
Fuzzy Sliding-Mode Consensus Control for Multi-Agent Systems

Yeong-Hwa Chang, Chia-Wen Chang, and Wei-Chou Chan

Abstract— A fuzzy sliding-mode consensus control is investi-
gated for multi-agent systems in this paper. The consensus prob-
lem is discussed for networks of dynamic agents with external
disturbances and model uncertainty. To deal with the consensus
problems of the multi-agent system, a novel consensus algorithm
combining the concepts of graph theory and fuzzy sliding-
model control is proposed. According to the communication
topology, the consensus stability conditions can be determined
so that the fuzzy sliding-mode consensus controller (FSMCC)
can be derived. Simulation results are provided to illustrate
the effectiveness of the provided control scheme. Compared to
the conventional consensus algorithms, the simulation results
empirically support the promising performance of desire.

I. INTRODUCTION

During the last few years, the investigation of the co-
ordination of multiple agents has attracted much attention.
Taking the advantages of distributed sensing and actuation,
a multi-agent system (MAS) can perform some cooperative
tasks such as moving a large object that is usually not
executable by a single-agent. Applications of this research
include autonomous underwater vehicles [1], autonomous
formation flight [2], congestion control of communication
networks [3], and distributed sensor networks [4].

Among the cooperative control strategies, consensus al-
gorithm is a relatively new development that combines the
graph theory with system control theories for the distributed
networked control systems [5]. In the networked MAS,
consensus means to drive the information states of all agents
to a common value. Due to recent technological advances
in communication and computation, consensus problems of
multi-agent systems have drawn substantial research efforts
to many practical applications such as cooperative control of
unmanned vehicles [6], [7], sensor networks [8] and mobile
robots [9]–[11].

In a leader-follower multi-agent system, the behaviors of
followers will be influenced by the leader, where the leader
is usually independent of their followers. In this case, the
leader is preprogrammed or provided by an external source
which means that only the leader has the knowledge of
group trajectory information. Then, the cooperative task is
built on the reaction of the other agents to the motion
of the leader. A typical leader-follower formation control
approach assumes that there is only one group leader within
the team. The control scheme of a leader-follower system
not only simplifies the design and implementation, but also
saves the control energy and cost. In the literature, there are
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many researches [12]–[14] that are based on the consensus
algorithm to overcome the multi-robot formation problem. In
[12], a unified formation control architecture being allowable
for an arbitrary number of group leaders and arbitrary
information flow among vehicles was proposed. To avoid
and adapt to obstacles in an environment, the dynamically
changing or time varying formation shape was considered
[13]. In [14], the formation stabilization with linear dynamics
was investigated, and the role of Laplacian eigenvalues was
clearly discussed.

In this paper, the graph theory is used to model the
communication topology between agents. For each agent,
the single-integrator dynamic model with uncertainty is
considered. Particularly, a novel consensus algorithm, fuzzy
sliding-mode consensus controller (FSMCC), is proposed to
investigate the consensus problem of multi-agent systems
in directed graphs. The advantages of fuzzy sliding-mode
control are that can alleviate the chattering effects with only
using sliding-model control and can reduce the fuzzy rules
complexity with only using fuzzy control. The consensus
stability condition of the controlled multi-agent system can
be determined by utilizing the Lyapunov stability theorem.
Furthermore, the parameters of fuzzy membership functions
are shown to be dependent with the communication topology.

The paper is organised as follows. In Section II, some
preliminary knowledge related to graph theory are presented.
The proposed fuzzy sliding-mode consensus controller for
the single-integral dynamic model is discussed in Sections
III. Also, the selection conditions for the controller param-
eters are derived to preserve the system consensus stability.
To validate the proposed works, some numerical examples
are given in Section IV. Finally, the concluding remarks are
given in Section V.

II. PRELIMINARIES

In this section, some fundamental definitions in algebraic
graph theory used for multiagent systems will be introduced.
Considering a multiagent system consisting of n agents, the
graph theory is utilized to model the information exchange
among agents. Let G = (V,E) be a directed graph (digraph),
which consists of a vertex set V = {v1, v2, . . . , vn} and an
edge set E ⊂ V × V . The vertexes vi and vj represent the
i-th and j-th agents, respectively. In the digraph, an edge of
G is an ordered pair of distinct nodes of V , (vi, vj) ∈ E . It
means that agent i can receive information to agent j, but not
necessarily vice versa. If all the adjacent nodes vi and vj can
obtain information from each other in a graph, i.e. the edge
(vi, vj) ∈ E and (vj , vi) ∈ E , the associated communication
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topology can be denoted as an undirected graph, a special
case of a digraph.

The weighted adjacency matrix of a digraph G is denoted
as

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦ ∈ Rn×n (1)

where aij is said to be the weight of the link (vi, vj) and⎧⎨
⎩

aij = 1, (vi, vj) ∈ E
aij = 0, (vi, vj) /∈ E
aii = 0

The degree matrix of the digraph G is a diagonal matrix,
D = [dij ] ∈ Rn×n, where

di =

{
0, i �= j∑n

j=1 aij , i = j

and di is called the in-degree of node vi.
Then the Laplacian matrix associated with the digraph G can
be defined as

L = D −A ∈ Rn×n

In this paper, we will focus on the leader-follower mul-
tiagent system that consist of one leader agent and n − 1
follower agents. Based on previous discussion, the agents
indexed by 1, 2, . . . , n − 1 are denoted as the followers
and n is the leader. Assume that the leader agent only
has the ability of transmission. In other words, the leader
cannot obtain any information from other follower agents,
anj = 0, j = 1, . . . , n. The related graph representations can
be re-modelled as follows. The topology relationships among
all the follower agents are described by a directed graph Ḡ
that is the subgraph of G. Then, the adjacency matrix of
digraph Ḡ is rewritten as

Ā =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1(n−1)

a21 a22 · · · a2(n−1)

...
...

. . .
...

a(n−1)1 a(n−1)2 · · · a(n−1)(n−1)

⎤
⎥⎥⎥⎦ (2)

Furthermore, let D̄ = diag{d̄1, d̄2, . . . , d̄n−1} be a degree
matrix of digraph Ḡ, where d̄i =

∑n−1
j=1,j �=i ai,j , i =

1, 2, . . . , n − 1. The Laplacian matrix of the digraph Ḡ can
be redefined as follow

L̄ = D̄ − Ā (3)

The connection relationship between leader and followers
can be described as B̄ = diag{b̄1, b̄2, . . . , b̄n−1}, where b̄i =
ain, i = 1, 2, . . . , n− 1.

III. CONSENSUS CONTROL

Considering possible uncertainties, the dynamic model of
a single integrator system is described as follows

ẋi = ui + δi, i = 1, 2, ..., n (4)

where xi is the position of x-axis of the i-th agent, ui is the
control input, and δi represents the uncertainty term.

In the leader-follower control structure that has n − 1
followers and one leader, the objective of the consensus
control is that all of follower agents will converge to the
leader agent. Therefore, based on the consensus algorithm,
the error function can be denoted as

ei =
n−1∑

j=1,j �=i

aij(xi − xj) + bi(xi − xn) (5)

The derivative of error function can be obtained as

ėi =
∑n−1

j=1,j �=i aij(ui − uj) + bi(ui − un)

+
∑n−1

j=1,j �=i aij(δi − δj) + bi(δi − δn)
(6)

Let an integral sliding function for the i-th agent be given
as

si = ei + ci

∫
eidt (7)

where ci is a positive constant. The derivative of si is shown
as

ṡi = ėi + ciei
= ci

∑n−1
j=1,j �=i aij(xi − xj) + cibi(xi − xn)

+
∑n−1

j=1,j �=i aij(δi − δj) + bi(δi − δn)

+
∑n−1

j=1,j �=i aij(ui − uj) + bi(ui − un)

(8)

The output of the FSMCC is designed to be

ui = uieq +

⎛
⎝ n−1∑

j=1,j �=i

aij + bi

⎞
⎠

−1

uifs (9)

where uieq is the equivalent control action and uifs is the
output of the fuzzy switching mechanism for the i-th agent.
The derivative of si is required to be zero so that the states
of the fuzzy control system can remain on the sliding surface
when si = 0. From (8), considering the uncertainty-free case,
it can be obtained that

ṡi = ėi + ciei
= ci

∑n−1
j=1,j �=i aij(xi − xj) + cibi(xi − xn)

+
∑n−1

j=1,j �=i aij(ui − uj) + bi(ui − un)

(10)

Thus, the equivalent control, uieq , can be designed as

uieq = −
(
ci
∑n−1

j=1,j �=i aij(xi − xj) + cibi(xi − xn)

−∑n
j=1,j �=i aijuj − biun

)(∑n−1
j=1,j �=i aij + bi

)−1

(11)
to have ṡi = 0.

For the FSMCC, a fuzzy switching mechanism is used to
assure that the fuzzy sliding control system can approach
the sliding surface. Let the si and the uifs be the input and
the output variables of the fuzzy switching control (FSC),
respectively. With the common knowledge of making the
system approach the sliding surface, the following instinctive
rules can be obtained as⎧⎨

⎩
uifs > 0, if si < 0
uifs = 0, if si = 0
uifs < 0, if si > 0

(12)
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Fig. 1. Membership functions of the fuzzy switch controller.

TABLE I

FUZZY RULE BASE.

Input(si) NB NM NS ZO PS PM PB
Output(uifs) PB PM PS ZO NS NM NB

The input and output spaces are fuzzily partitioned into
seven fuzzy sets, Negative Big (NB), Negative Medium
(NM), Negative Small (NS), Zero (ZO), Positive Small (PS),
Positive Medium (PM) and Positive Big (PB). The input and
output membership functions are shown in Fig. 1. Then the
fuzzy rules for the i-th agent have the following form:

Rik : IF si is Mik THEN uifs is Gik, k = 1, 2, . . . , 7,
(13)

where Mik and Gik are the corresponding fuzzy sets of
antecedent and consequence. Based on (12), complete fuzzy
rules in the fuzzy switching mechanism of the FSMCC are
provided in Table I. By using the centroid defuzzification
technique, the switching output uifs is calculated as

uifs =

∑7
k=1 gikMik(si)∑7
k=1 Mik(si)

(14)

where gik ∈ {yi1, yi2, . . . , yi7}, k = 1, 2, . . . , 7, are the
values of the corresponding output fuzzy singletons. From
the triangular membership functions depicted in Fig. 1, it is
easy to see that (14) can be simplified to be

uifs =
7∑

k=1

gikMik(si) = −
7∑

k=1

|gik|sign(si)Mik(si) (15)

where

sign(si) =

⎧⎨
⎩

1, if si > 0
0, if si = 0

−1, if si < 0

Substituting uieq and uifs into (9), the output of the fuzzy
sliding consensus controller FSMCC is,

ui = −
(∑7

k=1 |gik|sign(si)Mik(si)

+ ci
∑n−1

j=1,j �=i aij(xi − xj) + cibi(xi − xn)

−∑n
j=1,j �=i aijuj − biun

)(∑n−1
j=1,j �=i aij + bi

)−1

(16)

Let Vi = s2i /2 > 0 be a Lyapunov function candidate. The
derivative of Vi can be obtained as

V̇i = siṡi

= si

(
ci
∑n−1

j=1,j �=i aij(xi − xj) + cibi(xi − xn)

+
∑n−1

j=1,j �=i aij(ui − uj) + bi(ui − un)

+
∑n−1

j=1,j �=i aij(δi − δj) + bi(δi − δn)
) (17)

Assume that |δi| < Q < ∞, i = 1, . . . , n, where Q > 0. It
denotes that the uncertainty term of each agent has the same
bounded value. Therefore, the following assumption can be
obtained, ∑n−1

j=1,j �=i aij(δi − δj) + bi(δi − δn)

<
∑n−1

j=1,j �=i aij(Q+Q) + bi(Q+Q)

= 2(d̄i + b̄i)Q

(18)

Define Qi = 2(d̄i + b̄i)Q > 0. Thus, from (17), it leads to

V̇i < si

(
ci
∑n−1

j=1,j �=i aij(xi − xj) + cibi(xi − xn)

+ (
∑n−1

j=1,j �=i aij + bi)ui

−∑n−1
j=1,j �=i aijuj − biun +Qi

)
(19)

Substituting ui in (16) into (19), V̇i becomes

V̇i < si

(
Qi −

7∑
k=1

|gik|sign(si)Mik(si)

)
(20)

Observing above inequality, we can easy find that if

7∑
k=1

|gik|Mik(si) > Qi

then the sliding mode with the FSMCC is guaranteed. As
shown in Fig.1, the input and output membership functions
of the fuzzy mechanisms in the FSMCC is determined with

fik = −fi(8−k), fik > 0, k = 1, 2, 3, fi4 = 0;

yik = −yi(8−k), k = 1, 2, 3, yi4 = yisign(si).

Theorem 1: For the multi-agent consensus control system,
the stability of the i-th agent with the fuzzy sliding-mode
consensus controller (FSMCC) is guaranteed if there exists
a bounded positive constant Qi and the parameters of the
membership functions in Fig. 1 are designed as follows:⎧⎨

⎩
yik = ξyk+1, ξ > 1, k = 1, 2
|yik| = |yi(8−k)|, k = 1, 2, 3
yi > Qi

(21)

Proof. As shown in Fig. 1, the universe of the sliding variable
si can be divided into two types of regions, si ≥ 0 and
si < 0. When si ≥ 0, we have∑7

k=1 |gik|sign(si)Mik(si)
=
(
ξ3Mi1(si) + ξ2Mi2(si) + ξMi3(si) +Mi4(si)

)
yi
(22)

Substituting (22) into (20), the derivative of Vi can be
obtained as

V̇i < si
(
Qi −

(
ξ3Mi1(si) + ξ2Mi2(si)

+ξMi3(si) +Mi4(si)) yi)
(23)
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Since yi > Qi and ξ > 1, we can know that(
ξ3Mi1(si) + ξ2Mi2(si) + ξMi3(si) +Mi4(si)

)
yi > Qi.

Therefore, in the region si ≥ 0 the derivative of Vi can be
shown as follows

V̇i = siṡi < 0

Similarly, the negative definiteness of V̇ can be shown for the
case si < 0. From the aforementioned discussion, it can be
concluded that the stability of i-th follower in multi-agent
consensus control system with the proposed fuzzy sliding
consensus controller is guaranteed.
Remark 1 Due to yi > Qi = 2(d̄i + b̄i)Q > 0, it can be
known that the parameter yi is dependedt on communication
topology, i.e. d̄i and b̄i.

The previous discussion about the consensus control
is only for one particular agent, the i-th agent. In fact,
the proposed FSMCC can be applied to a general multi-
agent system with n − 1 followers. Let X be the state
vector of n − 1 followers, X = [x1 x2 . . . xn−1]

T ,
X ∈ Rn−1, Ueq = [u1eq u2eq . . . u(n−1)eq]

T , Ufs =
[u1fs u2fs . . . u(n−1)fs]

T , and U = [u1 u2 . . . un−1]
T =

Ueq +
(D̄ + B̄)−1

Ufs, U ∈ R(n−1). From (11) and (15),
the equivalent control action, Ueq , and the output of fuzzy
switching mechanism, Ufs, for the multi-agent system, re-
spectively, are represented as follows

Ueq = − (D̄ + B̄)−1 (
C
(L̄+ B̄)X − ĀU

−CB̄1xn − B̄1un

) (24)

and

Ufs =

⎡
⎢⎢⎢⎣

−∑7
k=1 |g1k|sign(s1)M1k(s1)

−∑7
k=1 |g2k|sign(s2)M2k(s2)

...

−∑7
k=1 |g(n−1)k|sign(sn−1)M(n−1)k(sn−1)

⎤
⎥⎥⎥⎦

(25)
where C = diag{c1, c2, . . . , cn−1}. Therefore, the output of
FSMCC in the multi-agent system can be given as

U = − (C(
(L̄+ B̄)X − B̄1xn)− B̄1un + Ufs

) (L̄+ B̄)−1

(26)

IV. SIMULATION RESULTS

To validate the feasibility of proposed consensus protocol,
an ideal single-integrator multi-agent system is considered.
The addressed single-integrator multi-agent system contains
one leader and four followers. Two cases of the consensus
control will be investigated, i.e. the position of leader agent
being fixed and time-varying, respectively. The communica-
tion graph with (0, 1)-weights for modeling the interactions
among agents is shown in Fig. 2, where numbers 1-4 are
follower agents and the number 5 is the leader agent. Thus
the associate adjacency matrix can be determined as

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 1
1 0 0 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Fig. 2. Communication topology with multi-agent system.

Let the initial positions of the followers 1-4 be [0, 0.5],
[0.1, 1], [0.3, 2] and [0.4, 2.5](m), respectively, and the initial
position of leader be [1, 2](m). For the consensus control with
fixed leader, the velocity of the leader is [0, 0]. Accordingly,
the simulation results are shown in Figs. 3-6, where Fig. 3
and Fig. 5 are the X-Y position responses, and the position
errors in the x-axis and y-axis are shown in Fig. 4 and Fig.
6, respectively. Figs. 3-4 and Figs. 5-6 are the corresponding
results with the conventional consensus algorithm and the
proposed FSMCC, respectively. The lines F1-F4 are the
trajectories of follower agents 1-4 and the symbol ’o’ is
the position plotted in 1.25 second interval. From Figs.
3-6, it can be seen that the required consensus can be
achieved by utilizing the conventional consensus algorithm,
and the proposed FSMCC. It can be also observed that the
transient responses of FSMCC is better than the responses of
the conventional algorithm. Furthermore, the case of time-
varying leader is considered, where the initial position and
the velocity of the leader are given as [0.2, 1.5](m) and
[0.2, 0.2] (m/sec), respectively. The initial positions of fol-
lowers are the same as the fixed-leader case. The trajectories
of the leader and followers are shown in Figs. 7-10. It is
interested to point out that the consensus requirement can not
be achieved by using the conventional consensus algorithm.
As for he proposed FSMCC, not only the consensus can be
achieved, but also the transient and steady-state responses
can be performed quite well.

V. CONCLUSIONS

This paper presents a fuzzy sliding-mode consensus con-
troller for a multi-agent system. The multi-agent system
with the proposed FSMCC can reach the desired position
asymptotically. Moreover, the stability of the control system
is guaranteed by the Lyapunov theorem. From the simulation
results, the effectiveness of the designed FSMCC for multi-
agent system can be provided. The simulation results empir-
ically support the promising performance of the presented
FSMCC controller.
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Fig. 3. Multi-agent consensus control with fixed position: conventional
consensus algorithm [5]
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Fig. 4. Multi-agent consensus control with fixed position: conventional
consensus algorithm [5]
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Fig. 5. Multi-agent consensus control with fixed position: FSMCC
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Fig. 6. Multi-agent consensus control with fixed position: FSMCC
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Fig. 7. Multi-agent consensus control with moving leader: conventional
consensus algorithm [5]
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Fig. 8. Multi-agent consensus control with moving leader: conventional
consensus algorithm [5]
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Fig. 9. Multi-agent consensus control with moving leader: FSMCC
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Fig. 10. Multi-agent consensus control with moving leader: FSMCC
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