networked control systems (NCSs). By proposing the one
step prediction-based packet dropout compensation method,
new model for NCSs with packet dropout and network-induced
long delay is presented. Then, a packet dropout compensation
threshold time based Lyapunov functional is proposed, and H∞

controller design method is presented. Even for NCSs without
packet dropout compensation, the obtained result is still less
conservative than the existing ones. This paper proves also that
some existing results can be improved by using the convex
analysis method. Numerical examples are given to illustrate
the merits and effectiveness of the proposed methods.

I. INTRODUCTION

Networked control systems are spatially distributed sys-

tems in which the system components are connected by

shared communication networks. Introducing communication

networks into control systems will lead to many advantages.

However, it will inevitably lead to network-induced delay,

packet dropout, sampling, etc., which should be taken into

full consideration in NCSs analysis and design.

The problems of stability analysis and stabilization for

NCSs have been paid much attention [1]–[6]. Network-

induced delay and packet dropout have received increasing

attentions recently. By combining network-induced delay and

packet dropout into one item τ(t), [7] presented stability

analysis and state feedback controller design for continuous-

time NCSs. In [8], network-based H∞ output tracking

performance analysis and controller design were studied.

In [9], a Lyapunov-Krasovskii functional was proposed to

drive some delay-dependent stability criteria. By uniformly

dividing the discrete constant delay interval into multiple

segments, [10] presented new discrete delay-dependent sta-

bility criteria for both retarded systems and neutral systems.

Sampled-data control systems have attracted much attention
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from research communities [11], [12], and there have also

been considerable research efforts on H∞ control for NCSs

[13], [14].

For continuous-time NCSs or sampled-data control sys-

tems, define τ(t) = t−tk, then for t ∈ [tk+τk, tk+1+τk+1)
or t ∈ [tk, tk+1), the control input u(t) can be written

as u(t) = Kx(t − τ(t)), and u(t) = Kx(t − τ(t)) was

used in [7], [8], [11]–[14]. If there are large number of

packet dropout during t ∈ [tk + τk, tk+1 + τk+1) or t ∈
[tk, tk+1), using such control input may lead to deterioration

of system performance since the problem of packet dropout

compensation was not considered. The problem of network-

induced delay and packet dropout compensation was studied

in [15]–[17], and such compensation methods are based

on discretized or discrete-time NCSs. For continuous-time

NCSs, how to compensate the negative influences of network-

induced delay and packet dropout during the time interval

[tk + τk, tk+1 + τk+1) is not studied in the literature.

The convex analysis method was adopted in [18]–[20] to

deal continuous-time systems with time-varying delay. For

discrete-time NCSs with network-induced delay and packet

dropout, [21] proved that the convex analysis method will

help to improve some existing results, however, the prob-

lem of packet dropout compensation was not studied. For

continuous-time NCSs with packet dropout, this paper proves

theoretically that some existing results can be improved

by using the convex analysis method, and packet dropout

compensation is taken into full consideration.

For NCSs, the network-induced delay may be shorter than

the mean delay at most time, and longer than the mean

delay at least time, and packet dropout may also demonstrate

such non-uniform distribution characteristic. [22]–[24] stud-

ied systems with non-uniformly distributed delay, however,

the non-uniform distribution characteristic of packet dropout

was not considered. On the other hand, for NCSs with

non-uniformly distributed packet dropout, the problem of

network-induced delay and packet dropout compensation is

not studied in the literature.

This paper is devoted to proposing new network-

induced delay and packet dropout compensation method for

continuous-time NCSs. By proposing the one step prediction-

based packet dropout compensation method and taking the

non-uniform distribution characteristic of packet dropout into

full consideration, this paper presents new model for NCSs,

and new H∞ controller design method is proposed. When

transferring non-linear matrix inequalities into linear matrix

inequalities (LMIs), a new searching algorithm, which is

proved to be less conservative, is proposed. For continuous-
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time systems with delay and packet dropout, this paper

proves theoretically that some existing results can be im-

proved by using the convex analysis method.

This paper is organized as follows. By proposing the one

step prediction-based packet dropout compensation method,

Section 2 presents new model for continuous-time NCSs.

Section 3 is dedicated to H∞ controller design for NCSs

with packet dropout compensation. Section 4 improves some

existing results by using the convex analysis method. The

results of numerical simulation are presented in Section 5.

Conclusions are drawn in Section 6.

Notation: Throughout this paper, MT represents the trans-

pose of matrix M . I and 0 represent identity matrices and

zero matrices with appropriate dimensions, respectively. E
stands for the expectation operation. ∗ denotes the entries

of matrices implied by symmetry. Matrices, if not explicitly

stated, are assumed to have appropriate dimensions.

II. MODELLING NCSS WITH PACKET DROPOUT

COMPENSATION

Consider a linear time-invariant system described by





ẋ(t) = Ax(t) + B1u(t) + B2ω(t)

z(t) = Cx(t) + Du(t)

x(t0 + τ0) = x0

(1)

where x(t) ∈ R
n, u(t) ∈ R

m, z(t) ∈ R
r, and ω(t) ∈ R

q are

the state vector, control input vector, controlled output, and

disturbance input, respectively; ω(t) is assumed to belong to

L2[t0, ∞), t0 ≥ 0; x0 ∈ R
n denotes the initial condition;

A, B1, B2, C, and D are known constant matrices of

appropriate dimensions.

In this paper, we assume that the system (1) is con-

trolled through a network, network-induced delay and packet

dropout will occur in both sensor-to-controller and controller-

to-actuator channels, x(t) is online measurable, the sensor

is clock-driven, while the controller and actuator are event-

driven.

Fig. 1. NCSs with delay and packet dropout

Suppose that h is the length of a sampling period, δ
is a given constant, δ = 1, 2, · · · , and δ − 1 is the

upper bound of consecutive packet dropout. Fig. 1 depicts

the transmission of control inputs for NCSs with network-

induced delay and packet dropout, where the dashed lines

denote that the control inputs are dropped. As shown in Fig.

1, the control inputs which are based on the plant states at the

instants tk, tk+1, · · · (k = 0, 1, 2, · · · ) are transmitted to

the actuator successfully, while the ones which are based on

the plant states between the instants tk and tk+1 are dropped.

Let τk be the time from the instant tk when a sensor

samples data from the plant to the instant when an actuator

transmits data to the plant. Then

u(t) = Kx(tk) (2)

where t ∈ [tk + τk, tk+1 + τk+1), k = 0, 1, 2, · · · , and K
is the state feedback controller gain which will be designed.

Remark 1: For continuous-time NCSs or sampled-data

control systems, the control input similar to (2) was adopted

in [7], [8], [11]–[14]. However, the problem of network-

induced delay and packet dropout compensation was not

considered. Network-induced delay and packet dropout com-

pensation was studied in [15]–[17], and such compensation

methods are based on discretized or discrete-time NCSs.

For continuous-time NCSs, how to compensate the negative

influences of network-induced delay and packet dropout

during the time interval [tk +τk, tk+1 +τk+1) is not studied

in the literature.

In the following, we will propose the one step prediction-

based packet dropout compensation method, and new NCSs

model will be presented.

As shown in Fig. 1, a1k and a3k are equal to tk + τk and

tk+1+τk+1, respectively. Divide the time interval [a1k, a3k)
as [a1k, a2k) and [a2k, a3k). Suppose τm ≤ τk ≤ τM , then

tk+1 + τk+1 − tk − τk ≤ δh + τM − τm. Define β = (δh +
τM −τm)/2, τ̄ = (τM +τm)/2, then τ̄ +β = τM + δh

2 > τk,

that is tk + τ̄ +β > tk + τk, so we choose a2k = tk + τ̄ +β.

The main idea of the one step prediction-based packet

dropout compensation method is: if t ∈ [tk +τk, tk + τ̄ +β),
the most recently received control input will be used; if t ∈
[tk + τ̄ + β, tk+1 + τk+1), the predicted control inputs will

be used. In fact, if tk+1 + τk+1 < tk + τ̄ + β, only the most

recently received control input is adopted during the time

interval [tk + τk, tk+1 + τk+1).
For t ∈ [tk + τ̄ +β, tk+1 +τk+1), the one step prediction-

based plant state is described as

x̂(tk) = (Φ + ΓL0)x(tk) (3)

and the corresponding control input is

L0x̂(tk) = L0(Φ + ΓL0)x(tk) (4)

where Φ = eAh, Γ =
∫ h

0
eAsdsB1, L0 is the known

controller gain, and the selection criterion of L0 will be

discussed in Remark 3.

Then the control input u(t) can be chosen as

u(t) =

{
Lx(tk), t ∈ [tk + τk, tk + τ̄ + β)
L0x̂(tk), t ∈ [tk + τ̄ + β, tk+1 + τk+1)

(5)

where L is the controller gain which will be designed in this

paper.

Remark 2: As we can see, the one step prediction-based

method is adopted in (3). In fact, x̂(tk) can be achieved by

using l (l = 1, 2, · · · , σ) steps prediction, that is x̂(tk) =
(Φ+ΓL0)

lx(tk), where σ = ⌊(τ̄ +β−τm)/h⌋, and σ is the

largest integer smaller than or equal to (τ̄ + β − τm)/h. For

convenience of computation, the one step prediction-based

compensation method is adopted in this paper.
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Define τ(t) = t − tk, then tk = t − τ(t) and the control

input u(t) in (5) is written as

u(t) =

{
Lx(t − τ(t)), τ(t) ∈ [τk, τ̄ + β)
û(t), τ(t) ∈ [τ̄ + β, tk+1 − tk + τk+1)

(6)

where û(t) = L0(Φ+ΓL0)x(t−τ(t)), and (6) can be written

as the following uniform representation

u(t) =

{
Lx(t − τ(t)), τ(t) ∈ [τm, τ̄ + β)
û(t), τ(t) ∈ [τ̄ + β, τM + δh)

(7)

As shown in (7), the system will choose to use the most

recently received control input or the predicted one based on

τ̄ + β, so τ̄ + β is named as packet dropout compensation

threshold time in this paper. On the other hand, network-

induced delay and packet dropout are included in τ(t), by

taking the non-uniform distribution characteristic of τ(t) into

full consideration, we will present a new model for NCSs

with network-induced delay and packet dropout compensa-

tion.

Define Γ̃1 = [τm, τ̄ +β), Γ̃2 = [τ̄ +β, τM +δh). Suppose

the probability of τ(t) ∈ Γ̃1 is λ̄, where λ̄ ∈ (0, 1], then

the probability of τ(t) ∈ Γ̃2 is 1 − λ̄, and such statistic

characteristic can be described by the following formula:
{

Prob{τ(t) ∈ Γ̃1} = λ̄

P rob{τ(t) ∈ Γ̃2} = 1 − λ̄
(8)

Define a stochastic variable λ(t)

λ(t) =

{
1, τ(t) ∈ Γ̃1

0, τ(t) ∈ Γ̃2

(9)

By using the Bernoulli distributed white sequence to describe

stochastic variable λ(t), one gets
{

Prob{λ(t) = 1} = E{λ(t)} = λ̄
P rob{λ(t) = 0} = 1 − E{λ(t)} = 1 − λ̄

(10)

Take the non-uniform distribution characteristic of τ(t) into

consideration, then the control input u(t) in (7) can be

rewritten as

u(t) = λ(t)Lx(t − τ1(t))
+(1 − λ(t))L0(Φ + ΓL0)x(t − τ2(t))

(11)

where

τ1(t) =

{
τ(t), τ(t) ∈ Γ̃1

τ̄1, τ(t) ∈ Γ̃2

(12)

τ2(t) =

{
τ(t), τ(t) ∈ Γ̃2

τ̄2, τ(t) ∈ Γ̃1

(13)

τ̄1, τ̄2 are constants and τ̄1 ∈ Γ̃1, τ̄2 ∈ Γ̃2.

Combining the original system (1) and the control input

presented in (11) together, one gets the following closed-loop

NCS




ẋ(t) = φ1(t) + (λ(t) − λ̄)φ2(t) + B2ω(t)
z(t) = φ3(t) + (λ(t) − λ̄)φ4(t),

t ∈ [tk + τk, tk+1 + τk+1)
(14)

where

φ1(t) = Ax(t) + λ̄B1Lx(t − τ1(t))
+(1 − λ̄)B1L0(Φ + ΓL0)x(t − τ2(t))

φ2(t) = B1[Lx(t − τ1(t)) − L0(Φ + ΓL0)x(t − τ2(t))]
φ3(t) = Cx(t) + λ̄DLx(t − τ1(t))

+(1 − λ̄)DL0(Φ + ΓL0)x(t − τ2(t))
φ4(t) = D[Lx(t − τ1(t)) − L0(Φ + ΓL0)x(t − τ2(t))]

The following inequality will be used in the sequel.

Lemma 1 [25]: For any symmetric positive definite matrix

M ∈ R
n∗n, scalars r1 < r2, a vector function x : [r1, r2] →

R
n such that the integrals in the following are well defined,

then

− (r2 − r1)

∫ r2

r1

xT (s)Mx(s)ds

≤ −
(∫ r2

r1

x(s)ds
)T

M
(∫ r2

r1

x(s)ds
)

(15)

III. CONTROLLER SYNTHESIS FOR NCSS WITH

PACKET DROPOUT COMPENSATION

This section is devoted to proposing new controller syn-

thesis method for NCSs with packet dropout compensation.

Theorem 1: For given positive scalars λ̄, h, δ, τM , τm and

µ1, µ2, µ3, if there exist symmetric positive definite matrices

W , Q̃, Z̃1, Z̃2, Z̃3, Ñ1, Ñ2, matrix V1, scalar γ > 0, such

that [
Π̃i

11 Π̃12

∗ Π̃22

]
< 0 (16)

where i = 1, 2, 3, 4, Π̃i
11 = Ω̃ − 2θ̃i,

Ω̃ =




Ω̃11 Ω̃12 Ω̃13 Z̃1 0 0 B2

∗ −2Z̃2 0 Z̃2 Z̃2 0 0

∗ ∗ −2Z̃3 0 Z̃3 Z̃3 0

∗ ∗ ∗ Ω̃44 0 0 0

∗ ∗ ∗ ∗ Ω̃55 0 0

∗ ∗ ∗ ∗ ∗ Ω̃66 0

∗ ∗ ∗ ∗ ∗ ∗ −γI




Ω̃11 =AW + WAT + Q̃ − Z̃1

Ω̃12 =λ̄B1V
T
1

Ω̃13 =(1 − λ̄)B1L0(Φ + ΓL0)W

Ω̃44 = − Q̃ + Ñ1 − Z̃1 − Z̃2

Ω̃55 =Ñ2 − Ñ1 − Z̃2 − Z̃3

Ω̃66 = − Ñ2 − Z̃3

θ̃1 =[0 I 0 0 − I 0 0]T Z̃2[0 I 0 0 − I 0 0]

θ̃2 =[0 − I 0 I 0 0 0]T Z̃2[0 − I 0 I 0 0 0]

θ̃3 =[0 0 I 0 0 − I 0]T Z̃3[0 0 I 0 0 − I 0]

θ̃4 =[0 0 − I 0 I 0 0]T Z̃3[0 0 − I 0 I 0 0]

Π̃12 =




W A
T

W A
T

W A
T

0 0 0 W C
T

0

λ̄Υ̃1 λ̄Υ̃1 λ̄Υ̃1 Υ̃1 Υ̃1 Υ̃1 λ̄Υ̃2 Υ̃2

Υ̃3 Υ̃3 Υ̃3 Υ̃4 Υ̃4 Υ̃4 Υ̃5 Υ̃6
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

B
T
2

B
T
2

B
T
2

0 0 0 0 0



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Π̃22 =diag(X1, X2, X3, λ̂−1
X1, λ̂−1

X2,

λ̂−1
X3, − γI, − λ̂−1γI)

λ̂ =λ̄(1 − λ̄)

Υ̃1 =V1B
T
1

Υ̃2 =V1D
T

Υ̃3 =(1 − λ̄)W (Φ + ΓL0)
T LT

0 BT
1

Υ̃4 = − W (Φ + ΓL0)
T LT

0 BT
1

Υ̃5 =(1 − λ̄)W (Φ + ΓL0)
T LT

0 DT

Υ̃6 = − W (Φ + ΓL0)
T LT

0 DT

X1 =τ−2
m (µ2

1Z̃1 − 2µ1W )

X2 =(τ̄ + β − τm)−2(µ2
2Z̃2 − 2µ2W )

X3 =(τM + δh − τ̄ − β)−2(µ2
3Z̃3 − 2µ3W )

then with the control law

u(t) =λ(t)Lx(t − τ1(t)) + (1 − λ(t))

× L0(Φ + ΓL0)x(t − τ2(t)), L = V T
1 W−1 (17)

the system described by (14) is asymptotically mean-square

stable with an H∞ norm bound γ.

Proof: Let us consider the following packet dropout com-

pensation threshold time (that is τ̄ + β) based Lyapunov

functional

V (t) = V1(t) + V2(t) + V3(t) (18)

where

V1(t) =xT (t)Px(t)

V2(t) =

∫ t

t−τm

xT (s)Qx(s)ds +

∫ t−τm

t−τ̄−β

xT (s)N1x(s)ds

+

∫ t−τ̄−β

t−τM−δh

xT (s)N2x(s)ds

V3(t) =τm

∫ 0

−τm

∫ t

t+s

ẋT (r)Z1ẋ(r)drds

+ β1

∫
−τm

−τ̄−β

∫ t

t+s

ẋT (r)Z2ẋ(r)drds

+ β2

∫
−τ̄−β

−τM−δh

∫ t

t+s

ẋT (r)Z3ẋ(r)drds

β1 = τ̄ + β − τm, β2 = τM + δh − τ̄ − β, matrices P ,

Q, N1, N2, Z1, Z2, Z3 are symmetric positive definite with

appropriate dimensions. The rest of the proof is omitted due

to page limitation. ¤

Remark 3: If the problem of packet dropout compensation

is not considered, the control input presented in (11) is re-

duced to u(t) = λ(t)Kx(t−τ1(t))+(1−λ(t))Kx(t−τ2(t)),
where K is the controller gain which will be designed. On

the other hand, if L0 in (11) is a variable, the conditions

in Theorem 1 are nonlinear matrix inequalities, which are

difficult to be solved, so we choose L0 in (11) as L0 = K,

and the design of controller gain K is similar to Theorem 1.

Compared with the methods without packet dropout compen-

sation, the one step prediction-based control input presented

in (11) will introduce less conservatism.

Remark 4: The bounding inequalities similar to −Z−1
i ≤

P−1ZiP
−1 − 2P−1 were used in [8] to transfer nonlinear

matrix inequalities into LMIs, and the bounding inequality

similar to −Z−1
i ≤ µ2P−1ZiP

−1 − 2µP−1 was introduced

in [4]. Obviously, if an appropriate µ is chosen, −Z−1
i ≤

µ2P−1ZiP
−1−2µP−1 will introduce less conservatism than

−Z−1
i ≤ P−1ZiP

−1 − 2P−1. However, how to choose

an appropriate µ was not discussed in [4]. The inequalities

−Z−1
i ≤ µ2P−1ZiP

−1 − 2µP−1 were adopted also in

[21], and a searching algorithm was presented to choose

a local optimal µ, which will introduce less conservatism

than the corresponding method in [4]. The inequalities

−Z−1
i ≤ µ2

i P
−1ZiP

−1 − 2µiP
−1 (i = 1, 2, 3) are

introduced in Theorem 1 of this paper. If µ1 = µ2 =
µ3 = µ, −Z−1

i ≤ µ2
i P

−1ZiP
−1 − 2µiP

−1 reduces to

−Z−1
i ≤ µ2P−1ZiP

−1 − 2µP−1, so if appropriate µi are

chosen, −Z−1
i ≤ µ2

i P
−1ZiP

−1 − 2µiP
−1 will lead to less

conservatism than the corresponding inequalities in [4], [8],

[21].

The following searching algorithm describes the method

of choosing appropriate µi.

Algorithm 1:

Step 1: For given λ̄, h, δ, τM , τm, choose the initial values

µi,0 > 0 (i = 1, 2, 3) and the final values µi,ult > 0
(µi,ult < µi,0) for µi, set appropriate step lengths µi,dec > 0;

choose a large enough H∞ norm bound γopt and set µi,opt =
µi,0; set µ1=µ1,0.

Step 2: Set µ2=µ2,0.

Step 3: Set µ3=µ3,0.

Step 4: Solve the LMIs presented in (16), if γ < γopt, set

γopt = γ, µi,opt = µi and go to step 5; otherwise, go to step

5 directly.

Step 5:

Set µ3 = µ3 − µ3,dec;

if µ3 ≥ µ3,ult

go to step 4

else

µ2 = µ2 − µ2,dec

if µ2 ≥ µ2,ult

go to step 3

else

µ1 = µ1 − µ1,dec

if µ1 ≥ µ1,ult

go to step 2

else

go to step 6

endif

endif

endif

Step 6: Output the locally optimal µi,opt and γopt.

By using Algorithm 1, one can get the locally optimal

µi,opt, which will lead to less conservatism than the existing

methods.

IV. COMPARISON WITH THE EXISTING RESULTS

In this section, we will prove that some existing results

can be further improved.
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The nominal system of the system (1) in [9] can be

described as
{

ẋ(t) = Ax(t) + Bx(t − τ(t))

x(t) = σ(t), t ∈ [−τM , 0],
(19)

The following theorem improves the result of Proposition

2 in [9].

Theorem 2: For given scalars τm and τM , the system (19)

with 0 ≤ τm ≤ τ(t) ≤ τM is asymptotically stable, if there

exist some matrices P > 0,

[
Q1 Q2

QT
2 Q3

]
> 0,

[
Q4 Q5

QT
5 Q6

]
>

0, R1 > 0, R2 > 0, and S > 0 of appropriate dimensions

such that

Ξ − [0 I 0 0 0 − I]T S[0 I 0 0 0 − I] < 0 (20)

Ξ − [0 − I 0 I 0 0]T S[0 − I 0 I 0 0] < 0 (21)

where Ξ is the same as the one in Proposition 2 of [9].

Proof: By using the convex analysis method, the inequality

(11) of [9] can be rewritten as

− (τM − τm)

∫ t−τm

t−τM

ẋT (s)Sẋ(s)ds

= −(τM − τ(t))

∫ t−τm

t−τ(t)

ẋT (s)Sẋ(s)ds

− (τ(t) − τm)

∫ t−τm

t−τ(t)

ẋT (s)Sẋ(s)ds

− (τM − τ(t))

∫ t−τ(t)

t−τM

ẋT (s)Sẋ(s)ds

− (τ(t) − τm)

∫ t−τ(t)

t−τM

ẋT (s)Sẋ(s)ds

Define ρ = (τ(t) − τm)/(τM − τm), then

−(τ(t) − τm)

∫ t−τ(t)

t−τM

ẋT (s)Sẋ(s)ds ≤ −ρϕT
5 Sϕ5 (22)

where ϕ5 = [x(t − τ(t)) − x(t − τM )]. Similarly, one gets

−(τM − τ(t))

∫ t−τm

t−τ(t)

ẋT (s)Sẋ(s)ds ≤ −(1 − ρ)ϕT
6 Sϕ6

(23)

where ϕ6 = [x(t− τm)− x(t− τ(t))]. The rest of the proof

is similar to Theorem 1 in this paper and Proposition 2 in

[9], it is omitted due to page limitation. ¤

Theorem 3: If the condition of Proposition 2 in [9] is

satisfied, then the conditions of Theorem 2 are also feasible.

Proof: From S > 0, one gets

−[0 I 0 0 0 − I]T S[0 I 0 0 0 − I] < 0 (24)

−[0 − I 0 I 0 0]T S[0 − I 0 I 0 0] < 0 (25)

if Ξ < 0 in Proposition 2 of [9] is satisfied, we have

Ξ − [0 I 0 0 0 − I]T S[0 I 0 0 0 − I] < 0 (26)

Ξ − [0 − I 0 I 0 0]T S[0 − I 0 I 0 0] < 0 (27)

TABLE I

MATIS BASED ON DIFFERENT METHODS

Methods MATIs

[5] 0.00045

[1] 0.7805

[7] 0.8871

[9] 1.0081

Theorem 2 1.0239

that is, the conditions of Theorem 2 are satisfied, this

completes the proof. ¤

Remark 5: By using the convex analysis method, it is easy

to prove theoretically that the results in [14], [22] can be

further improved, the detailed proof is similar to Theorem 1

and Theorem 3 in this paper, it is omitted here.

V. NUMERICAL EXAMPLES

Example 1: To illustrate the merits of the proposed packet

dropout compensation method, we consider the following

NCS

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0

0.1

]
u(t) +

[
−0.2
0.1

]
ω(t)

z(t) = [0.2 0.3]x(t) + 0.5u(t)
(28)

If we choose B2 = C = D = 0, the system (28) will

be reduced to the one presented in [5] with the controller

gain K = [−3.75 − 11.5]. For Theorem 1 of this paper,

suppose the sampling period h = 0.5s, λ̄ = 0.55, τM = 0.5s,

τm = 0.1s, α1 = α2 = α3 = 1. As discussed in Remark 3, if

the packet dropout compensation method is not adopted, one

can get the controller gain K = [−0.0012 0.7777]. Choose

L0 = K = [−0.0012 0.7777] for Theorem 1, one can see

that the maximum admissible number of consecutive packet

dropout is 22 (δ = 23), and the upper bound of τ(t) is τM +
δh = 12s. Using some existing stability criteria, one can

get the maximum allowable transfer intervals (MATIs) that

guarantee the asymptotic stability of the considered system

(see Table 1).

As shown in Table 1, even for given controller gain K =
[−3.75 − 11.5], Theorem 2 is less conservative than the

existing results. If the controller design and packet dropout

compensation method proposed in Theorem 1 are adopted,

less conservative result is obtained.
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Fig. 2. Curve of τ(t)
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Fig. 4. Curves of plant state and controlled output

Example 2: This example is given to illustrate the ef-

fectiveness of the proposed compensation method. Consider

the NCS presented in (28). Suppose λ̄ = 0.8, h = 0.5s,

δ = 12, τM = 0.5s, τm = 0.1s, α1 = α2 = α3 = 1.

If the packet dropout compensation method is not adopted,

by using the method similar to Theorem 1, one can get the

controller gain K = [−0.0728 −0.6861]. Choose L0 = K =
[−0.0728 −0.6861] for (11), then the predicted control input

is L0(Φ + ΓL0)x(t) = [−0.0703 − 0.6646]x(t). Solve the

LMIs in Theorem 1, one gets L = [−0.0736 − 0.6932].
Suppose the initial state of the system is x0 = [0.5 −

0.5]T , τ(t) is given in Fig. 2, disturbance input ω(t) is

presented in Fig. 3, then curves of plant state and controlled

output corresponding to Theorem 1 are pictured in Fig. 4,

which illustrate the effectiveness of the proposed controller

design.

VI. CONCLUSIONS

The problem of network-induced delay and packet dropout

compensation for continuous-time NCSs has been studied

in this paper. By proposing the one step prediction-based

packet dropout compensation method, new NCSs model has

been established. Combined with the non-uniform distribu-

tion characteristic of packet dropout, this paper proposes

new H∞ controller design method. Some existing results

are improved by using the convex analysis method. When

transferring non-linear matrix inequalities into LMIs, a new

searching algorithm, which is proved to be less conservative,

is proposed. Numerical examples have illustrated the merits

and effectiveness of the proposed methods.
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