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Abstract— This paper discusses Nash games for a class of
delay systems governed by Itô’s stochastic differential equation.
Sufficient condition for the existence of Nash strategies is given
by means of matrix inequality for the first time. It is shown
that the state feedback strategy can be obtained by solving the
linear matrix inequality (LMI) recursively.

I. INTRODUCTION

Various engineering systems have the characteristics of

time delay in signal transmissions such as communication

systems, transmission systems, chemical processing systems,

power systems, and so on. So far, the stability analysis

and robust control for time-delay systems have been widely

investigated over the past years. Particularly, the study that

is based on linear matrix inequality (LMI) theory for a class

of time-delay systems have received ever greater attention in

the past two decades [1].

In the past few decades, stochastic systems governed by

Itô-type stochastic differential equations have much received

a great deal of research attention [2], [3]. Although a variety

of results for the optimal control of linear stochastic systems

have been reported, the dynamic games of such systems have

received relatively little attention. Moreover, to the best of

my knowledge, Nash games for delay stochastic systems

have not been fully investigated. Since delays appear in many

practical plant, the design of such strategy is an important

issue that remains open.

In this paper, we discusses Nash games for a class of delay

systems governed by Ito’s differential equation. Sufficient

condition for the existence of both Nash strategies and

the upper bound of the cost is given by means of matrix

inequality for the first time. Moreover, it is shown that

the state feedback strategy can be obtained by solving the

linear matrix inequality (LMI) recursively. As a result, since

the LMI is solved independently, the cross-coupled matrix

inequalities need not be treated. In order to demonstrate the

usefulness, a simple numerical example is examined.

II. PROBLEM FORMULATION

Throughout this paper, let (Ω, F , {Ft}t≥0, P ) be a given

filtered probability space. Consider linear stochastic time-
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delay systems.

dx(t) =

[

Ax(t) +Ahx(t− h) +

N
∑

j=1

Bjuj(t)

]

dt

+

M
∑

p=1

Apx(t)dwp(t), x(t) = φ(t), t ∈ [−h, 0], (1)

where x(t) ∈ ℜn represent the state vectors. uj(t) ∈
ℜmj , j = 1, ... , N represent the j-th control inputs.

wp(t) ∈ ℜ, p = 1, ... ,M is a one-dimensional standard

Wiener process defined in the filtered probability space

[2], [3]. Without loss of generality, it is assumed that

wr(t) and ws(t) are mutually independent for all r, s =
1, ... ,M and E[w(t)wT (t)] = IM , where w(t) :=
[

w1(t) · · · wM (t)
]T

and E[·] denotes the expection

operator. Here, the scalar h > 0 is the time delay of

the system. φ(t) is a real-valued initial function. The cost

function for each strategy subset is defined by

Ji(u1, ... , uN , x(0))

= E

[
∫ ∞

0

[xT (t)Qix(t) + uT
i (t)Riiui(t)]dt

]

, (2)

i = 1, ... , N, Qi = QT
i ≥ 0, Rii = RT

ii > 0.

The following stabilizability, which is an essential assump-

tion, has been introduced in [3].

Definition 1: [3] A stochastic controlled system governed

by the Itô differential equation dx(t) = [Ax(t) + Ahx(t −
h) +Bu(t)]dt+Apx(t)dwp(t) is considered stabilizable in

the mean square sense if there exists a feedback law u(t) =
Kx(t) such that the closed- loop system dx(t) = [(A +
BK)x(t)+Ahx(t−h)]dt+Apx(t)dwp(t) is asymptotically

stable in mean square (ASMS), i.e. its trajectories satisfy

limt→∞ E[||x(t)||2] = 0 for any initial conditions φ(0).
Definition 2: [6] The zero solution of dx(t) = [Ax(t) +

Ahx(t − h) + Bu(t)]dt + Apx(t)dwp(t), x(t) = φ(t),
−h ≤ t ≤ 0 is said to be exponentially mean-square stable

(EMSS) if there is a pair of positive constants α and β such

that for any solution x(t, φ) with the initial condition φ,

E[||x(t, φ)||2] ≤ βE[||φ||2]e−αt, t ≥ 0.

It is noteworthy that in this study, the strategies u∗
i are

restricted as linear feedback strategies such as ui(t) :=
Fix(t).

Let FN denote the set of all (F1, ... , FN ) such that the

following closed-loop stochastic system

dx(t) =

[

A+
N
∑

j=1

BjFj

]

x(t)dt+Ahx(t− h)dt
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+

M
∑

p=1

Apx(t)dwp(t) (3)

is asymptotically mean-square stable.

According to the feedback information structure, a set of

equilibrium strategies should be independent of the initial

state. Furthermore, the strategies should satisfy the usual

equilibrium inequalities. A formal definition is given below.

Definition 3: [4] The strategy set (u∗
1, ... , u∗

N ), u∗
i (t) :=

F ∗
i x(t) is a stochastic Nash equilibrium strategy set if for

each i = 1, ... , N , the following inequality holds:

Ji(u
∗
1, ... , u∗

N , x(0))

≤ Ji(u
∗
1, ... , u∗

i−1, ui, u∗
i+1, ... , u∗

N , x(0)), (4)

for all x(0) and for all (F1, ... , FN ) that satisfy

(F1, ... , FN ) ∈ FN .

Lemma 1: [2] The trivial solution of a stochastic differ-

ential equation is as follows:

dx(t) = f(t, x)dt+ g(t, x)dw(t), (5)

where f(t, x) and g(t, x) which are sufficiently differen-

tiable maps, are exponentially mean-square stable if there

exists a function V (x(t)), which satisfies the following

inequalities:

a1||x(t)||
2 ≤ V (x(t)) ≤ a2||x(t)||

2, a1, a2 > 0, (6a)

DV (x(t)) :=
∂V (x(t))

∂x
f(t, x)

+
1

2
Tr

[

gT (t, x)
∂2V (x(t))

∂x2
g(t, x)

]

≤ −c||x(t)||2, c > 0 (6b)

for x(t) 6= 0.

The stochastic Nash games are given below.

Theorem 1: Assume that for all ui(t) = Fix(t),
(F1, ... , FN ) ∈ FN , i = 1, ... , N the closed-loop system

is asymptotically mean-square stable. Suppose that N real

symmetric matrices Pi > 0 and N real symmetric matrices

Wi > 0 exist such that

F i(P1, ... , PN ) :=

[

Ξi PiAh

AT
hPi −Wi

]

≤ 0, (7)

where i = 1, ... , N ,

Ξi :=PiA−i+A
T
−iPi+

M
∑

p=1

AT
p PiAp−PiSiPi+Qi+Wi,

A−i :=A−
N
∑

j=1, j 6=i

SjPj , Si :=BiR
−1
ii BT

i .

Define the set (F ∗
1 , ... , F ∗

N ) by

u∗
i (t) := F ∗

i x(t) = −R−1
ii BT

i Pix(t), i = 1, .. , N. (8)

Then, (F ∗
1 , ... , F

∗
N ) ∈ FN , and this strategy set denotes the

stochastic Nash equilibrium. Furthermore,

Ji(F
∗
1 x, ... , F ∗

Nx, x(0))

≤ E[xT (0)Pix(0)] +E

[
∫ 0

−h

φT (τ)Wiφ(τ)dτ

]

. (9)

Proof: The proof can be demonstrated by using comple-

tion of squares. First, define the following quadratic function.

Vi(t) := xT (t)Pix(t) +

∫ t

t−h

xT (τ)Wix(τ)dτ, (10)

where Wi = WT
i > 0.

Let us consider the following stochastic system with

uj(t) := u∗
j (t), j 6= i.

dx(t) =

[

A−ix(t) +Ahx(t− h) +Biui(t)

]

dt

+

M
∑

p=1

Apx(t)dwp(t), x(t)=φ(t), t ∈ [−h, 0].(11)

By using the Itô formula, the weak infinitesimal generator

along with the stochastic system (11) can be obtained.

D[Vi(t)] + xT (t)Qix(t) + uT
i (t)Riiui(t)

:= xT (t)Ξix(t) + 2xT (t)PiAhx(t− h)

+[ui(t) +R−1
ii BT

i Pixi(t)]
TRii[ui(t) +R−1

ii BT
i Pixi(t)]

−xT (t− h)Wix(t− h). (12)

According to the assumption that the closed-loop system is

asymptotically mean-square stable, E[Vi(∞)] = 0. Thus,

integrating both sides of the above equation and using

E[Vi(∞)] = 0 results in

Ji(u
∗
1, ... , u∗

i−1, ui, u∗
i+1, ... , u∗

N , x(0))−E[Vi(0)]

= E

[
∫ ∞

0

ηT (t)F i(P1, ... , PN )η(t)dt

]

+E

[
∫ ∞

0

[ui(t) +R−1
ii BT

i Pixi(t)]
T

×Rii[ui(t) +R−1
ii BT

i Pixi(t)]dt

]

≥ E

[
∫ ∞

0

ηT (t)F i(P1, ... , PN )η(t)dt

]

= Ji(u
∗
1, ... , u∗

N , x(0))−E[Vi(0)], (13)

where ηT (t) :=
[

xT (t) xT (t− h)
]

.

Thus, the strategy set (8) satisfies the stochastic Nash

equilibrium (4). On the other hand,

Ji(u
∗
1, ... , u∗

N , x(0))−E[Vi(0)]

= E

[
∫ ∞

0

ηT (t)F i(P1, ... , PN )η(t)dt

]

≤ 0. (14)

Thus, if (7) holds, then the desired result is obtained.

III. NUMERICAL ALGORITHMS

Nash strategy Fi of (8) can be obtained by solving the

matrix inequalities (7). It should be noted that the matrix

inequalities (7) are cross-coupled equations and it cannot

be assessed by applying the LMI Control Toolbox with

Matlab directly. We now propose a numerical approach for

the matrix inequalities (7).
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Let us consider the following new algorithm that is based

on the optimization problems.

min
X

(n)
i

(

Tr[x(0)xT (0)P
(n+1)
i ] +Tr[MMTW

(n+1)
i ]

)

, (15)

X
(n)
i ∈ (P

(n+1)
i , W

(n+1)
i ),

where MMT := E

[
∫ 0

−h

φ(τ)φT (τ)dτ

]

and











Ξ
(n)
i P

(n+1)
i Ah P

(n+1)
i Bi In

AT
hP

(n+1)
i −W

(n+1)
i 0 0

BT
i P

(n+1)
i 0 −Rii 0
In 0 0 −Q−1

i











≤ 0, (16)

i = 1, ... , N with Ξ
(n)
i := P

(n+1)
i A

(n) +A
(n)TP

(n+1)
i +

∑M

p=1 A
T
p P

(n+1)
i Ap+W

(n+1)
i , A(n) := A−

∑N

j=1 SjP
(n)
j ,

Si := BiR
−1
ii BT

i . Moreover, the matrices P
(0)
i , i = 1, ... , N

are chosen as the initial conditions such that the reduced-

order closed-loop system is mean square stable.

The iterative procedure for solving the Semi-Definite

Programming (SDP) is now summarized. The basic concept

consists of subsequently solving each problem, repeating

inequality (15). The algorithm is as follows:

Step 1. Initialization: Set P
(0)
i = In and W

(0)
i = In, for

all i, i = 1, ... , N .

Step 2.For i = 1, ... , N repeat the following steps: Solve

the SDP problem, with respect to X
(n)
i , subject to

(16).

Step 3. If the algorithm converges, then X
(n+1)
i is the

solution of SDP, STOP. Otherwise, increment n →
n + 1 and go to Step 2, until all LMIs (16) i =
1, ... , N are simultaneously satisfied.

It should be noted that convergence of the above algorithm

cannot be guaranteed [5]. However, we found the proposed

algorithm to work well in practice.

IV. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed

control, we have run a simple numerical example. The system

matrices are given as follows.

A =

[

0 1
−4 −4

]

, h = 1, Ah =

[

0.01 0
0 0.02

]

,

p = 1, A1 =

[

0 0.01
0.01 0

]

,

B1 =

[

1
0

]

, B2 =

[

0
2

]

, Q1 = I2, Q2 =

[

0.5 0
0 2

]

,

R11 = 1, R22 = 2, φ(t) =

[

1
2

]

,−1 ≤ t ≤ 0.

By solving the corresponding optimization problem (15), we

obtain the linear state feedback strategies

F1 =
[

−7.6954e− 01 −5.5458e− 02
]

,

F2 =
[

5.7913e− 02 −2.2602e− 01
]

.
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Fig. 1. Simulation results by means of the proposed strategies.

It may be noted that the proposed algorithm in section

III converges to the exact solution with an accuracy of
∑2

i=1 F i(P
(n)
1 , P

(n)
2 ) < 1.0e− 10 after 158 iterations.

Finally, the result of the simulation of this example is

depicted in Fig. 1. It is shown from Fig. 1 that the closed-loop

stochastic systems are asymptotically mean-square stable.

V. CONCLUSION

In this paper, Nash games for a class of delay systems gov-

erned by Itô’s differential equation have been investigated.

Sufficient condition for the existence of Nash strategies has

been obtained by applying the matrix inequality for the first

time. In order to calculate the strategy set, the new algorithm

that is based on the LMI was considered. As a result, the

exact Nash strategy can be easily computed because the

numerical algorithm is decoupled from other optimization

problems.

Finally, the convergence is not considered in this paper.

Such proof is more important to guarantee the reliability.

This problem will be addressed in future investigations.

REFERENCES

[1] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems,
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