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Abstract— We consider finite populations of interacting play-
ers with different types and finite action set per type. Under
suitable conditions we derive the mean field game dynamics
which can be deterministic or stochastic depending on how
the system behave with the time-scales. Connection between
mean field game dynamics and evolutionary game dynamics are
established. Considering different revision protocols for each
player, we derive an hybrid mean field game dynamics which
offers the possibility of elimination of non-Nash rest points and
give nice convergence properties in potential games and stable
games.

I. INTRODUCTION

Population games and mean field game dynamics provide
a framework for describing strategic interactions among
large number of players. Originally formulated to explain
complicated stochastic large system behaviors, mean field
dynamics become a fundamental technique in the field of
large-scale systems. Mean field game dynamics covers a
large class of game dynamics known in evolutionary game
theory [3], [5], [9], [2], [4].

Traditionally, predictions of behavior and outcome in game
theory are based on some notion of equilibrium, typically
Cournot equilibrium (Cournot, 1838), Bertrand equilibrium
(Bertrand, 1883), conjectural variation (Bowley, 1924), min-
max equilibrium (von Neumann 1928), Stackelberg solu-
tion (Stackelberg, 1934), Nash equilibrium (Nash, 1950),
Wardrop equilibrium (Wardrop, 1952) or some refinement
and/or extensions thereof. Most of these solution concepts
require the assumption of equilibrium knowledge, which
assume that that each player correctly anticipates how the
other players will react. The equilibrium knowledge assump-
tion is too strong and is difficult to justify in particular in
context with large populations of players. As an alternative
to the equilibrium approach, the evolutionary game approach
proposes an explicitly dynamic updating choice, a model in
which players myopically update their behavior in response
to their current strategic environment which is given by
mean field game dynamics. This dynamic procedure does not
assume the automatic coordination of players’ actions and
beliefs, and it can derive many players’ actions and transition
rates. These procedures are specified formally by defining
a revision of actions called revision protocol [4] which is
obtained from the transition kernels of the mean field pro-
cess. A revision protocol takes current payoffs and the system
state as arguments; its outputs are conditional switch rates
which describe how frequently players in some class playing
action who are considering switching strategies switch to
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another action, given the current expected payoff vector and
population state. This revision of actions is flexible enough
to incorporating a wide variety of paradigms, including
ones based on learning, imitation, adaptation, optimization,
etc. The revision of actions describe the procedures players
follow in adapting their behaviors in the dynamic evolving
environment such as evolving networks (Internet traffic, flow
control etc).

In this paper, we introduce and analyze hybrid mean field
game dynamics in large population and present a simulation
framework based on the mean field process.

Our contribution can be summarized as follows. We
propose an explicit interaction model in large populations
and present generic convergence results. We derive not only
deterministic mean field game dynamics but also stochastic
mean field game dynamics. We illustrate limit cycles and
non-commutativity of the mean field process. We show that
a major class of evolutionary game dynamics that are used
in evolutionary game theory can be obtained from the mean
field game dynamics. This allows us to address the question
of: What happens if the players use different revision proto-
cols and different learning schemes ? We derive hybrid mean
field game dynamics and give some convergence properties.

The paper is organized as follows. In Section II we
present the mean field model. In section III we present the
derivation of mean field game dynamics and their connection
to evolutionary game dynamics. Hybrid mean field game
dynamics are analyzed in Section IV. Section V concludes
the paper.

II. THE SETTING

Consider a system consisting of large populations of
players. Each player has a finite number of actions. At each
stage, a random set of players interact. The actions of all
the interacting players determine together the instantaneous
payoffs and the probability transitions to the next actions.
We study the convergence of the Markov process with
variable set of interacting players when the total number of
possible players grow without bound. The limiting games
are equivalent to population games. Time t ∈ N is discrete.
There is a set of resources those states are represented by
Snt ∈ S (finite). There are n players (n ≥ 2). For every
player j, X is its own state space. An individual state has
two components: the type of the player and the current
action. The type is a constant during the game. The state
of player j at time t is denoted by Xn

j,t = (θj , A
n
j,t) where

θj is the type. The set of possible states is finite. Aj may
include other parameters, such as, space location, current
direction and so on. The individual state of player j at time
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t is denoted by Xn
j,t. For each player j, Aj(s, θj) is the

set actions that are available to player j. We assume that
the set Aj(s, θj) depends only the type θj . The action of
player j at time t is Anj,t. The global state of the system
at time t is (Snt , X

n
t ) = (St, X

n
1,t, ..., X

n
n,t). Denote by

Ant = (An1,t, . . . , A
n
n,t) the action profile at time t. The

system (Snt , X
n
t ) is Markovian once the action profile Ant are

drawn under Markovian strategies. The players are coupled
not only via their instantaneous payoff function ũ(Snt , X

n
t )

but also via the state evolution Xn
t i.e the evolution of Xn

j,t

depends on the states and the actions of the other players.
Define Mn

t to be the current population profile i.e

Mn
x,t =

1

n

n∑
j=1

1l{Xnj,t=x}. (1)

At each time t, Mn
t is in the finite set {0, 1

n ,
2
n , . . . , 1}

|X |,
and Mn

x,t is the fraction of players who belong to population
of individual state x. For a subset X̃ ⊆ X , define Mn

t (X̃) :=
1
n

∑n
j=1 1l{Xnj,t∈X̃}

.

Strategies and random set of interacting players: At time
slot t, an ordered list Bnt , of players in {1, 2, . . . , n}, without
repetition, is selected randomly as follows. First we draw a
random number of players kt such that P(|Bnt | = k | Mn

t =
m) =: Jnk (m) where the distribution Jnk (m) is given for
any n, m ∈ {0, 1

n ,
2
n , . . . , 1}

|X |. Second, we set Bnt to an
ordered list of kt players drawn uniformly at random among
the n(n− 1)...(n− kt + 1) possible ones.

Each player such that j ∈ Bnt takes part in a one-shot
interaction at time t, as follows. First, each selected player
j ∈ Bnt has opportunity to revise its action aj,t ∈ A(s).

Denoting the current set of interacting players Bnt =
{j1, . . . , jk}. Given the actions aj1 , ..., ajk drawn by the k
players, we draw a new set of individual states (x′j1 , ..., x

′
jk

)
and resource state s′ with probability Lns;s′(k,m), where a is
the vector of the selected actions by the interacting players.

We assume that the transition kernel Ln is invariant by
any permutation of the index of the players within the
same type. This implies in particular that the players are
only distinguishable through their individual state. Moreover,
the process Mn

t is Markovian under Markovian strategies.
Denote by w̄ns,s′(m) be the marginal transition probability
between the resource states. Given any vector m of ∆(X ),
the resource state generates an irreducible Markov process
with limiting invariant measure ws(m). Then, we can sim-
plify the analysis by fixing the resource state St = s without
losing generality.

III. MEAN FIELD CONVERGENCE OF POPULATION
GAMES

In this section, we present two main mean field con-
vergence results. We provide a general convergence result
of the mean field to a stochastic differential equation. Let
Fnt = σ(Ant′ , t

′ ≤ t) be the filtration generated by the
sequence of states and actions up to t. The evolution of the
system depends on the decision of the interacting players.

Given a history ht = (S0, A
n
0 , . . . , St = s,Ant ). Xn

t+1

evolves according to the transition probability

Ln(x′;x, s) = P
(
Xn
t+1 = x′ | ht

)
The term Ln(x′;x, s) is the transition kernel on Xn. Let
xn = (xn1 , . . . , x

n
n) such that 1

n

∑n
j=1 δxnj = m and define

Ln(m′;m, s) =
∑

(x′1,...,x
′
n)

1
n

∑n
j=1

δ
x′
j

=m′

Ln(x′;x, s).

The system evolves according to the kernel

Ln(m′;m, s)

:= P(Mn
t+1 = m′ |Mn

t = m,St = s)

= P(Mn
t+1 = m′ |h̃t)

where h̃t = (St′ , A
n
t′ , t

′ ≤ t, St = s,Xn
t = xn), such that

1
n

∑n
j=1 δxnj = m. The term Ln(m′;m, s) corresponds to

the projected kernel of Ln.

A. Deterministic mean field limit

Theorem 1: Let Md
n = {m | nm ∈ Nd}. Suppose that

D0: For every s, the function ws(m) is continuously differ-
entiable in m.

D1: ∃ 0 < δn, εn ↘ 0, and a continuously differentiable
function f : Rd × S −→ Rd such that

lim
n

sup
‖m‖≤1

‖ f
n(m, s)

δn
− f(m, s) ‖= 0,

where x ∈ X and fnx (m, s) =∫
m′∈Md

n

1l‖m′−m‖≤2(m′x −mx)Ln(dm′;m, s),

D2:

sup
n

1

δn

∫
m′∈Md

n

‖ m′ −m ‖ Ln(dm′;m, s) < +∞

D3: limn
1
δn

∫
m′∈Md

n
1l‖m′−m‖>εn ‖ m′ − m ‖

Ln(dm′;m, s) = 0,
D4: Mn

0 = mn
0 converges to m0 ∈ ∆(X ).

Then, for all ε > 0, T < +∞,

lim
n

P

(
sup
t∈[0,T ]

‖Mn
t
δn

−mt[m0] ‖> ε

)
= 0,

where mt[m0] is the unique solution of the ordinary differen-
tial equation ṁt = f̃(mt) starting from m0 ∈ ∆(X ) where
f̃(mt) :=

∑
s∈S ws(mt)f(mt, s).

Proof: We check that the assumptions D0-D4 are
sufficient conditions for the application of Kurzt (1970)
which gives the announced result.
How these assumptions can be checked? The assumption D1
demands that as n grows large, the expected changes per time
unit f

n

δn
converge uniformly to a Lipschitz continuous vector

field f . Lipschitz continuity of f, w ensure the existence and
uniqueness of solutions of the mean field game dynamics
ṁt = f̃(mt),m(0) = m0 The assumption D2 requires that
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the expected absolute changes per time unit is bounded.
The assumption D3 demands that jumps larger than εn
make vanishing contributions to the motion of the processes,
where εn is a sequence that converges to zero. D0 and
D4 are respectively regularity assumptions and initialization
conditions.

Consequently, under the vanishing scaling assumptions
δn, εn and the hypothesis D0-D4, one has a deterministic
approximation of the random process Mn and the determin-
istic trajectory is described by the ODE.

As we can see some of the assumptions in the above
theorem may not be satisfied in wide range of applications
in large populations. The assumptions are satisfied when
the second moment of number of players that change their
individual states in one time slot are bounded in expectation.
However, when there are simultaneous and many local inter-
actions as large population games, the second moment may
not be finite when the size of the population goes to infinity.
Then, a natural question is to ask is: what will happens if
the second moment condition is not satisfied?

In the next section, we will partially answer to this
question by proposing a mean field convergence to stochastic
differential equation called noisy mean field limit.

B. Stochastic mean field limit

Below we provide sufficient conditions on the transition
kernels Ln and time-scaling δn to get a weak convergence
of the process Mn

t .

C0: For every s ∈ S, ws(m) is continuously differentiable
in m.

C1: There exists δn ↘ 0 and continuous mapping a : Rd×
S −→ Rd×d such that (x, x′, s) ∈ X 2 × S,

lim
n

sup
‖m‖≤1

‖ a
n(m, s)

δn
− a(m, s) ‖= 0,

where (x, x′, s) ∈ X 2 × S, anx,x′(m, s) =∫
m′

1l‖m′−m‖≤2(m′x−mx)(m′x′−mx′)Ln(dm′;m, s),

and the third moment is finite. Denote by

ãx,x′(m) =
∑
s∈S

ws(m)ax,x′(m, s)

C2: There exists a continuous mapping f : Rd×S −→ Rd
such that ∀s ∈ S,

lim
n

sup
‖m‖≤1

‖ f
n(m, s)

δn
− f(m, s) ‖= 0,

C3: For all ε > 0; ∀s ∈ S,

lim
n

1

δn

∫
m′∈Rd

1l‖m′−m‖>εLn(dm′;m, s) = 0,

C3’: ∀s ∈ S,

sup
m∈Rd

sup
n≥1

[
‖ a

n(m, s)

δn
‖ + ‖ f

n(m, s)

δn
‖
]
<∞,

Theorem 2: Assume C0 − C3. Then, for any test
function φ, generator 1

δn
Lnφ(m, s) −→ Lφ(m)

for any m where Lφ(m) =
∑
x f̃x(m) ∂

∂mx
φ(m) +

1
2

∑
x,x′ ãx,x′(m) ∂2

∂mx∂mx′
φ(m).

Moreover, if the function ã(.) and f̃(.) have the property
that for each m ∈ Rd, the martingale problem for a and f has
exactly one solution πm starting from m. Then, πn,m −→
πm as δn ↘ 0 uniformly in m where πn,m is the law of
interpolated process from Mn

t . In addition, if C3′ holds then
the martingale problem has a unique solution.

A detailed proof of the Theorem is given in [6]. See
also [7] for a generalization. This result provides a mean field
convergence to a solution of stochastic differential equation
with drift f and diffusion term a which is reported in the
following corollary:

Corollary 1: Suppose that Mn
0 −→ µ0 in law where µ0

is a probability measure. Under B0-B3’, the process Mn
t

converges in law to a solution of the stochastic differential
equation (SDE) given by dm̃t = f̃(m̃t)dt+σ̃(m̃t)dBt where
σ̃σ̃t = ã, and B is a standard Brownian motion (a Wiener
process).

Proof: This result follows from Theorem 2 and the con-
vergence of 1

δn
Lnφ(m, s) −→ Lφ(m, s) using the tightness

properties of the processes.

C. Derivation of evolutionary game dynamics

The first theorem provides a deterministic mean field game
dynamics for multiple-type population games. The theorem
?? is a generalization of the deterministic evolutionary game
dynamics based on revision protocols under the form

ṁx,t =
∑
x′∈X

Lx′x(mt)mx′,t −mx,t

∑
x′∈X

Lxx′(mt), (2)

which can be obtained from the drift limit f for Bnt = {jl}.
Theorem 2 derives stochastic evolutionary game dynamics
from mean field game dynamics.

Lemma III-C.1: Let Lxx′(mt) = mx′,t max{0, ux′(mt)−
ux(mt)}, Then mean field game dynamics in (2)
becomes the replicator dynamics [5], [3] ṁx,t =
mx,t

[
ux(mt)−

∑
x′∈X mx′,tux′(mt)

]
Proof:

ṁx,t =
∑
x′∈X

Lx′x(mt)mt(x
′)−mx,t

∑
x′∈X

Lxx′(mt)

=
∑
x′∈X

mx,t max{0, ux(mt)− ux′(mt)}mx′,t

−mx,t

∑
x′∈X

mx′,t max{0, ux′(mt)− ux(mt)}
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which can be written as

ṁx,t = mx,t

∑
x′∈X

mx′,t (max{0, ux(mt)− ux′(mt)}

−max{0, ux′(mt)− ux(mt)})
= mx,t

∑
x′∈X

mx′,t (ux(mt)− ux′(mt))

= mx,t

(
ux(mt)[

∑
x′∈X

mx′,t]−
∑
x′∈X

mx′,tux′(mt)

)

= mx,t

[
ux(mt)−

∑
x′∈X

mx′,tux′(mt)

]

where we have used the fact that
∑
x′∈X mx′,t = 1, and

max{0, ux(mt)−ux′(mt)}−max{0, ux′(mt)−ux(mt)} =
ux(mt)− ux′(mt).

D. Equilibrium state

At limiting in population size, we associate to each generic
player with state x a payoff function ux : Rd −→ R. Denote
by u(.) = (ux(.))x∈X . The pair (X , u) defines a population
game and the mean field limit can be seen as the population
state or population profile. We say that a population profile
m∗ is an equilibrium if for all x ∈ X , one has

m∗x > 0 =⇒ ux(m∗) = max
x′∈X

ux′(m∗).

This definition is equivalent to the variational inequality
problem: find m∗ such that 〈u(m∗),m∗ −m〉 ≥ 0, ∀m ∈
∆(X ). Hence the following result follows

Theorem 3: Assume that u is continuous. Then, the pop-
ulation game has at least one equilibrium.
For the proof, we use existence of solution of the variational
inequality problem under continuity argument. Another al-
ternative is to write it in form of a Brouwer fixed point map.

We say that the population game with payoffs u(.) is
a full potential population game if there is a continuously
differentiable mapping Vp : Rd −→ R such that

∂

∂mx
Vp(m) = ux(m).

The mean field game dynamics generated by the rate of
transition L is positively correlated if f̃(m) 6= 0 =⇒
〈f̃(m), u(m)〉 > 0.

Proposition 1 (Convergence): Global convergence holds
in potential population games under positive correlation.
The proof of this result follows from the fact that the
potential function provides also a Lyapunov function.

Now, we present a convergence result for population
games with monotone payoffs (also called stable games). We
say that the population game has monotone payoffs1 if 〈m−
m′, u(m) − u(m′)〉 ≤ 0, ∀m,m′. This class of population
games includes zero-sum games, potential concave games,
population games with two pure strategies etc.

1Notice that, an operator T is said monotone if 〈Tm−Tm′,m−m′〉 ≥
0. Here, we consider the opposite inequality.

Consider the class of rate transitions: β̃x′x(m, r) =
ξx[max(ux(m) − ux′(m), 0)] where ξ : R −→ R+ is a
non-decreasing function.

Proposition 2 (convergence): Under the mean field game
dynamics generated by the transition β̃, global convergence
holds in any population games with monotone payoffs.

Proof: A proof can be obtained from [8].
It is known that specific payoff structures such as the

structure of potential, stable, and supermodular games, makes
evolutionary justifications of the equilibrium prediction.
However, once we move beyond these particular classes of
population games, it is not clear how often convergence
will occur. In addition, most of the games do not have
these specific properties. We provide examples (fig. 1) that
counterbalance the convergence approach by investigating
non-convergence of mean field game dynamics, describing
situations in which cycling offer the best predictions of long
run behavior.

IV. MEAN FIELD GAME DYNAMICS WITH HYBRID
LEARNING SCHEMES

We now study how to combine various learning schemes
based on mean field game dynamics. Different learning and
adaptive algorithms have been studied in the literature. In
most of the analysis, the players have to follow the same
rule of learning, they have to learn in the same way. We
now ask the following question:

What happens if the players have different learning
schemes?

We propose learning schemes in which player use less
information about the other players, less memory on the
history and do not need to use the same learning scheme.
Below we list some mean field game dynamics that we
borrow from evolutionary game dynamics [4]. They are in
the form

ṁθ
a,t =

∑
ā

mθ
ā,tρ

θ
ā,a(mt)−mθ

a,t

∑
ā

ρθa,ā(mt)

where θ denotes a type and ρ is the migration rate between
actions i.e ρθa,ā(mt) = L(θ,a),(θ,ā)(mt).
• excess payoff dynamics: Brown-von Neumann-Nash

dynamics is one of well-known excess payoff dynamics.
The Brown-von Neumann-Nash dynamics is obtained for
ρ1,θ
a′,a(mt) = max(0, uθa(mt)−

∑
ām

θ
ā,tu

θ
ā(mt)). The set of

the rest points of the BNN dynamics is exactly the set of
(Nash) equilibria.
• Imitation of neighbors: the replicator dynamics is ob-

tained for ρ2,θ
a′,a(mt) = mθ

a,t max(0, uθa(mt)−uθa′(mt)). The
set of the rest points of the replicator dynamics contains
the set of equilibrium states but it can be must bigger since
it is known that the replicator dynamics may not lead to
equilibria. Typically, the corners are rest points and the faces
of the simplex are invariant but may not be an equilibrium.
• Boltzmann-Gibbs dynamics also called smooth best

response dynamics or logit dynamics is obtained for

ρ4,θ
a′,a(mt) = e

uθa(mt)

ε∑
ā e

uθā(mt)

ε

, ε > 0. Using the logit map, it can
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be shown that the time average of the replicator dynamics
is a perturbed solution of the best reply dynamics. The rest
points of the Smooth dynamics are approximated equilibria.
• Pairwise comparison dynamics: for example the

generalized Smith dynamics is obtained for ρ5,θ
a′,a =

max(0, uθa(mt) − uθa′(mt))
γ , γ ≥ 1. The set of rest points

of the generalized Smith dynamics is exactly the set of equi-
libria. In [8] it is proved that under this class of dynamics,
global convergence holds in stable games and in potential
games etc. Extension to evolutionary game dynamics with
migration between location of players and application to
hybrid power control in wireless communications can be
found in [8].
• Best response dynamics is obtained for ρ6 equal to the

best reply to mt. The set of rest points of the best response
dynamics is exactly the set of equilibria. More details on
best response dynamics can be found in [1].
• ray-projection dynamics is a myopic adaptive dynamic in

which a subpopulation grows when its expected payoff is less
than the ray-projection payoff of all the other classes. It is
obtained ρ3,θ

a′,a(mt) = Λθa(mt) where Λ is a continuous map.
Notice that the replicator dynamics, best response dynamics
and logit dynamics can be obtained as a particular case of
the ray-projection dynamics.

A. Hybrid mean field game dynamics

Consider a population in which the players can adopt dif-
ferent learning schemes in {ρ1, ρ2, ρ3, . . .} (finite, say with
size κ). Then, based on the composition of population and the
use of each learning scheme we build an hybrid mean field
game dynamics. The incoming and the outgoing flow are
expressed in term of the weighted combination of different
learning schemes picked from the set {ρ1, ρ2, ρ3, . . .} with
probability {λ̃j}j . Then, the hybrid learning is obtained for
the rule

∑
j λ̃

jρj .
Define the property weighted equilibrium stationarity

(WES) as follows:

(WES) Every rest point of the hybrid game dynamics
generated by the weighted payoff is a weighted

equililibrium and every constrained weighted equilibrium
is a rest point of the dynamics.

Note that this property is not satisfied by the well-known
replicator dynamics as it is known that the replicator dynam-
ics may not lead to (Nash) equilibria (see the figure 1). We
have the following result:

Theorem 4: Suppose that all the dynamics in the support
of λ̃ satisfy the positive correlation. Then (i) the resulting
hybrid mean field game dynamics satisfy also the positive
correlation, (ii) The Nash equilibria are rest points of the
hybrid dynamics.

Proof: Denote by f̃ j the drift limit generated by
the learning scheme ρj . Then, the hybrid mean field game
dynamics is given by ṁt =

∑κ
j=1 λ̃

j f̃ j(mt) =: f̃(mt). Let
f̃(m) 6= 0. This means that there exists at least one index
k for which f̃k(m) 6= 0. Since f̃k is positively correlated
〈f̃k(m), u(m)〉 > 0 and the others are positive or zero
〈f̃ j′(m), u(m)〉 ≥ 0. Combining together, f̃(m) 6= 0 =⇒

〈
∑
j λ̃

j f̃ j(m), u(m)〉 > 0. Under positive correlation the
Nash equilibria are rest points.

Theorem 5: Let λ̃j the proportion of players that adopt the
learning scheme ρj . If all the learning schemes contained
in the support of λ̃ = (λ̃1, . . . , λ̃κ) ∈ Rκ+ satisfy the
property (WES) then, the resulting hybrid mean field game
dynamics generated by these learning schemes satisfies also
the weighted equilibrium stationarity property.

Proof: Let m be an equilibrium state. Then, from the
property (WES), m is a rest point of all the dynamics in the
support of λ̃. We need that prove that any rest point of the
combined dynamics in the support of λ̃ is an equilibrium
state.

Suppose that it is not the case. Then, there exists at
least one j such that m is not rest point of the dynamics
generated by the learning scheme ρj . But the mean field
game dynamics of ρj satisfies (WES). This means that m
is not an equilibrium state which is a contradiction. We
conclude any rest point of hybrid mean field game dynamics
is an equilibrium state. This completes the proof.

B. How to eliminate the rest points which are not equilib-
ria?

Consider that the family of learning schemes generated
by ργ,θa′,a = max(0, uθa(mt)) − uθa′(mt))

γ , γ ≥ 1. It is
easy to see that this family satisfies the property (WES). We
deduce that if the population is constituted of 99% of players
use a learning scheme via ργ and 1% of the population
use a replicator-based learning scheme then the resulting
hybrid dynamics satisfy the property (WES). We conclude
that every rest point of the replicator dynamics which is
a non-Nash equilibrium will be eliminated using this new
hybrid dynamics. This says that, the players can learn in a
bad way but if the fraction of good learners is non-zero then
the rest points of resulting hybrid dynamics will be equilibria.

C. Non-commutative diagram

We examine the double limits limn limtM
n
t [m0] and

limt limnM
n
t [m0]. Denote by $n[m0] the limiting behavior

of limtM
n
t [m0].

• Convergence/nonconvergence of mt[m0] as t goes to
infinity?

• Convergence/nonconvergence of $n[m0] as n goes to
∞?

• Under which conditions, the two limits coincide (if they
exist)?

• If the dynamics do not converge, is there connection
between the time average of the orbits of the ordinary
differential equation (ODE) ṁ = f̃(m) starting from
m0, and the omega-limit of $n[m0]?.

Note that the uniqueness of a stationary point of the ODE
does not imply convergence to this stationary point As illus-
trated in figure 1, the double limit need not to be commutative
i.e limn limtM

n
t 6= limt limnM

n
t . This phenomenon is in

part due to the fact that the stationary distribution of the
process ωn is unique under irreducibility conditions but the
dynamics can lead to a limit cycle. As a consequence, many
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techniques based on stationary regime (such as fixed-point
equation techniques, limiting of frequencies state-actions
approaches in sequence of stochastic games, replica methods,
interacting-particle systems, statistical independence in large-
scale interaction etc) need some justification. The non-
commutativity phenomenon suggests to be careful about the
use of stationary population state equilibria as the outcome
prediction and the analysis of equilibrium payoffs since this
equilibrium may not be played. Limit cycles are sometimes
more appropriate than the stationary equilibrium approach.

In the next subsection we illustrate the non-commutativity
of the diagram by simulating the process Mn.

D. Simulation replicator+smith dynamics

We consider the rock-scissor-paper (RSP) game in large
population with size 8000. The individual state of a player
can be in the {r, p, s} i.e the actions. The transition proba-
bilities between the states are given the system state and the
payoff functions which depend on the other players. Thus,
the transition of an individual depends on the state of the
other players. The rock beats scissor which beats paper which
beats rock. The payoff of the winner is +1 and the payoff
of the looser is −1. The transitions are payoff-dependent:
Lxx′(m) = mx′ max(0, ux′(m) − ux(m)). The number of
players n is fixed to 8000. We consider an hybrid learning.
The player can adopt ρ2 or ρ5 with the parameter γ = 1
and with probability λ̃ = (1/2, 1/2). The learning scheme
ρ2 leads to replicator dynamics and the learning scheme ρ5

leads to Smith dynamics. In the top figure 1, we plot the
deterministic mean field limit and its time average trajectory.
The middle figure 1 is a ternary plot the deterministic mean
field limit and its time average trajectory. The bottom figure 1
is a simulation of the mean field process M8000 and its time
average trajectory. The evolutionary RSP game has a unique
equilibrium m∗ = 1

3 (1, 1, 1) which is unstable as illustrated
in the three figures.

V. CONCLUSION

We have studied large population games under hybrid
mean field game dynamics. We have shown both convergence
and limit cycling behavior of the dynamics. An interesting
direction that we leave for future work is the derivation of the
hybrid and heterogeneous dynamics when some populations
use heterogeneous learning with diffusion term and some
others use deterministic dynamics with different time-scales.
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