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Abstract— The control performance of sensorless vector-
controlled induction motors mainly relies on the accurate
flux estimation. However, due to the variations of electrical
parameters, the inaccuracy of estimated fluxes will cause the
performance degradation of speed control. In this paper, a
fractional-order integral sliding-mode flux observer is provided
to estimate the d- and q-axis fluxes in the stationary refer-
ence frame. In addition to simulations, a DSP/FPGA based
experimental platform is setup to evaluate the feasibility of
the proposed scheme. Simulations and experimental results
illustrate that the performance of flux and speed tracking can
be performed as desire by utilizing the fractional-order integral
sliding-mode flux observer in a wide speed range.

I. INTRODUCTION

The vector-controlled scheme, also called field-oriented
control, made the control of AC motors equivalent to
that of separately excited DC motors with certain coor-
dinate transformations and decoupling manipulations [1].
High-performance vector-controlled induction motors with-
out speed sensors are popularly used in industries due to the
high reliability of the overall system and low cost of mainte-
nance. The existence of flux-estimation errors will deteriorate
the control performance of induction motors. Current model
and voltage model are two typical flux observers which
have the advantage of computation simplicity. However, the
incapability of dealing with parameter variations is the com-
mon drawback [2]. The estimation accuracy and robustness
of flux observers have attracted a lot of attentions in high
performance induction drives. For example, a reduced-order
flux observer was utilized for the speed control of induction
motors by using the measurements of stator currents and
rotor speeds in [3]. Hilairet et al. [4] proposed a two-stage
extended Kalman filter for the flux and speed estimation of
induction motors.

The variable structure control (VSC) strategy using the
sliding-mode (SM) control theory can offer some interest-
ing features, such as robustness to parameters variations,
insensitivity to disturbances and fast dynamic responses [5].
Recently, the sliding-mode concepts have been successfully
applied to high performance induction motors. For examples,
Chen [6] introduced a sliding-mode flux controller and a
sliding-mode speed controller to enhance the flux and speed
responses of induction motors. In the work of Zaky et al. [7],
a parallel speed and stator resistance estimation algorithm
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based on a sliding-mode current observer was represented to
implement a good operation of a sensorless induction motor
in low speed regions. In general, the sliding-mode control
system is sensitive to the parameter variations and external
disturbances during the reaching phase. On the other hand,
the system trajectories in the integral sliding-mode (ISM)
scheme can be established without a reaching phase, and the
robustness subject to parameter variations and disturbances
is guaranteed starting from the initial time instance. Relative
studies can be found in [8]-[9].

In most cases of sliding manifolds, the order of integration
or derivation is an integer. However, subject to the increasing
complexity of control systems, integer-order operators may
not meet the required performance and robustness of concern.
By adopting the concepts of the fractional-order calculus,
it could take the advantage of the flexible selectivity of
orders [10]. Podlubny [11] introduced that the fractional-
order calculus could be applied to deal with the control
problems of dynamic systems and to enhance the system
control performance. Some applications of fractional-order
sliding-mode controllers are found in references [12]-[14].
In this paper, considering the benefits of fractional-order
calculus, a fractional-order integral sliding-mode (FOISM)
flux observer is proposed for vector-controlled induction
motors. In the proposed scheme, the differences between the
observed and measured stator currents are used to define
the sliding surface. Accordingly, the switching control law
is designed and the system convergence is proved by the
Lyapunov theorem. Furthermore, a DSP/FPGA based experi-
mental system is set up to evaluate the feasibility of proposed
works.

The organization of this paper is as follows. Section 2
briefly describes the dynamic model of induction motors.
In addition, the basic concepts of fractional-order calculus
and the approximation of fractional operators are discussed.
In Section 3, an FOISM flux observer is addressed. Also,
the speed estimation of the induction motor is investigated.
Thereafter, simulation and experimental results are provided
in Section 4. Finally, the concluding remarks and future
works are given in Section 5.

II. PRELIMINARIES

A. Dynamic Model of Induction Motors

It is noted that the mathematical model of the vector-
controlled induction motor is highly nonlinear. The dynamic
model of an induction motor is commonly discussed with
ignoring the parasitic effects such as magnetic saturation,
eddy current, iron loss and hysteresis [15]. Based on a d-q
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axis coordinate model in the stationary reference frame, the
state equations of an induction motor can be described as
[16][
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(1) and (2), i, φ, v, R and L are the current, flux, voltage,
resistance and inductance, the subscripts d and q denote the
components of d- and q-axis, the subscripts r and s mean the
rotor and stator, Lm is the mutual inductance between the
rotor and stator, σ is the total flux leakage coefficient, and
ωr is the electrical angular speed of the rotor, respectively.

B. Fractional-Order Calculus

Fractional order calculus, developed from ordinary calcu-
lus, is a generalization of the integration and differentiation
to the non-integer (fractional) order generalized operator

aDλ
t , in which a and t are the limits and λ is the order

of the operator. Two general fractional integral/differential
operations are commonly discussed [17]. The first is the
Grünwald-Letnikov (GL) definition

aDλ
t f(t) = lim

h→0

1
hλ

t−a
h∑

j=0

(−1)j · Γ(λ + 1)
Γ(j + 1) · Γ(λ − j + 1)

f(t − jh)

(3)
where Γ(•) is the Euler’s gamma function. The other one is
the Riemann-Liouville (RL) definition

aDλ
t f(t) =

1
Γ(−λ)

∫ t

a

f(τ)
(t − τ)λ+1

dτ (4)

Having zero initial conditions, the Laplace transformation of
the RL definition for a fractional order λ is given by

L{
0D

λ
t f(t)

}
= sλF (s) (5)

Intuitively, the fractional-order integral/differential operator
has more degrees of freedom than the ones with integer
orders. It can be expected that a better performance can be
obtained with the proper choice of orders. In the rest of
this paper, a simplified notation Dλ is used to represent the
fractional-order operator, Dλ ≡ 0D

λ
t .

C. Approximation of Fractional Operators

Practically, transfer functions with fractional-order in-
tegral/differential operators are usually approximated by
integer-order transfer functions when fractional-order con-
trollers have to be implemented, in which a close enough be-
havior is acquired with less complexity. Referring to [12], the
approximate implementation of fractional-order controllers

can be categorized as the analog approximate implementa-
tion approach and the digital approximate implementation
approach.

For example, let [ωA, ωB ] be the frequency range of
concern. To obtain an adequate approximation of a fractional-
order differential operator, the high- and low-transitional
frequencies are chosen as ωh � ωB and ωb � ωA,
respectively. Then, the approximation of the frequency-band
fractional differential operator can be determined as [18],
[19]
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in which ω
′
k is the zero of rank k, ωk is the pole of rank k,

2N +1 is the number of zeros and poles, ωu = (ωb ·ωh)1/2.
In practice, the approximate transformations of fractional-

order operators are related to a frequency truncation. In-
tuitively, the degree of approximation of fractional-order
operators is related to the chosen transitional frequencies and
the order N . It can be expected that the approximation is
more accurate with a larger N . However, the computation
complexity will be increased with the increasing of N . On
the other hand, with a fixed order N , the characteristics
of chosen bounded frequencies are also interesting. Accord-
ingly, to obtain a better approximation in the viewpoint of
frequency responses, a wider range of [ωb, ωh] is adopted.

Remark 2.1: The selections of the ranges of high- and
low-transitional frequencies can cause various results of
approximations. With regard to the possibility of imple-
mentation and the accuracy of approximation, above ranges
should be selected adequately according to the characteristics
of the controlled plants.

III. FLUX AND SPEED ESTIMATION

From (1) and (2), the conventional current mode flux
observer can be represented as follows

[ ˙̂ids

˙̂iqs

]
= k1

[
ψd

ψq

]
− k2

[
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in which the terms ψd and ψq can be obtained as
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]
=

[
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−ωr η
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]
− ηLm

[
îds
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Referring to (2), (8) and (9), it can be seen that the flux
estimation could be affected by the parameter variations of
Rr and Lr. In this paper, an FOISM observer is proposed
to improve the performance of flux estimation. Based on the
current errors, ĩd = îds − ids, ĩq = îqs − iqs, between the
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measured and estimated stator currents, the sliding surface
of the FOISM flux observer is defined in the following

S =
[

sd

sq

]
=

[
c1ĩd + c2D

−λĩd
c1ĩq + c2D

−λĩq

]
(10)

where c1 and c2 are positive constants. In (10), D−λ is
considered as a fractional-order integral operator with λ ∈
(0, 1]. From (9) and (10), the derivative of S can be derived
as follows
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[ ˙̂ids − i̇ds

˙̂iqs − i̇qs

]
+ c2D

−λ+1

[
ĩd
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ĩq

]
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where M = −ηφdr − ωrφqr + ηLmid and N = ωrφdr −
ηφqr + ηLmiq. In the proposed FOISM flux observer, ψd

and ψq can be designed by the Lyapunov method. Consid-
ering V = 1

2S
T S as the Lyapunov function candidate, the

derivative of V can be described in the following
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Assume that max |c1k1M | < Qd < ∞ and max |c1k1N | <
Qq < ∞. It can be obtained that sd · max |c1k1M | < sd ·
sign(sd)Qd and sq · max |c1k1N | < sq · sign(sq)Qq . Then
(12) can be rewritten as
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From (13), the stabilizing control law can be defined as[
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where sign(sj) = sj/|sj |, j ∈ {d, q}, if sj �= 0, sign(sj) =
0, otherwise, and u0 is a positive constant gain.

Theorem 3.1: The sliding mode of the induction motor
using the proposed FOISM flux observer is guaranteed if
the constant gain u0 of the control law (14) is satisfied with
u0 > max [Qd, Qq].
Proof: Substituting ψd and ψq of (14) into (13), it gives that

V̇ ≤
[

sd

sq

]T (
−

[
u0 · sign(sd)
u0 · sign(sq)

]
+

[
sign(sd)Qd

sign(sq)Qq

])

= − [sd · sign(sd)(u0 − Qd) + sq · sign(sq)(u0 − Qq)]

It could be obtained that u0 − Qd > 0 and u0 − Qq > 0
because of the assumption u0 > max [Qd, Qq]. Therefore,
we can conclude that V̇ < 0, i.e. the sliding mode of the
FOISM flux estimation is guaranteed. �

It is noted that the convergence of the flux observer can
be ensured by selecting a large enough u0 according to
the constraint u0 > max [Qd, Qq]. However, an excessively
large u0 may produce a high control signal that could yield
saturations of the driver. When the system trajectories reach
to the sliding surface, i.e. S = [0, 0]T , the d- and q-
axis observed currents will converge to the actual currents.
Accordingly, the errors of flux estimation will also tend to
zeros.

It is well known that the sliding-mode method suffers from
the problem of chattering, which can excite unexpected high
frequency responses. In this paper, a saturation function is
adopted to eliminate the chattering effects as follows [20]

sat(sj) =
{

sign(sj/ε), if |sj/ε| ≥ 1
sj/ε , if |sj/ε| < 1 , j ∈ {d, q} .

(15)
where ε > 0 represents the thickness of the boundary layer.
From (14) and (15), the FOISM flux observer with the
saturation function can be described as follows[
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(16)

Remark 3.1: The integral sliding mode flux observer is a
special case of the proposed FOISM flux observer, where λ
is set to 1.

Remark 3.2: It is observed that the larger ε is, the less
chattering phenomenon is. However, the steady-state error
will be arisen as ε increasing. Therefore, the choice of ε
is a trade-off between the chattering phenomenon and the
steady-state error.

Remark 3.3: Given 0 < λ ≤ 1, it can be obtained that
−λ+1 ∈ [0, 1). Thus, from (16), the proposed control actions
consist of fractional-order differential terms. In fact, both
the operations of fractional-order integral and differential
operators are embedded in the control actions, where the
integral terms are inherited in the sliding surfaces, sd and
sq .

The estimated rotor speed of the induction motor is derived
from the results of the flux estimation. From (9), the speed
estimation can be obtained in the following

[
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]
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[
η ω̂r

−ω̂r η

] [
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]
− ηLm

[
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]
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From (17), the estimated speed of the induction motor can
be described in the following

ω̂r =
φ̂qrψd − φ̂drψq − ηLm

(
îqsφ̂dr − îdsφ̂qr

)
φ̂2

dr + φ̂2
qr

(18)
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Fig. 1. The block diagram of the proposed scheme.

ω̂rm =
2

Np
ω̂r (19)

where Np is the number of poles and ω̂rm is the estimated
mechanical angular speed of the rotor. Consequently, the
block diagram for the sensorless vector-controlled induction
motor with the proposed FOISM flux observer is depicted in
Fig. 1.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this paper, a three-phase 0.1 kW squirrel cage induction
motor is used, and the physical parameters are shown in
Table I. The motor is driven by a sinusoidal pulse-width mod-
ulation (SPWM) inverter of which the switching frequency
and dead time are 10 kHz and 3 μs, respectively. Regarding
to the switching frequency, the required transitional frequen-
cies for the approximation of integral/differential operators
are set to ωh = 104 rad/sec and ωb = 10−4 rad/sec.
Simulations are performed by Matlab to validate the per-
formance of the proposed FOISM observer. The speed, flux
and current controllers of the vector-controlled scheme are
designed based on the Ziegler-Nichols algorithm. Following
the proposed design procedures, the relative coefficients of
relative controllers and observers are summarized in Table
II. In current study, the control responses of flux and speed
tracking are mainly addressed where the flux observers
are utilized in the presence of different speed commands
and load conditions. Three types of flux observers, SM,
ISM and FOISM, are considered, in which the speed, flux
and current controllers remain identically. In addition, the
simulation results are presented by calculating the root-mean-
square (RMS) values of tracking errors. To highlight the
feasibility and superiority of the proposed scheme, forward-
reverse operations are implemented to validate the capability
of dealing with load disturbances, where extrogenous loads
are applied on t = 3, 13, 23, 33 second and removed on
t = 7, 17, 27, 37 second. In the meantime, the flux and
load torque commands are set to 0.22 wb and 0.15 Nt-m,
respectively. The simulation results of steady-state tracking
errors of flux and speed estimations are summarized in Table
III. It is observed that the flux and speed tracking errors of
the FOISM flux observer are smaller than the counterparts
of other flux observers.

TABLE I

THE PARAMETERS OF THE INDUCTION MOTOR.

Parameter Value Parameter Value
Rs(Ω) 28.72 Rr(Ω) 15.89

J(kg·m2) 0.0001 B(m/rad·s) 0.000692
Np(EA) 2 Ls(H) 0.7262
Lr(H) 0.7262 Lm(H) 0.6817

rated current(A) 1.05 rated voltage(V) 105

TABLE II

THE COEFFICIENTS OF CONTROLLERS AND OBSERVERS.

Coefficient Value Coefficient Value
kpd 65 kid 1200
kpq 45 kiq 4000
kpf 30 kif 100
kps 0.08 kis 0.05
c1 1 c2 5
u0 1000 λ 0.5

As shown in Fig. 2, a DSP and FPGA based experimental
system with a sampling period of 1ms is set up to vali-
date the proposed results. In the experimental platform, the
TMS320C6713 DSP board is used to implement all control
algorithms coded with C language, and the Stratix EP1S25
FPGA board is used to implement all functions of data bus,
encoder, A/D converter and SPWM inverter. The induction
motor used in the experiment is a Nikki Denso NF21-3F
three-phase squirrel cage machine. The external load torque
is produced by a Mitsubishi ZKG-10AN powder clutch.
The hardware implementations are provided with the same
manners of simulations. The flux responses corresponding
to SM, ISM and FOISM flux observers on ω∗

rm = 1800 rpm
and 500 rpm are shown in Fig. 3 and Fig. 4, respectively.
From these experimental results, it can be seen that responses
of the proposed FOISM flux observer are better than other
flux observers via different speed commands. Furthermore,
the speed responses with different flux observers on ω∗

rm =
1800 rpm and 500 rpm are shown in Fig. 5 and Fig. 6. It
is noted that the FOISM flux observer can provide good
speed responses in the aspect of tracking accuracy. With
regard to different speed commands, 500, 900 and 1800 rpm,
the speed transient responses with load suddenly applied are

TABLE III

THE SIMULATION RESULTS OF STEADY-STATE TRACKING ERRORS OF

FLUX AND SPEED ESTIMATIONS.

ω∗
rm (rpm) Methods Flux error (wb) Speed error (rpm)

SM [16] 0.0068 7.5183
1800 ISM 0.0066 7.3186

FOISM 0.0064 7.1572
SM 0.0060 5.8224

900 ISM 0.0055 5.7071
FOISM 0.0052 5.4616

SM 0.0059 5.5491
500 ISM 0.0053 5.3358

FOISM 0.0051 5.1925
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Fig. 2. Experimental system setup.

TABLE IV

THE EXPERIMENTAL RESULTS OF SPEED TRANSIENT RESPONSES WITH

LOAD SUDDENLY APPLIED.

ω∗
rm (rpm) Methods Instant error (rpm) Recovery time (sec)

SM 65.1678 0.91
1800 ISM 47.7489 0.72

FOISM 42.6475 0.49
SM 51.6187 0.72

900 ISM 43.8975 0.61
FOISM 35.7514 0.46

SM 42.5768 0.55
500 ISM 31.9428 0.46

FOISM 24.8067 0.38

listed in Table IV. It can be observed that the instant speed
error and recovery time with the FOISM flux observer are
the smallest among three estimation schemes subject to load
disturbances. Moreover, the steady-state responses of speed
and flux tracking are tabulated in Table V. It is apparent
that the speed and flux tracking errors with the FOISM flux
observer are less than the counterparts of other observers.
From Table IV and Table V, it can be summarized that
the proposed FOISM flux observer can provide much better
control responses in both transient and steady-state manners
with various speed commands and extrogenous loads.

TABLE V

THE EXPERIMENTAL RESULTS OF STEADY-STATE RESPONSES WITH

LOAD APPLIED.

ω∗
rm (rpm) Methods Flux error (wb) Speed error (rpm)

SM 0.0088 28.0325
1800 ISM 0.0073 25.3599

FOISM 0.0061 16.4656
SM 0.0085 13.2224

900 ISM 0.0068 10.1751
FOISM 0.0057 6.4744

SM 0.0081 11.8234
500 ISM 0.0067 8.8286

FOISM 0.0058 5.9311
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Fig. 3. The experimental flux responses corresponding to different flux
observers, ω∗

rm = 1800 rpm: (a) SM, (b) ISM, (c) FOISM.
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Fig. 4. The experimental flux responses corresponding to different flux
observers, ω∗

rm = 500 rpm: (a) SM, (b) ISM, (c) FOISM.

V. CONCLUSIONS

In this paper, an induction motor based on the sensorless
vector-controlled scheme is discussed, where the flux/speed
estimation and tracking are the main subjects of concern.
A fractional-order integral sliding-mode flux observer is
proposed to take the advantage of the flexibility of the
fractional orders, and the associated performance of speed
control is investigated. A DSP/FPGA based experimental
system is setup to validate the feasibility of the proposed
works. Compared to the integer-order flux observers, sim-
ulation and experimental results illustrate that the proposed
FOISM flux observer can achieve much better performance
in both the steady-state and transient responses subject to
load disturbances. Also, the tracking performance of vector-
controlled induction motors is getting better if a relatively
robust and accurate flux observer is provided. This paper has
discussed the flux estimation with certain fractional orders
of the integral/differential operators. Therefore, how to get
the optimal values of the fractional orders will be involved in
the future research works, where an optimization framework
might be a promising challenge.
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Fig. 5. The experimental speed responses corresponding to different flux
observers, ω∗

rm = 1800 rpm: (a) SM, (b) ISM, (c) FOISM.
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Fig. 6. The experimental speed responses corresponding to different flux
observers, ω∗

rm = 500 rpm: (a) SM, (b) ISM, (c) FOISM.
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