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Abstract— Most of the fundamental optimization problems
for power systems are highly non-convex and NP-hard (in the
worst case), partially due to the nonlinearity of certain physical
quantities, e.g. active power, reactive power and magnitude of
voltage. The classical optimal power flow (OPF) problem is one
of such problems, which has been studied for half a century.
Recently, we obtained a condition under which the duality gap
is zero for the classical OPF problem and hence a globally
optimal solution to this problem can be found efficiently by
solving a semidefinite program. This zero-duality-gap condition
is satisfied for IEEE benchmark systems and holds widely in
practice due to the physical properties of transmission lines. The
present paper studies the case when there are other common
sources of non-convexity, such as variable shunt elements, vari-
able transformer ratios and contingency constraints. It is shown
that zero duality gap for the classical OPF problem implies
zero duality gap for a general OPF-based problem with these
extra sources of non-convexity. This result makes it possible to
find globally optimal solutions to several fundamental power
problems in polynomial time.

I. INTRODUCTION

The classical optimal power flow (OPF) problem aims to
find a steady-state operating point of a power system that
minimizes a desirable cost function, e.g. power loss or gen-
eration cost, and satisfies network and physical constraints on
loads, powers, voltages and line flows [1]. The OPF problem
is not only non-convex but also NP-hard, because of its
possible reduction in a special case to the (0, 1)-quadratic
optimization. Started by the work [2] in 1962, many of
the existing optimization techniques have been adapted to
solve the OPF problem, leading to algorithms based on
linear programming, Newton Raphson, quadratic program-
ming, nonlinear programming, Lagrange relaxation, interior
point method, artificial intelligence, artificial neural network,
fuzzy logic, genetic algorithm, evolutionary programming
and particle swarm optimization [3], [4]. Due to the non-
convexity of the OPF problem, these algorithms are not
robust, lack performance guarantees, and may not be able
to find a global optimum.

In an effort to convexify the OPF problem, it is shown
in [5] that the load flow problem for a radial distribution
system can be modeled as a convex optimization problem in
the form of a conic program. Nonetheless, this result fails to
hold for a general network, due to the presence of arctangent
equality constraints [6]. By exploiting the physical properties
of transmission lines, we have proven in our recent papers
[7] and [8] that the classical OPF problem corresponding
to a practical power system can be convexified naturally
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and then solved efficiently. More precisely, we considered
some equivalent form of the OPF problem whose dual can be
cast as a semidefinite program [9], [10]. Although this dual
problem is solvable in polynomial time, its solution may not
help solve the OPF problem, in light of the duality gap being
possibly nonzero. We derived a zero-duality-gap condition
for the OPF problem in [7] and [8] under which a globally
optimal solution to the OPF problem can be recovered from
a solution to its dual. This condition is satisfied for all IEEE
benchmark systems with 14, 30, 57, 118 and 300 buses, and
is expected to hold for every practical power system (for
more details, see the studies provided in [7], [8]).

Many of the fundamental optimization problems arising
in power systems are based on a single or a set of coupled
classical OPF problems with more constraints and more
variables. A question arises as whether these problems can
also be convexified. The present paper aims to address this
question. The objective is to show that zero duality gap
for the classical OPF problem implies zero duality gap for
the following important problems (and any combinations of
them) as well:

• The OPF problem with extra variables associated with
the unknown shunt elements [1].

• The OPF problem with extra variables associated with
the unknown transformer ratios [1].

• The security-constraint OPF problem (known also as
contingency-constrained OPF), which corresponds to a
set of coupled OPF problems [11].

The technique developed in this paper can be used to gener-
alize the above-mentioned zero-duality-gap result to several
other OPF-based problems such as the dynamic OPF problem
or the power system planning with renewable resources [12].

The rest of the paper is organized as follows. A summary
of our previous results is provided in Section II and the
problem is formulated accordingly. The main results are
given in Section III, which are applied to the IEEE test
systems with 14 and 30 buses in Section IV. Finally, some
concluding remarks are drawn in Section V.

Notations: The following notations will be used through-
out the paper:

• i : The imaginary unit.
• R: The set of real numbers.
• Re{·} and Im{·}: The operators returning the real and

imaginary parts of a complex matrix.
• T : The transpose operator.
• ∗ : The conjugate transpose operator.
• ≽ : The matrix inequality sign in the positive semidef-
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inite sense [9].

II. PRELIMINARIES AND PROBLEM FORMULATION

Given two natural numbers m and n such that m ≤ n,
consider a power network with n buses, labeled as 1, 2, ..., n,
and m generators connected to buses 1, 2, ...,m. Assume
that each bus k ∈ {1, 2, ..., n} is connected to a load with
the given apparent power PDk

+QDk
i (this number is zero

whenever a bus is not connected to any load). For every
l ∈ {1, 2, ...,m}, let PGl

and QGl
denote the unknown active

and reactive powers supplied by generator l, respectively,
and fl(PGl

) = cl2P
2
Gl

+ cl1PGl
+ cl0 denote a cost function

associated with this generator, for some nonnegative numbers
cl0, cl1, cl2. Define Vk as the unknown complex voltage at bus
k ∈ {1, 2, ..., n} and V as the vector of all bus voltages. The
classical OPF problem aims to minimize

∑m
l=1 fl(PGl

) over
the unknown parameters V, PG1 , ..., PGm , QG1 , ..., QGm

subject to the constraints that every bus k ∈ {1, 2, ..., n}
must be able to deliver the power PDk

+ QDk
i to its load

and that

Pk,min ≤ PGk
≤ Pk,max, k ∈ {1, ...,m}

Qk,min ≤ QGk
≤ Qk,max, k ∈ {1, ...,m}

Vk,min ≤ |Vk| ≤ Vk,max, k ∈ {1, ..., n}
|Skl| ≤ Skl,max, k, l ∈ {1, ..., n}

for some given limits Pk,min, Pk,max, Qk,min, Qk,max, Vk,min,
Vk,max, Skl,max, where Skl denotes the apparent power
transferred from bus k to the rest of the network through
the line (k, l) (note that Skl is zero if the line (k, l) does
not exist).

In order to mathematically formulate the problem, the first
step is to find an equivalent circuit model of the network with
only three types of lumped elements: resistors, capacitors
and inductors. This model can be obtained by replacing
every transmission line and transformer with their equivalent
Π models [1]. In the derived equivalent circuit, let ykl
denote the mutual admittance between buses k and l, and
ykk denote the admittance-to-ground at bus k, for every
k, l ∈ {1, 2, ..., n}. Define the admittance matrix Y of the
network as an n × n complex-valued matrix whose (k, l)
entry is equal to −ykl if k ̸= l and ykk +

∑
r∈N (k) ykr

otherwise, where N (k) is the set of those buses that are
connected to bus k. It is worth mentioning that Y plays the
role of a complex-valued (generalized) Laplacian matrix for
a weighted graph associated with the power system. Define
the current vector I as YV and represent its kth element with
Ik, for every k ∈ {1, 2, ..., n}. Note that Ik is indeed the net
current injected to bus k.

Let e1, e2, ..., en denote the standard basis vectors in Rn.
For every k, l ∈ {1, 2, ..., n}, define

Yk := eke
T
k Y

Ykl :=
1

2
ek(bkli)eTk + ekykle

T
k − ekykle

T
l

Yk :=
1

2

[
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

]

and

Ykl :=
1

2

[
Re{Ykl + Y T

kl } Im{Y T
kl − Ykl}

Im{Ykl − Y T
kl } Re{Ykl + Y T

kl }

]
Ȳk :=

−1

2

[
Im{Yk + Y T

k } Re{Yk − Y T
k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

]
Ȳkl :=

−1

2

[
Im{Ykl + Y T

kl } Re{Ykl − Y T
kl }

Re{Y T
kl − Ykl} Im{Ykl + Y T

kl }

]
X :=

[
Re {V}T Im {V}T

]T
where bkl denotes the capacitance of the transmission line
(k, l) (note that Ykl, Ykl, Ȳkl are all zero if k = l or the line
(k, l) does not exist). For every k ∈ {1, 2, ..., n}, denote the
net active and reactive powers injected to bus k as Pk,inj and
Qk,inj, respectively. Given l ∈ {1, ...,m}, l′ ∈ {m+1, ..., n}
and k, k′ ∈ {1, ..., n}, it can be shown that (see [7])

Pl,inj = PGl
− PDl

Ql,inj = QGl
−QDl

Pl′,inj = −PD′
l

Ql′,inj = −QD′
l

|Vk|2 = trace
{
MkXXT

}
Pk,inj = trace

{
YkXXT

}
, Qk,inj = trace

{
ȲkXXT

}
|Skk′ |2 =

(
trace

{
Ykk′XXT

} )2
+

(
trace

{
Ȳkk′XXT

} )2
where Mk ∈ R2n×2n is a diagonal matrix whose entries are
all equal to zero, except for its (k, k) and (n+k, n+k) entries
that are equal to 1. To simplify the presentation, assume that
fl(PGl

) = PGl
for every l ∈ {1, 2, ...,m}, implying that the

cost to be minimized is simply the total power generation (the
results being developed here are valid for the general case
as well). Hence, the classical OPF problem corresponds to
the minimization of

m∑
l=1

(
trace

{
YlXXT

}
+ PDl

)
(1)

over the variable X ∈ R2n subject to the constraints

Pk,min − PDk
≤ trace

{
YkXXT

}
≤ Pk,max − PDk

(2a)

Qk,min −QDk
≤ trace

{
ȲkXXT

}
≤ Qk,max −QDk

(2b)

(Vk,min)
2 ≤ trace

{
MkXXT

}
≤ (Vk,max)

2 (2c)

trace
{
YklXXT

}2
+ trace

{
ȲklXXT

}2 ≤ (Skl,max)
2 (2d)

for all k, l ∈ {1, 2, ..., n}, where Pk,min, Pk,max, Qk,min and
Qk,max are considered as zero (by convention) if k > m. In
order to avoid triviality, assume that X = 0 (or equivalently
V = 0) is not a solution to the OPF problem. We introduce
four optimization problems in the sequel whose interrelation
and relation to the OPF problem are illustrated in the diagram
given in Figure 1.

Optimization 1: This optimization is obtained from the
OPF problem formulated in (1) and (2) by replacing its
constraint (2d) with the equivalent condition of the positive
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semi-definiteness of the matrix (Skl,max)
2 trace

{
YklXXT

}
trace

{
ȲklXXT

}
trace

{
YklXXT

}
1 0

trace
{
ȲklXXT

}
0 1


Optimization 2: This optimization is defined as the dual

of Optimization 1, which indeed minimizes
n∑

k=1

{
λkPDk

+ λ̄kQDk
+ λk,minPk,min − λk,maxPk,max

+ λ̄k,minQk,min − λ̄k,maxQk,max + µk,min (Vk,min)
2

− µk,max (Vk,max)
2 −

n∑
l=1

(
(Skl,max)

2
h11
kl + h22

kl + h33
kl

)}
over the nonnegative scalar variables λk,min, λk,max,
λ̄k,min, λ̄k,max, µk,min, µk,max, and the positive semidefinite
matrices Hkl ∈ R3×3, ∀k, l ∈ {1, 2, ..., n}, subject to

A(λ, λ̄,µ,H) :=
n∑

k=1

{
λkYk + λ̄kȲk + µkMk

+ 2
n∑

l=1

(
h12
klYkl + h13

kl Ȳkl

)}
≽ 0

where hij
kl denotes the (i, j) entry of Hkl for every i, j ∈

{1, 2, 3}, and

λk :=

{
−λk,min + λk,max + 1 if k = 1, ...,m
−λk,min + λk,max otherwise ,

λ̄k := −λ̄k,min + λ̄k,max, µk := −µk,min + µk,max,

λ := {λk,min, λk,max}nk=1 , λ̄ :=
{
λ̄k,min, λ̄k,max

}n

k=1
,

µ := {µk,min, µk,max}nk=1 , H = {Hkl}nk,l=1

(note that Hkl can be taken as zero if the line (k, l) does not
exist in the power system).

Optimization 3: This optimization is obtained from Op-
timization 1 by first replacing every term XXT with a
symmetric matrix variable W ∈ R2n×2n and then adding
the constraint W ≽ 0 (thus, the variable has changed from
X to W ).

Optimization 4: This optimization is obtained from
Optimization 3 by including the additional constraint
rank{W} = 1.

A. Previous Results

As illustrated in Figure 1 and proven in our recent papers
[7], [8], Optimization 1 is naturally equivalent to the OPF
problem, Optimization 2 is the dual of Optimization 1,
Optimization 3 is the dual of Optimization 2 (strongly duality
holds), Optimization 4 is different from Optimization 3 by an
extra rank constraint, and finally Optimization 1 is equivalent
to Optimization 4 via the change of variable W = XXT .
Due to the natural equivalence between Optimization 1 and
the OPF problem, the names OPF problem, dual of the
OPF problem and dual of the dual of the OPF problem

OPF Problem 

(nonconvex)

Optimization 1

(nonconvex)

Optimization 4

(nonconvex)

Optimization 2

(convex)

Optimization 3

(convex)
Equivalence:                  

strong duality

Equivalence

Equivalence:                

change of variable     

W=XX
T

Rank relaxation:        

removing constraint 

rank{W}=1

Dual

relaxation

Fig. 1. This diagram demonstrates how Optimizations 1-4 are interrelated
and also related to the OPF problem.

will be used interchangeably for Optimizations 1, 2 and 3,
respectively. The dual of the OPF problem is always feasible,
but its optimal objective value can be: (i) infinite or (ii)
finite. In Case (i), the OPF problem must be infeasible. In
Case (ii), since the OPF problem is nonconvex, the optimal
objective values of the OPF problem and its dual might not
be identical. Whenever Case (i) happens (which detects the
infeasibility of the OPF problem) or the optimal objective
values of the OPF problem and its dual are the same, it is
said that the duality gap is zero for the OPF problem. We
proved the following important result in [7].

Theorem 1: The duality gap is zero for the OPF problem
if its dual has a solution (λopt, λ̄opt,µopt,Hopt) such that the
matrix A(λopt, λ̄opt,µopt,Hopt) has rank at least 2n − 2. In
this case, two properties hold:

• The dual of the dual of the OPF problem has a rank-one
solution Wopt.

• Given any nonzero vector
[
UT
1 UT

2

]T
in the null

space of A(λopt, λ̄opt,µopt,Hopt), there exist two scalars
ζ1 and ζ2 such that Vopt = (ζ1 + ζ2i)(U1 + U2i) is a
solution to the OPF problem.

Consider a special case of the OPF problem formulated in
(1) and (2) where Y is a real-valued matrix, the constraints
given in (2a), (2b) and (2d) are removed (by setting the
corresponding lower and upper bounds as −∞ and +∞),
all reactive loads are zero, and finally Vk,min = Vk,max for
every k ∈ {1, 2, ..., n}. In this case, the feasibility region for
the real-valued vector (V1, ..., Vn) consists of 2n points in
the form of (±V1,min, ...,±Vn,min). This substantiates that
the OPF problem may have a complicated feasibility region,
which can make it NP-complete for an arbitrary Y and hence
create a nonzero duality gap [7]. However, the admittance
matrix Y corresponding to a power system is structured in
light of the physical properties of transmission lines. Using
this fact, we showed in [7] and [8] that the zero-duality-gap
condition stated in Theorem 1 is satisfied for all IEEE test
systems with 14, 30, 57, 118 and 300 buses and, moreover,
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this condition is likely to hold for every practical power
system.

B. Problem Statement

Define D as the set of every admittance matrix Y
whose associated OPF problem has no duality gap for
all possible values of the limits Pk,min, Pk,max, Qk,min,
Qk,max, Vk,min, Vk,max, Skl,max, k, l ∈ {1, 2, ..., n}. The set
D characterizes every network topology (including those
corresponding to practical power systems) for which a glob-
ally optimal solution of the OPF problem can be found
efficiently (by solving its dual). Recall that the classical OPF
problem was non-convex partially due to the nonlinearity of
active power, reactive power and magnitude of voltage with
respect to the state variable V. This source of non-convexity
appears in almost all fundamental optimization-based power
problems. These problems are often based on a single or a
set of coupled classical OPF problems with more sources of
non-convexity, e.g. variable transformer ratios, variable shunt
elements, stability constraints and security constraints. The
objective of this paper is to prove the following statement:
zero duality gap for the classical OPF problem implies zero
duality gap for harder power problems with more sources
of non-convexity. In other words, it is intended to show that
if Y belongs to D, fundamental power problems (based on
OPF) can be convexified naturally via the duality theory.

III. MAIN RESULTS

Different generalizations to the classical OPF problem will
be studied in the sequel.

A. Security-Constrained Optimal Power Flow

As far as the steady-state operation of a power system
is concerned, there are two types of parameters: (i) a state
vector X containing the real and imaginary parts of the bus
voltages, (ii) a control vector U containing the controllable
parameters of the power system. Note that every power
system has certain controllable parameters (depending on
its control strategy) such as active powers and voltage
magnitudes at generator buses, sizes of capacitor banks, and
transformer tap ratios. A general OPF-based problem can be
formulated as:

min
X,U

f(X,U) (4a)

s.t. g(X,U) = 0 (4b)
h(X,U) ≥ 0, (4c)

where
• f(X,U) is an appropriate cost to be minimized (such

as power loss or total generation cost).
• The relation (4b) describes the set of all equality con-

straints resulting from the power flow equations.
• The relation (4c) describes the set of all inequality

constraints resulting from the physical limits imposed
on the parameters of the system.

Assume that the power system is subject to c different
contingencies, where each contingency corresponds to a

new configuration in which certain transmission lines and
generators are disconnected. The security-constrained op-
timal power flow (SCOPF) problem aims to optimize the
performance of the power system under the normal condition
such that the load and physical constraints are still satisfied
after every pre-specified contingency. This problem can be
formulated as:

min
X(0),...,X(c),U(0),...,U(c)

f
(
X(0),U(0)

)
(5a)

s.t. gt

(
X(t),U(t)

)
= 0, t = 0, ..., c (5b)

ht

(
X(t),U(t)

)
≥ 0, t = 0, ..., c (5c)∣∣∣U(r) −U(0)

∣∣∣ ≤ ∆U(r)
max, r = 1, ..., c (5d)

where

• X(t) and U(t) denote the state and control vectors for
the tth configuration (t = 0 is the normal configuration
and t > 0 is a contingency case).

• The equality and inequality constraints for the tth con-
figuration are given by (5b) and (5c).

• Given the constant vector ∆U
(r)
max, the constraint (5d)

accounts for the fact that the controllable parameters of
a power system may not be able to change arbitrarily
fast after a reconfiguration (this is partially due to
physical ramp-up and ramp-down constraints).

It is worth mentioning that if ∆U
(r)
max is zero, the correspond-

ing control strategy is said to be preventive in light of taking
no control action after a contingency; otherwise, it is said
to be corrective. Note that some of the entries of ∆U

(r)
max

can be infinity, implying that the corresponding controllable
parameters can change arbitrarily after a reconfiguration.

The objective of this part is to prove the following state-
ment: zero duality gap for the OPF problem implies zero du-
ality gap for the SCOPF problem. To this end, for the sake of
simplifying the presentation, assume that every controllable
parameter can only be an active power, a reactive power or
a voltage magnitude. Using the techniques being developed
in the next subsections, the results can be generalized to
incorporate loads, shunt elements and transformer ratios into
the control vector U. Moreover, with no loss of generality,
suppose that the cost function f0(X

(0),U(0)) is the total
power generation. As before, we use the superscript (t) for
every parameter of the power system in the tth configuration,
t = 0, 1, ..., c. For instance, Y (0) is equal to Y , and Y (r),
r = 1, 2, ..., c, is the admittance matrix of the power system
under the rth contingency. The SCOPF problem can be
expressed as the minimization of

m∑
l=1

P
(0)
Gl

(6)
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subject to

P
(t)
k,min ≤ P

(t)
Gk

≤ P
(t)
k,max, k ∈ {1, ...,m} (7a)

Q
(t)
k,min ≤ Q

(t)
Gk

≤ Q
(t)
k,max, k ∈ {1, ...,m} (7b)

V
(t)
k,min ≤

∣∣∣V (t)
k

∣∣∣ ≤ V
(t)
k,max, k ∈ {1, ..., n} (7c)∣∣∣S(t)

kl

∣∣∣ ≤ S
(t)
kl,max, k, l ∈ {1, ..., n} (7d)∣∣∣P (r)

Gk
− P

(0)
Gk

∣∣∣ ≤ ∆P
(r)
k,max, k ∈ {1, ...,m} (7e)∣∣∣Q(r)

Gk
−Q

(0)
Gk

∣∣∣ ≤ ∆Q
(r)
k,max, k ∈ {1, ...,m} (7f)∣∣∣∣∣∣∣V (r)

k

∣∣∣2 − ∣∣∣V (0)
k

∣∣∣2∣∣∣∣ ≤ (
∆V

(r)
k,max

)2

, k ∈ {1, ..., n} (7g)

for every t ∈ {0, ..., c} and r ∈ {1, ..., c}, where ∆P
(r)
k,max,

∆Q
(r)
k,max and ∆V

(r)
k,max are some given nonnegative numbers.

Note that

• If ∆P
(r)
k,max is zero, it implies that no corrective action

is taken for the controllable parameter PGk
. Further-

more, if ∆P
(r)
k,max is infinity (so that the corresponding

inequality can be removed from the SCOPF problem), it
implies that PGk

is either a non-controllable parameter
or a controllable parameter with no ramp constraint. A
similar remark can be made about QGk

and Vk.
• The formulation given in (6) and (7) is capable of

modeling faults in both the transmission network and
the generators. For instance, Y (1) ̸= Y implies that
some of the transmission lines are disconnected under
the first contingency, while Y (1) = Y and P

(1)
1,min =

P
(1)
1,max = 0 imply that the generator of bus 1 is removed

under the first contingency.

The dual of the SCOPF problem can be derived based on
the method presented in [7], which turns out to be a semidef-
inite program similar to Optimization 2. A question arises
as whether a globally optimal solution of the non-convex
SCOPF problem can be found by solving this semidefinite
program. This question is answered in the next theorem.

Theorem 2: Assume that the duality gap is zero for every
classical OPF problem associated with each of the configura-
tions Y (0), Y (1), ..., Y (c) (i.e. Y (0), ..., Y (c) ∈ D). Then, the
duality gap is zero for the SCOPF problem as well so that a
globally optimal solution of this problem can be recovered
from an optimal solution of its convex dual problem.

Proof: Consider the optimization problem of minimizing

m∑
l=1

(
trace

{
Y

(0)
l W (0)

}
+ PDl

)
(8)

over the positive semidefinite matrices W (0),W (1), ...,W (c)

subject to

P
(t)
k,min − PDk

≤ trace
{
Y

(t)
k W (t)

}
≤ P

(t)
k,min − PDk

(9a)

Q
(t)
k,min −QDk

≤ trace
{
Ȳ

(t)
k W (t)

}
≤ Q

(t)
k,min −QDk

(9b)

trace
{
Y

(t)
kl W

(t)
}2

+ trace
{
Ȳ

(t)
kl W

(t)
}2

≤
(
S
(t)
kl,max

)2

(9c)(
V

(t)
k,min

)2

≤ trace
{
MkW

(t)
}
≤

(
V

(t)
k,max

)2

(9d)∣∣∣trace
{
Y

(r)
k W (r)

}
− trace

{
Y

(0)
k W (0)

}∣∣∣ ≤ ∆P
(r)
k,max (9e)∣∣∣trace

{
Ȳ

(r)
k W (r)

}
− trace

{
Ȳ

(0)
k W (0)

}∣∣∣ ≤ ∆Q
(r)
k,max (9f)∣∣∣trace

{
MkW

(r)
}
− trace

{
MkW

(0)
}∣∣∣ ≤ (

∆V
(r)
k,max

)2

(9g)

for every k, l ∈ {1, 2, ..., n}, r ∈ {1, 2, ..., c} and t ∈
{0, 1, ..., c} (as before, P (t)

k,min, P (t)
k,max, Q(t)

k,min and Q
(t)
k,max

are set to zero by convention if k > m). A diagram similar
to the one depicted in Figure 1 for the OPF problem can be
derived to deduce the following two properties:

i) The convex optimization given in (8) and (9) is the
dual of the dual of the SCOPF problem specified in
(6) and (7).

ii) The optimization given in (8) and (9) under the ad-
ditional non-convex constraints rank{W (0)} = · · · =
rank{W (c)} = 1 can be equivalently converted to the
SCOPF problem via the change of variables W (t) =

X(t)X(t)T , t = 0, 1, ..., c.
It can be concluded from Property (ii) that the SCOPF
problem is infeasible if the optimization problem (8) and (9)
is infeasible. Therefore, assume that the latter optimization
problem is feasible. Using the above properties and in line
with the argument made in [7], one can infer that the
duality gap between the SCOPF problem and its dual is zero,
provided the optimization problem given in (8) and (9) has
a minimizer (W (0)

opt ,W
(1)
opt ...,W

(c)
opt ) such that

rank
{
W

(0)
opt

}
= rank

{
W

(1)
opt

}
= · · · = rank

{
W

(c)
opt

}
= 1.

To prove the existence of such a solution to the dual of the
dual of the SCOPF problem, let (W (0)

opt ,W
(1)
opt ...,W

(c)
opt ) be an

arbitrary minimizer of this optimization problem. Consider a
feasibility problem with the variable W (c) and the constraints
(∀k, l ∈ {1, ..., n})

trace
{
Y

(c)
k W (c)

}
= trace

{
Y

(c)
k W

(c)
opt

}
(10a)

trace
{
Ȳ

(c)
k W (c)

}
= trace

{
Ȳ

(c)
k W

(c)
opt

}
(10b)

trace
{
Y

(c)
kl W

(c)
}2

+ trace
{
Ȳ

(c)
kl W

(c)
}2

≤
(
S
(c)
kl,max

)2

(10c)

trace
{
MkW

(c)
}
= trace

{
MkW

(c)
opt

}
(10d)

Obviously, W (c) = W
(c)
opt is a solution to this feasibility

problem (i.e. it satisfies the above constraints). In addition,
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it can be shown that (W
(0)
opt , ...,W

(c−1)
opt ,Wf ) is a solution

to the optimization given in (8) and (9) for some matrix
Wf if W (c) = Wf is a solution to the feasibility prob-
lem (10). Now, the goal is to show that this feasibility
problem has a rank-one solution Wf . To this end, convert
this feasibility problem into an optimization problem by
minimizing

∑m
l=1(trace{Y(c)

l W (c)} + PDl
). The diagram

given in Figure 1 yields that this optimization problem is
the dual of the dual of the following OPF problem:

min

m∑
l=1

P
(c)
Gl

s.t. P
(c)
k,inj = trace

{
Y

(c)
k W

(c)
opt

}
, k ∈ {1, ..., n}

Q
(c)
k,inj = trace

{
Ȳ

(c)
k W

(c)
opt

}
, k ∈ {1, ..., n}∣∣∣V (c)

k

∣∣∣2 = trace
{
MkW

(c)
opt

}
, k ∈ {1, ..., n}∣∣∣S(c)

kl

∣∣∣2 ≤
(
S
(c)
kl,max

)2

, k, l ∈ {1, ..., n}

Since the duality gap is zero for this OPF problem (due
to the assumption Y (c) ∈ D), the dual of its dual has a
rank-one solution (see Theorem 1 and the diagram given in
Figure 1). In other words, there exists a rank-one matrix
Wf such that W (c) = Wf satisfies the constraints given
in (10). Following the discussion made earlier, this result
simply implies that W (c)

opt can be taken as the rank-one matrix
Wf . The same argument can be continued for other matrices
W

(0)
opt , ...,W

(c−1)
opt to conclude that the dual of the dual of

the SCOPF problem has a solution (W
(0)
opt ,W

(1)
opt ...,W

(c)
opt ),

where each of the matrices W (0)
opt , ...,W

(c)
opt has rank one. This

completes the proof. �

B. Optimization of Shunt Elements in Power Systems

A popular method towards a better steady-state control
of a power system is to exploit variable reactive/capacitive
shunt elements (e.g. capacitor banks or static VAR compen-
sators) at some designated buses. To optimize these shunt
parameters, they should be incorporated into the classical
OPF problem. In order to formulate the underlying problem,
assume that each bus k ∈ {1, 2, ..., n} is equipped with
a variable shunt element with the admittance bki, where
bk must lie between two given lower and upper bounds
bk,min and bk,max (these bounds can take both positive and
negative values). Note that if some bus k does not have such
a shunt element, the bounds bk,min and bk,max are set to
zero. As before, with no loss of generality, assume that the
objective function to be minimized is the total generation.
The elements b1, ..., bn can be directly incorporated into
the admittance matrix of the power system, which makes
some of the elements of this matrix unknown and therefore
adds another source of non-convexity to the OPF problem.
Alternatively, one can use the fact that the shunt element of
bus k ∈ {1, 2, ..., n} injects no active power but the reactive
power bk|Vk|2 to its corresponding bus. Hence, the resulting
OPF problem with variable shunt elements can be obtained

from the classical OPF problem by replacing the constraints

Qk,min −QDk
≤ Qk,inj ≤ Qk,max −QDk

, k = 1, ..., n

with the new constraints

Qk,min −QDk
+ bk|Vk|2 ≤ Qk,inj (11a)

Qk,inj ≤ Qk,max −QDk
+ bk|Vk|2 (11b)

bk,min ≤ bk ≤ bk,max (11c)

where b1, ..., bn are a part of the variables of the new
optimization problem. Since |Vk| is a nonnegative number,
the change of variable Qk,b := bk|Vk|2 equivalently converts
the OPF problem with variable shunt elements into the
following:

min
m∑
l=1

PGl

s.t. Pk,min − PDk
≤ Pk,inj

Pk,inj ≤ Pk,max − PDk

Qk,min −QDk
+Qk,b ≤ Qk,inj

Qk,inj ≤ Qk,max −QDk
+Qk,b

Vk,min ≤ |Vk| ≤ Vk,max

|Skl| ≤ Skl,max

bk,min|Vk|2 ≤ Qk,b ≤ bk,max|Vk|2

(12)

∀k, l ∈ {1, 2, ..., n}, where Q1,b, ..., Qn,b are the extra
variables of the optimization problem. In this subsection,
we study this variant of the OPF problem with unknown
shunt elements. The dual of this problem can be expressed
as a semidefinite program. The next theorem proves that the
solution of this dual problem can be used to find a solution
to the original primal problem.

Theorem 3: Assume that the duality gap is zero for every
classical OPF problem associated with the configuration Y
(i.e. Y ∈ D). Then, the duality gap is zero for the OPF
problem with variable shunt elements as well.

Sketch of Proof: The dual of the dual of the
OPF problem with variable shunt elements minimizes∑m

l=1(trace{YlW} + PDl
) over the positive semidefinite

matrix W and the scalars Q1,b, ..., Qn,b subject to

Pk,min − PDk
≤ trace {YkW} ≤ Pk,min − PDk

Qk,min −QDk
+Qk,b ≤ trace

{
ȲkW

}
trace

{
ȲkW

}
≤ Qk,min −QDk

+Qk,b

trace {YklW}2 + trace
{
ȲklW

}2 ≤ (Skl,max)
2

(Vk,min)
2 ≤ trace {MkW} ≤ (Vk,max)

2

bk,mintrace {MkW} ≤ Qk,b ≤ bk,maxtrace {MkW}

∀k, l ∈ {1, 2, ..., n}. Similar to the technique used in the
proof of Theorem 2, it suffices to show that this optimiza-
tion problem has a solution (Wopt, Q

opt
1,b, ..., Q

opt
n,b) such that

rank{Wopt} = 1. To this end, given an arbitrary solution
(Wopt, Q

opt
1,b, ..., Q

opt
n,b) to the above problem, consider the
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following optimization:

min
W

m∑
l=1

trace {YlW}

s.t. trace {YkW} = trace {YkWopt}
trace

{
ȲkW

}
= trace

{
ȲkWopt

}
trace {YklW}2 + trace

{
ȲklW

}2 ≤ (Skl,max)
2

trace {MkW} = trace {MkWopt}
(13)

∀k, l ∈ {1, 2, ..., n}. It can be observed that
i) W = Wopt is a solution to the optimization (13).

ii) The feasibility region of the optimization (13) is a subset
of the feasibility region of the dual of the dual of the
OPF problem with variable shunt elements after fixing
Qk,b as Qopt

k,b, k = 1, ..., n.
These two properties imply that (Wf , Q

opt
1,b, ..., Q

opt
n,b) is a

solution to the dual of the dual of the OPF problem with
variable shunt elements for any arbitrary minimizer Wf of
the optimization (13). On the other hand, the optimization
(13) is the dual of the dual of some classical OPF problem
with respect to the configuration Y . Hence, this optimization
problem has a rank-one solution Wf . As a result, the
minimizer Wopt can be taken as Wf . This completes the
proof. �
C. Optimization of Transformer Ratios in Power Systems

Practical power systems are often accompanied by a
number of transformers whose (tap) ratios are controllable
within certain limits. To optimize the performance of a
power system, these ratios are often considered as some
controllable parameters in the corresponding OPF problem.
This subsection aims to study how the OPF problem with
variable transformer ratios can be convexified using the
duality theory. To this end, consider a transformer installed
on some transmission line of the system. The most common
method is to replace the transformer with a two-port Π block
in order to be able to have an equivalent circuit model for the
power system with only resistors, capacitors and inductors.
However, if the transformer ratio is unknown, this parameter
appears in a nonlinear way in the admittance matrix of the
equivalent circuit model.

To bypass the foregoing issue, we exploit a different mod-
eling method here. First, we replace every transformer with
an ideal transformer and some lumped elements (accounting
for the leakage reactance, series resistance, etc.). Then, we
add some virtual buses to the set of the real (existing) buses
in such a way that every ideal transformer is connected
directly to two real/virtual buses (this may need defining a
virtual bus for every transformer). For the sake of simplifying
the presentation, we present the ideas for the case when
there is only one tap-changing transformer in the system
that connects bus 1 to bus 2. The generalization to multi-
transformer case is straightforward.

Assume that bus 1 is connected to bus 2 via an ideal
transformer. Let P12 + Q12i denote the power transferred
from bus 1 to the rest of the network through the transformer

and η denote the transformer ratio bounded by the given
nonnegative numbers ηmin and ηmax. With a slight abuse of
notation, define Y as the admittance matrix of the power
system after removing the transformer (i.e. after disconnect-
ing the line (1, 2)). By virtue of having no power loss in the
transformer, one can write the power flow equations at buses
1 and 2 as follows:

trace
{
Y1XXT

}
= P1,inj − P12

trace
{
Y2XXT

}
= P2,inj + P12

trace
{
Ȳ1XXT

}
= Q1,inj −Q12

trace
{
Ȳ2XXT

}
= Q2,inj +Q12

(14)

On the other hand, the voltages at the two ports of the
transformer are related as

Re{V1} = η × Re{V2} (15a)
Im{V1} = η × Im{V2} (15b)

ηmin ≤ η ≤ ηmax (15c)

In order to remove the nonlinearity caused by the product
of η and the components of V2, we eliminate the variable η.
For this purpose, consider the relations

η2min|V2|2 ≤ |V1|2 ≤ η2max|V2|2 (16a)
Re{V1} × Im{V2} = Re{V2} × Im{V1} (16b)
Re{V1} × Re{V2} ≥ 0 (16c)
Im{V1} × Im{V2} ≥ 0 (16d)

It can be shown that the relations in (16) are satisfied if
and only if there exists a nonnegative number η satisfying
the relations in (15). Notice that all of the constraints given
in (16) are quadratic in V, which is a useful property for
studying the duality gap. To formulate the OPF problem with
the variable tap ratio η, the following actions should be taken:

• Write the power flow equations and physical limit
constraints for every bus k ∈ {3, 4, ..., n}.

• Write the line flow constraints for all lines except for
the line (1, 2).

• Add the extra constraints given in (14) and (16), where
P12 and Q12 are considered as scalar variables.

• Add the condition P 2
12 + Q2

12 ≤ (S12,max)
2 associated

with the flow constraint of the line (1, 2).
It can be verified that the dual of this problem is a semidef-
inite program with the same structure as the dual of the
classical OPF problem (partially due to the quadratic nature
of the constraints in (16)). Now, one can write the dual of the
dual of the OPF problem with the variable tap ratio η in terms
of the matrix variable W and the scalar variables P12, Q12.
In this optimization problem, the constraints corresponding
to the ones given in (16) are

η2mintrace {M2W} ≤ trace {M1W}
trace {M1W} ≤ η2maxtrace {M2W}

and

W1,n+2 = W2,n+1, W1,2 ≥ 0, Wn+1,n+2 ≥ 0 (17)
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where Wi,j denotes the (i, j) entry of W for every i, j ∈
{1, 2, ..., 2n}. Now, it can be observed that the constraints
corresponding to the unknown transformer ratio have ap-
peared linearly in terms of the entries of W . If the conditions
in (17) are removed from the dual of the dual of the OPF
problem with the extra variable η, the technique used in the
proof of Theorem 3 can be simply applied to this problem to
show the existence of no duality gap. The removal of these
two constraints corresponds to designing a complex-valued
transformer ratio η such that ηmin ≤ |η| ≤ ηmax. However,
for the case when the ratio η is a real number (as considered
in this work), the above-mentioned technique is not sufficient
and, indeed, the long proof developed in [7] for the classical
OPF problem should be followed closely. The details are
omitted here for brevity.

IV. SIMULATION RESULTS

Let the results of this paper be applied to the IEEE test
systems with 14 and 30 buses. The specifications of these
benchmark systems can be found in the library of the toolbox
[13] and the online database [14].

The IEEE 30-bus system has 6 generators at buses 1, 2, 13,
22, 23 and 27. Assume that the controllable parameters of the
system are the active powers supplied by the generators and
the voltage magnitudes at the generator buses. If the classical
OPF problem is solved to minimize the total generation (or
equivalently the active power loss), the optimal values of the
controllable parameters will be obtained as

PG1 = 7.69, PG2 = 48.57, PG13 = 40.00,

PG22 = 32.17, PG23 = 16.66, PG27 = 45.99,

|V1| = 1.028, |V2| = 1.027, |V13| = 1.090,

|V22| = 1.032, |V23| = 1.048, |V27| = 1.069

(18)

Suppose that while the controllable parameters of the power
system are controlled continuously in order to be kept at their
optimal values, a fault happens in the transmission line (2, 6)
leading to its disconnection. It can be shown that some of the
line flow constraints will be violated in this case. To avoid
this issue, one can solve an SCOPF problem to optimize
the controllable parameters in such a way that the total
generation is minimized and that the power flow and physical
constraints are satisfied in the normal and contingency states.
Due to the non-convexity of the SCOPF problem, this paper
suggests solving the dual of the SCOPF problem, which
is a semidefinite problem. The duality gap is zero for this
problem and, therefore, a globally optimal solution to the
SCOPF problem can be obtained as

PG1 = 12.66, PG2 = 43.06, PG13 = 40.00,

PG22 = 31.16, PG23 = 18.89, PG27 = 45.50,

|V1| = 1.031, |V2| = 1.030, |V13| = 1.094,

|V22| = 1.021, |V23| = 1.048, |V27| = 1.068

(19)

Now, consider the problem of the loss minimization for the
IEEE 14-bus system, where the tap ratios of the transformers
in the lines (4, 7) and (4, 9) are to be optimized as well.
Assume that these unknown tap ratios must lie in the

range (0.8, 1.2). The duality gap for the OPF problem with
these two variable tap ratios turns out to be zero, which
makes it possible to globally optimize the parameters of the
system. The optimal tap ratios for the transformers (4, 7)
and (4, 9) are both equal to 0.9157. If the transformers are
equipped with phase shifters, the optimal complex ratios of
these transformers will be obtained as 0.9158+ 0.0066i and
0.9157− 0.0146i.

V. CONCLUSIONS

The classical optimal power flow (OPF) problem is one
of the most fundamental optimization problems in power
systems, which has been extensively studied in the past
several years. Although the dual of the OPF problem is a
semidefinite program that can be solved efficiently, the lack
of strong duality might not allow for recovering a solution to
the OPF problem. However, we showed in our recent work
that the duality gap is zero for IEEE test systems and, more
importantly, this gap is very likely to be zero for practical
power systems due to the physical properties of a power
network. The present paper shows how this result can be
generalized to a great extent. More precisely, it is proved that
zero duality gap for the classical OPF problem implies zero
duality gap for more complicated power problems with other
sources of non-convexity, such as variable shunt elements,
variable transformer ratios and security constraints.
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