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Abstract— Hydrocarbons, carbon monoxide, and other pol-
luting emissions produced by diesel engines are usually much
lower than those by gasoline engines. However, higher combus-
tion temperature in diesel engines cause substantially larger
percentage of nitrogen oxides (NOx) emissions. Selective cat-
alytic reduction (SCR) is a well proven technology for reducing
NOx emissions from automotive sources and in particular,
heavy-duty diesel engines. In this paper, we develop a quasi
linear parameter varying (qLPV) model to capture the non-
linearities in the dynamics of the ammonia SCR system with
varying catalyst surface temperature. To effectively enable
the use of LMI-based control design methods, the number
of LPV parameters in the qLPV model is then reduced
by using the principal component analysis (PCA) technique.
An LPV feedback/feedforward controller is designed for the
qLPV model with reduced number of scheduling parameters.
The designed full-order controller is further simplified to a
first-order transfer function with parameter-varying gain and
pole. Finally, simulation results illustrate the high conversion
efficiency with minimum ammonia slip of the closed-loop SCR
system using the parameter-varying control law.

I. INTRODUCTION

The lean burn conditions of diesel combustion that yield

improved efficiency produce exhaust gas containing an ex-

cess of oxygen (up to 10%). While net-oxidizing exhaust

enables the comparatively straightforward oxidation of hy-

drocarbons and carbon monoxide (CO) on precious metal

catalysts, it complicates the chemical reduction of nitrogen

oxides (NOx) to N2. This scenario has led to the vigorous

development of technologies for NOx reduction to meet the

stringent NOx exhaust limit mandated by the EPA. The NOx

emissions are one of the main air pollutants responsible for

ozone depletion and photochemical smog formation causing

severe respiratory problems to humans. Selective catalytic

reduction (SCR) is a well proven technology used in power

generation for more than 30 years. Stationary power gener-

ation involves very slow variation of operating conditions,

allowing simple open-loop controllers to efficiently tackle

the task of ACR control. However, automobile engines work

in a broad envelope of fast varying conditions, necessitating

the use of advanced SCR control techniques.

The SCR systems operates as follows: A urea injector,

driven by a command signal from the controller, pumps the

mixture of compressed air and aqueous urea solution into

the exhaust stream through a nozzle. Ammonia (NH3) and
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carbon dioxide are formed as a result of urea decomposition

and HNCO hydrolysis in the exhaust pipe [5]. The mixture of

ammonia, CO2, remaining urea, and the exhaust then enters

the SCR catalyst, where NH3 reacts with NOx from the

exhaust producing pure nitrogen and water. A sensor placed

at the catalyst outlet measures concentration of the unreacted

NOx and supplies this information to the controller, thereby

closing the loop. The control problem consists of achieving

the appropriate regulation of the urea injection to minimize

NOx emissions without significant ammonia slip.

There have been some efforts on lumped parameter mod-

eling of the SCR reactions in the literature. These simplified

models are appropriate for model-based control, since they

reduce the complexity of the design. Tronconi and Forzatti

[2] develop one- and two-dimensional steady-state isothermal

models of SCR for different geometries of the catalyst.

Upadhyay and Van Nieuwstadt [8] derive a lumped parameter

model of SCR by first assuming that the catalyst behaves

as an isothermal continuously stirred tank reactor (ICSTR)

and neglecting mass transfer, and next using the method of

weighted residuals. The reaction mechanism involves the

DeNOx reaction, adsorption/desorption of NH3 and NH3

oxidation. This model considers the reduction of only NO by

ammonia. Since, in Fe-zeolite catalyst NO2 based reactions

are highly favored, and NO2 is more toxic compared to NO,

Devarakonda et al. [12] present a set of ordinary differential

equations (ODEs) to model the SCR reactions considering

both fast SCR reaction involving NO2 and the standard SCR

reaction.

Model-based control and optimization of the SCR sys-

tem have been the focus of few recent published papers.

Upadhyay and Van Nieuwstadt [10] present a model-based

control strategy using sliding mode observer-based control.

The nonlinear observer is designed using the measured NOx

concentration downstream the SCR catalyst for estimation

of the surface coverage fraction and ammonia slip concen-

tration. A similar control design method which incorporates

both the NO and NO2 conversion efficiency in addition to

the ammonia slip is proposed in [12]. Schar et al. [11]

use a similar model as in [8] and design a model-based

feedforward controller to limit the ammonia slip and a PI

feedback controller for disturbance rejection purposes. Chi

and Dacosta [9] present a more advanced SCR model where

the catalyst channel is discretized axially and radially. A

simplified first-order model of the system is then used in

[9] for control design purposes, where the parameters are

estimated in real-time using a model reference adaptive
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controller. In [14] a PID-nonlinear model predictive control

method is presented for a urea-SCR system.

Principal component analysis is an effective method to

reduce the dimensionality of a data set consisting of a large

number of interrelated variables, while retaining as much

the data variation as possible [1]. This technique has been

recently extended to LPV models in [13] to reduce the

number of scheduling parameters. We take advantage of

this method for a lumped parameter SCR model where the

temperature of the catalyst is varying.

In the present paper, we use a third-order nonlinear model

developed in [8] and design a reduced-order gain-scheduled

LPV controller to maximize the NO conversion efficiency

and minimize the NH3 slip. The simulation results of this

paper illustrate a comparison between the performance of the

developed output feedback controller to that of a static state

feedback and also of sliding mode control, where the latter

methods require design of an observer for state estimation.

II. SCR SYSTEM LUMPED-PARAMETER MODEL AND ITS

QUASI-LPV REPRESENTATION

The key requirement of an SCR catalyst is to selectively

reduce NOx to N2 in the presence of ammonia (NH3).

Typical SCR washcoats contain base metals such as Cu, Fe,

and zeolites that store ammonia to enable NOx reduction.

Ammonia is obtained by the thermal decomposition and

hydrolysis of externally supplied aqueous urea. The two key

reactions involved in the SCR NOx reduction process are as

follows:

4NH3 + 4NO +O2 −→ 4N2 + 6H2O

4NH3 + 2NO + 2NO2 −→ 4N2 + 6H2O.

The second reaction, which involves both NO and NO2 at

equimolar amounts, is much faster than the first reaction

with only NO. The NOx conversion is improved by the

presence of NO2 except at high temperatures,where ammonia

oxidation limits NOx conversion.

The lumped-parameter model we use in the present paper

was developed in [8], in which the NO and NH3 concentra-

tions, as well as ammonia surface coverage fraction are three

states of the resulting differential equations. The ammonia

coverage fraction is defined as the ratio of number of stored

sites filled with NH3 to the total number of storage sites in

the catalyst. The model below is associated with the first

reaction described above. The complete model is as follows



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
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
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

 (1)

f1 = −CNO(ΘSCRredθ +
F

V
) +RoxΘSCθ

f2 = −θ(RadsCNH3 +Rdes +RredCNO +Rox) +

RadsCNH3

f3 = −CNH3

(

ΘSCRads(1− θ) + F
V

)

+ΘSCRdesθ

where CNO and CNH3
are concentrations of NO and NH3 in

mole/m3, respectively. The reaction rate for reaction i is rep-

resented by Ri = kiexp(
−Ei

RT
), i = ads, des, red, ox where

Ei is the activation energy and ki is the pre-exponential

term for the corresponding reaction. The parameter ΘSC

is the maximum ammonia storage capacity, and θ is the

surface coverage fraction. The range of variation for θ is

between 0 and 1. The variables F , V , R, and T represent the

constant flow rate through catalyst, catalyst volume, universal

gas constant, and catalyst surface temperature, respectively.

The input u is the concentration of ammonia entering the

catalyst and is the only controllable variable. The input d
is the NO concentration upstream the catalyst treated as an

external disturbance. The only measurement available is the

concentration of NO downstream the catalyst denoted by y.

The above system can be transformed to a quasi-LPV

(qLPV) form [6] with x as the state vector as follows

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0
F
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As observed, the system matrix A is affinely dependent

on the second state, i.e., surface coverage fraction θ, and

therefore θ is considered as the scheduling parameter in the

above LPV model provided that it is known in real-time.

In the state-space representation above, the system matrix A
can be represented as A(θ) = A0 + θA1 and the rest of the

system matrices are parameter-independent.

III. LPV CONTROL DESIGN APPROACH FOR SCR

SYSTEM

In the SCR system described above, the only measurement

available is the NO concentration downstream the catalyst.

The control design objective is to maximize the NO conver-

sion efficiency and minimize the ammonia slip, as well as

the amount of urea or ammonia to be injected. For the design

purposes of this paper, we consider ammonia as the control

input; however, it is noted that in an actual SCR system,

the concentration of urea is the control variable. We present

the proposed control design method with the objective of

minimizing the H∞ norm from the disturbance input (NO

concentration upstream the SCR catalyst) to an appropriately

defined controlled output, which is a weighted combination

of NO concentration downstream the catalyst and ammonia

slip. The control design method combines a feedforward

control law with a feedback action, where feedback control

gains are determined using a dynamic output feedback con-

trol law which will be further simplified to achieve a reduced-

order controller. The controller is designed to minimize the

H∞ norm of the closed-loop system as the performance
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measure. Observability and controllability of the system (1)

are discussed in [10]. The model introduced in (2) can be

rewritten as

ẋ = A(θ)x+B1d+B2u

y = C2x (3)

z = C1x.

by defining appropriate state matrices A(θ), B1, B2, C1 and

C2.

A. LPV Output Feedback Control Design Approach

We next consider the design of a gain-scheduled output

feedback controller represented with the following state-

space formulation

ẋk = Ak(θ)xk +Bk(θ)y (4)

u = Ck(θ)xk +Dk(θ)y.

As discussed earlier, the surface coverage fraction θ is

assumed to be the scheduling parameter. However, the ratio

θ is not actually measurable and must be estimated in real-

time. In this paper, we estimate θ using its steady-state value

to prevent the use of a full-state observer. From the first

equation in (1), we have the following at steady-state:

−CNO(ΘSCRredθ +
F

V
) +RoxΘSCθ +

F

V
d = 0.

Therefore, θ can be estimated by

θ̂ =
F
V
(CNO − d)

−CNOΘSCRred +RoxΘSC

(5)

which implies that the knowledge of inlet and outlet NO

concentrations is sufficient to estimate θ at each time instant.

We use the basic characterization of the gain-scheduled

control design with guaranteed stability and H∞ perfor-

mance as described in [4] for the qLPV model represented

by (2). Since, the dependence on the scheduling parameter

θ is affine the synthesis LMIs need to be solved only at

the two corners (i.e., maximum and minimum allowable

quantities for θ). For simplicity we consider constant basis

functions for Lyapunov functions R(.) and S(.) and the

auxiliary controller matrices Âk, B̂k, Ĉk, and Dk in the

corresponding synthesis LMIs presented in [4]. Therefore,

we have a finite number of decision variables to optimize.

Taking into account the above structure for the decision

variables, the only parameter-dependent controller matrix is

Ak characterized by

Ak(θ) = Ak0
+ θ̂Ak1

. (6)

In the controller representation (4), we force the matrix

Dk to be zero. The obtained controller is a full-order one;

however, it was observed that the dominant pole of this

system is constant for a fixed temperature and over the range

of variation of the LPV parameter θ. Therefore, we determine

a reduced-order controller that has the same DC gain as

Fig. 1. Schematic of the LPV control strategy for urea-SCR system

the original full-order controller. We found that the reduced-

order controller is a first-order transfer function and since

Dk is zero, it can be represented by

K(s) =
α(θ̂)

s+ p
(7)

where p is the dominant pole of the designed controller. In

order to have equal DC gains for both full-order and reduced-

order controllers, the following relation holds

α(θ̂)

p
= −CkA

−1

k (θ̂)Bk (8)

which indicates that the knowledge of p provides the param-

eter α scheduled based on θ̂.

To improve the steady-state performance of the closed-

loop system, a feedforward term is added to the feedback

control output (as shown in Figure 1) by keeping the ammo-

nia slip at a desired level at steady-state using the following

law

uff =
V

F
[CNH3,desired

(

ΘSCRads(1− θ̂) + F
V

)

−ΘSCRdesθ̂] (9)

where CNH3,desired is the desired ammonia slip and θ̂ is the

real-time estimate of the LPV parameter using (5).

B. Temperature Effect on Reduced-Order Control Design

In the previous section, the catalyst temperature was

assumed to remain constant in the control design process. In

this section, we modify the control design method designed

earlier to account for variability of the exhaust temperature

as a result of different speeds and loads. It has been re-

ported that there is a slight difference between the exhaust

temperature and the catalyst downstream temperature [12],

and the catalyst operating temperature can be considered as

the average of these two temperatures.

As discussed in the previous section, the dominant pole of

the full-order LPV output feedback controller (at a fixed op-

erating point) was found out to be a function of temperature

over the range of variation of the parameter θ̂. Therefore, the

reduced-order controller will be in the following form

K(s) =
α(T, θ̂)

s+ p(T )
(10)

and the DC gain of the controller is calculated as

α(T, θ̂)

p(T )
= −CkA

−1

k (θ̂)Bk (11)

1545



It is found out that −CkA
−1

k (θ̂)Bk has an approximately

affine dependency on the scheduling parameter θ̂. Therefore,

we have

−CkA
−1

k (θ̂)Bk = g1(T )θ̂ + g2(T ) (12)

in which the line characteristic changes with respect to

the operating temperature, and p(T ), g1(T ) and g2(T ) are

mappings that are determined offline. We found out that these

parameters can be estimated using polynomials of 2nd and

3rd order. The algorithm uses the exhaust gas temperature

to calculate the controller dominant pole. Further simulation

studies revealed that this dependence is logarithmic, i.e.,

log p(T ) = γ0 + γ1T + γ2T
2. (13)

C. PCA-based LPV Control Design

The principal component analysis (PCA) of typical

scheduling trajectories is a method to reduce the number of

parameters of qLPV models for the synthesis of LPV gain

scheduling controllers. This method enables a systematic

trade-off between the reduced number of parameters and the

desired accuracy [13]. In this section, we briefly describe the

process involved and present the results of applying the PCA

method to the SCR system model discussed before where the

scheduling parameters θ̂ and T are estimated and measured,

respectively (i.e., ρ =
[

θ̂ T
]T

). For the varying temperature

case, the system matrices can be parameterized as a function

of a time-varying parameter vector δ(t) that depends on the

vector of scheduling parameter vector ρ(t) as follows

δ1 = Rredθ̂ δ2 = Rox δ3 = Rdes

δ4 = Rads δ5 = Radsθ̂ (14)

By such parameter vector selection, the system matrix A
in (2) becomes

A =





−
F
V
−Θscδ1 Θscδ2 0
−δ1 −δ3 − δ2 δ4 − δ5
0 Θscδ3 −Θscδ4 +Θscδ5 −

F
V





which is now affine in terms of δ′is. Assume that δ =
[

δ1 ... δp
]T

, where p = 5 in our case. We generate typical

data for the scheduling signals and construct the data matrix

E =
[

δ(0), ... , δ((N − 1)Ts)
]

where Ts is the sampling time. This data matrix is then

normalized to achieve scaled zero mean values shown by En.

Next, a singular value decomposition (SVD) is performed on

En as follows:

En =
[

Um Uk

]

[

Σm 0 0
0 Σk 0

] [

V T
m

V T
k

]

.

The basic idea behind the PCA is that if the data are corre-

lated some singular values are small compared to the others

[1]. Therefore, smaller singular values can be neglected

and the reduced parameter vector φ(t) = q(ρ(t)) ∈ R
m

where m < p can be reconstructed from the data only

corresponding to the m largest singular values as

Ên = UmΣmV T
m ≈ En

where Ên is an approximation of the original data matrix.

For quantifying this approximation accuracy the fraction of

total variation is defined as

υ =

∑m

i=1
σ2

i
∑p

i=1
σ2

i

(15)

where υ close to 1 shows a better accuracy. In (15), σi

is the ith singular value of the data matrix En .Note

that there is a trade-off between the accuracy and model

complexity. Keeping a higher number of singular values

leads to better accuracy but not necessarily an appropriate

parameter reduction. The bounds on φ(t) are determined as

follows

φ
i
= min

j
qi(ρ(jTs)), φ̄i = max

j
qi(ρ(jTs))

IV. SIMULATION RESULTS

In order to meet the dual goals of maximizing NO con-

version efficiency and minimizing ammonia slip, we chose

z = a1x1+a3x3 as the control output in (3). The feedforward

part of the output feedback controller is designed to keep

the ammonia slip around 10 ppm in all of the performed

simulations. The emission data corresponds to an EPA Urban

Dynamometer Driving Schedule (UDDS) which has been

developed for chassis dynamometer testing of heavy-duty

vehicles. The basic parameters of the cycle are duration for

1060 seconds, distance of 5.55 miles, average speed of 18.86

mile/h, and maximum speed of 58 mile/h.

To show the effectiveness of the design method of Sec-

tion III-B for the temperature-varying case we compare the

performance of the reduced-order LPV controller of Section

III-A with that presented in Section III-B for the example

considered above, with a varying temperature profile shown

in Figure 2. The First controller we design is scheduled

only based on θ̂ and the second one is scheduled based

on both θ̂ and the exhaust temperature T e. The results are

shown in Figures 3 and 4. The NO conversion efficiencies

for the first and second cases are calculated to be 30% and

87%, respectively. Also, using a feedforward term similar

to (9) but temperature-dependent, we are able to keep the

ammonia slippage around our desired steady-sate value of

10 ppm using a gain-scheduling control method. The control

inputs corresponding to the two control methods are shown

in Figure 5. As Figure 5 demonstrates, for the temperature-

varying case the LPV controller scheduled based on only

θ̂ results in a control action (injected ammonia) with a

large number of switchings between low ammonia and high

ammonia levels. However, the LPV controller scheduled on

both θ̂ and T leads to a smooth control action due to the

consideration of varying temperature in the reduced-order

controller dynamics.

For the SCR quasi-LPV model with varying temperature,

there are five scheduling parameters. Using the PCA tech-

nique described in Section III-C, we are able to reduce the
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Fig. 3. NO concentration downstream the catalyst and ammonia slip for

LPV control scheduled only on θ̂.
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Fig. 4. NO concentration downstream the catalyst and ammonia slip for

LPV control scheduled on both θ̂ and T .
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Fig. 5. Injected ammonia concentration

number of parameters to only one or two parameters. Our

studies showed that the first principal component captures

63% and the first two principal components capture 93% of

the model dynamics. Due to the relatively good accuracy

and lower complexity, the model with one parameter is used

to for controller design purposes. The nonlinear model is

controlled by an LPV H∞ output feedback controller that

is scheduled on the reduced parameter vector φ(t). Since

the model is affine in terms of φ, taking advantage of the

multi-convexity property, the controller synthesis LMIs hold

for all φi ∈ [φ
i
, φ̄i] if they hold at only the vertices [3].

The parameter reduction makes the computations tractable

in the LPV design process because the number of LMIs

to be solved depends exponentially on the number of LPV

parameters. In addition, the PCA method results in a model

that is affine in the reduced parameter space.

Simulation results demonstrate that the designed full-

order controller can be reduced to a first-order parameter-

varying one without drastically sacrificing performance. The

simulation results are shown in Figures 6, 7 and 8. The

Performance of the reduced-order controller gain scheduled

based on θ̂ and T is compared with that of the open-loop case

where constant amount of ammonia is injected (320 ppm).

By making use of a gain-scheduled feedforward control

law, we are able to keep the NH3 slip around 10 ppm as

before. However, this is not possible using open-loop control.

Therefore, the constant amount of injected ammonia to the

open-loop SCR system is adjusted so that the mean value of

NH3 slip remains around 10 ppm. The conversion efficiency

for open-loop and closed-loop systems is calculated to be

88% and 74%, respectively. The injected ammonia is 17.82

mole/m3 for the closed-loop controlled system and 14.06

mole/m3 for the system with a fixed input.

V. CONCLUDING REMARKS

In this paper we proposed an LPV control design method

for ammonia-selective catalytic reduction (SCR) aftertreat-

ment system. The designed output feedback controller used
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the concentration of NO upstream and downstream the cata-

lyst. Eliminating the fast modes in the full-order LPV output

feedback controller resulted in a simple first-order transfer

function gain-scheduled as a function of the LPV parameter

(the surface coverage fraction at steady-state). Inspired by

the gain-scheduling control strategy, we also investigated

the impact of exhaust temperature on the structure of the

reduced-order controller as an additional LPV parameter. To

deal with the complexity of the LPV model due to the large

number of gain-scheduling parameters, we used PCA as a

powerful data reduction method that works based on singular

value decomposition of the collected data matrix. The use of

PCA not only led to a lower number of LPV parameters, but

also provided an affine model (in terms of the reduced LPV

parameters) that was significantly easier to use in the control

design process. The authors are currently implementing the

proposed controllers on a lab-bench reactor to validate the

effectiveness of the design.

VI. ACKNOWLEDGEMENT

The financial supports provided by Texas Commission on

Environmental Quality (TCEQ) and by the Environmental

Institute of Houston (EIH) are highly appreciated. The first

author gratefully acknowledges the useful discussions with

Dr. Rachel Muncrief of Chemical and Biomolecular Engi-

neering at the University of Houston.

REFERENCES

[1] I. T. Jolliffe, Principal component analysis, Springer series in statistics,
second edition 2002.

[2] E. Tronconi and P. Forzatti, “Adequacy of lumped parameter models
for SCR reactors with monolith structure,” in Proc. of AIche, vol. 38,
no. 2, 1992.

[3] P. Gahinet, P. Apkarian, and M. Chilali, “Affine Parameter-Dependent
Lyapunov Functions and Real Parametric Uncertainty,” IEEE Trans.

Automatic Control, vol. 41, no. 3, pp. 436-442, 1996.
[4] P. Apkarian and R.J. Adams, “Advanced Gain Scheduling Techniques

for Uncertain Systems,” IEEE Trans. Control Systems Technology, vol.
6, no. 1, pp. 21-32, 1998.

[5] M. Koebel, M. Elsener, and M. Kleemann, “Urea-SCR: a promising
technique to reduce NOx emissions from automotive diesel engines,”
Catalysis Today 59, pp. 335-345, 2000.

[6] W. J. Rugh and J.S. Shamma, “Research on gain scheduling,” Automat-

ica, 36, pp. 1401-1425, 2000.
[7] H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River,

NJ, third edition, 2002.
[8] D. Upahhyay and M. Van Nieuwstadt, “Modeling of a urea SCR catalyst

with automotive applications,” in Proc. of ASME IMECE, New Orleans,
Louisiana, 2002.

[9] J. N. Chi and H. F. M. Dacosta, “Modeling and control of a urea-SCR
aftertreatment system,” SAE International, 2005.

[10] D. Upahhyay and M. Van Nieuwstadt, “Model based analysis and
control design of a urea-SCR deNOx aftertreatment system,” ASME

Journal of Dynamic Systems , Measurement, and Control, vol. 128, n.
3, pp. 737-741, 2006.

[11] C. M. Schar, C. H. Onder, and H. P. Geering, “Control of an SCR
catalytic converter system for a mobile heavy-duty application,” IEEE

Trans. Control Systems Technology, vol. 14, no 4, pp. 641-653, 2006.
[12] M. Devarakonda, G. Parker, J. H. Johnson, V. Strots, and S. San-

thanam, “Model-based estimation and control system development in a
urea-SCR aftertreatment system,” SAE International, 2008.

[13] A. Kwiatkowski and H. Werner, “PCA-based parameter set mappings
for LPV models with fewer parameters and less overbounding,” IEEE

Trans. Control Systems Technology, vol. 16, no. 4, 2008.
[14] M. F. Hsieh and J. Wang, “Computationally-efficient nonlinear model

predictive control of SCR ammonia surface coverage,” in Proc. of ASME

DSCC, Hollywood, CA, Oct. 2009.

1548


