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Abstract— A heavy hybrid vehicle is considered in which an
electric motor and ultracapacitor energy storage are used in a
parallel hybrid configuration as a power assist to improve
fuel economy. The ultracapacitor’s high power capabilities
make it a good choice for this application. The optimal control
technique of Dynamic Programming (DP) is applied to obtain
the “best possible” fuel economy for the vehicle over the
driving cycle under pointwise-in-time hard system constraints.
Attainable fuel economy improvements are illustrated using
a real-time implementable Model Predictive Control (MPC)
method using a simple model for predicting future torque
demands. The incorporation of simulated telematic future
information is also investigated to further improve the the
fuel economy of the MPC method close to the DP-calculated
maximum.

I. INTRODUCTION

This paper is concerned with the improvement of fuel
economy in heavy duty vehicles through the use of high
power ultracapacitors in a mild hybrid electric vehicle
platform. Previous work has shown the potential for up to
15% improvement on the smaller hybrid SUV platform [1],
but simulations have shown the potential improvement for
larger vehicles is higher.

The power demands imposed on a heavy vehicle can be
substantially higher than those seen in smaller vehicles due
to its larger mass. The high power capability of ultraca-
pacitors is well suited to assisting a heavy hybrid vehicle
in meeting these high power demands in the most cost
effective manner. A comparison of the initial investment
costs show that ultracapacitors are 5 to 10 times less
expensive than lithium batteries on a cost per kilowatt basis.
Ultracapacitors, unlike many types of batteries, will retain
an extraordinarily long lifetime of hundreds of thousands of
cycles even at high power draw levels. As such, the lifetime
energy costs of using ultracapacitors are vastly lower than
lithium batteries; the author’s calculations show 20 to 60
times less, a result corroborated by [2]. Further justifications
for the use of ultracapacitors, and some examples of their
implementations can be found in [1], [3], [4].

The control challenge explored in this paper is to effec-
tively manage the very small energy buffer (around one hun-
dred Watt-hours) of ultracapacitors in order to maximize the
potential fuel economy. First, Dynamic Programming (DP)
is used to obtain the “best possible” fuel economy for the
vehicle over the driving cycles. However, the DP technique
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is not implementable since it requires predetermined vehicle
demands to carry out the optimization calculations. The
Model Predictive Control (MPC) method is an optimization-
based receding-horizon control strategy which has shown
potential as a powertrain control strategy in hybrid vehicles
[5], [6]. A MPC strategy is developed for the heavy hybrid
vehicle based on the same vehicle model and DP cost
function which can achieve near-optimal fuel consumption
even for very short prediction horizon lengths.

The prediction model of MPC is critical to the overall
control performance. In this paper, simulated “future in-
formation” is used to aid in the MPC prediction method
and improve the potential fuel economy of the vehicle,
a result suggested by the works of [7], [8]. Examples
of future information used here are speed limits, traffic
conditions, and traffic signals along the desired route. The
future information is able to improve the fuel economy
above the promising results shown using the MPC method
alone.

II. THE HYBRID POWERTRAIN CONFIGURATION

The ultracapacitor hybrid vehicle model is based on
modeling techniques and component data from the high
fidelity, forward-looking modeling and simulation program
Powertrain Systems Analysis Toolkit [9].

A. Vehicle Configuration and Driving Demands

A heavy vehicle model is developed using available
component data and then validated to known vehicle per-
formance measures to ensure modeling fidelity [9], [10].
The chosen hybrid vehicle configuration is a parallel hybrid,
which uses a 75kW peak motor and ultracapacitor pack of
56 Farads at 145 Volts. The primary driving cycle consid-
ered is the City Suburban Heavy Vehicle Route (CSHVR).
The velocity and power demands of this cycle are shown
in Figure 1 and the vehicle modeling equations are covered
in the next section.

B. Powertrain Model

The vehicle driving force F is calculated as in [11]:

F = αAv2 +αIa+αR +αS (1)

where v is the velocity, a is the acceleration, αA is a
multiplying coefficient for aerodynamic forces, αI is the
coefficient for inertial forces(accounting for the vehicle’s
rotational and linear inertias), αR is the coefficient for
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Fig. 1. Velocity and Power Profile for CSHVR Cycle

rolling resistance, and αS is the coefficient for road grade
forces. The α terms of Equation 1 are defined as follows:

αA = 0.5ρCDA f αI = 1.1m
αR = (CR,1 +CR,2ω)mgcosθ αS = mgsinθ

(2)

where ρ is the air density, CD is the vehicle drag coefficient,
A f is the vehicle frontal area, m is the vehicle mass, CR,1
and CR,2 are rolling resistance coefficients, ω is the wheel
rotational speed, g is the acceleration of gravity, and θ is the
road grade angle. The rolling resistance definition used here
is further detailed in [11]. The wheel torque then modified
via component efficiencies and the selected gear ratio from
the shifting strategy to become the torque demand at the
engine:

Tdmd = Tdmd,wheel

(
rgear

egbxe f d

)
ωeng = ωrgearr f d

Tdmd,eng = max(0,Tdmd)

(3)

where rgear is the selected gear ratio, egbx is the efficiency of
the gearbox in the selected gear, and e f d is the final drive
efficiency. ωeng is the engine speed, determined from the
wheel rotational speed ω, the gear ratio rgear, and the final
drive ratio r f d . Engine braking effects are not considered,
and all non-propulsion drivetrain components are assumed
to have constant efficiencies. From the torque demand at
the engine, the control decision of applied engine torque
determines the motor assist torque as:

Tmot = Tdmd−Teng +Teng,loss
ωmot = rTCωeng

(4)

where Tmot is the motor demand torque, Tdmd is again the
vehicle torque demand at the engine, Teng is the commanded
engine torque, Teng,loss is the torque loss to accessories and
friction based on [12], ωeng is the engine rotational speed,
ωmot is the motor rotational speed, and rTC is the torque
coupler ratio between the motor and engine.

The engine fuel rate ṁ f is also determined by the
selection of engine torque and the given engine speed, based
on mapped data from PSAT:

ṁ f = f (Teng,ωeng) (5)

From the values of motor torque and speed, a lookup table
is used to find the ultracapacitor electrical power:

PUC = Pmot/η f or Pmot > 0
PUC = ηPmot f or Pmot < 0 (6)

where PUC is the ultracapacitor power and η is the motor
efficiency at a given operating point. The ultracapacitor pack
current can then be calculated as given in Eq. (7). For more
information on the derivation of these equations see [13].

IUC =
−SOC ·Vmax +

√
(SOC ·Vmax)

2−4RsPUC

2Rs
(7)

where IUC is the ultracapacitor current, SOC is voltage-
defined state of charge, Vmax is maximum pack voltage,
Rs is the ultracapacitor pack resistance, and ηchg is the
ultracapacitor charging efficiency.

From the current demand out of the ultracapacitor, the
rate of change of the state of charge can be found as:

SȮC =
IUC

CoVmax
(8)

where Co is the pack capacitance. In implementing these
equations the control input (commanded engine torque)
determines the output state (the next SOC) of the system.

III. CONTROL PROBLEM FORMULATION

For fuel consumption minimization the cost function to
be minimized is that of the integral of the fuel rate over
the cycle time. However to avoid frequent engine on/offs, a
small switching cost is added to the cost function to impose
a 3-5 second engine on cycle time:

J =
t f∫
0
(ṁ f +q∆e)dt

ṁ f = f (ωeng,Teng)

(9)

where J is the cost function, which is integrated from the
initial time to end of the cycle, q is the constant engine
on-off cost, and ∆e is the engine on-off switching signal.
The fuel rate ṁ f is implemented as a lookup table in terms
of engine speed and torque. This cost function is to be
minimized subject to the following constraints:

ẋ = ˙SOC = f (x,u,v)
SOCmin < x < SOCmax

PUC,max,charge < PUC < PUC,max,discharge
IUC,min < IUC < IUC,max

Tmot,min < Tmot < Tmot,max
Teng,min < Teng < Teng,max

(10)

where the state of the system is the state of charge of
the ultracapacitor x = SOC, ˙SOC is the rate of change
of SOC which is a function of the state x, the control
u, and the imposed velocity v. The other parameters ∗min
and ∗max are the upper and lower limits on the state
of charge x, the ultracapacitor power PUC, ultracapacitor
current IUC, motor torque Tmot , and engine torque Teng. The
engine speed is constrained by the shifting strategy, and the
constraint values are all defined with appropriate values for
the component models specified.
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IV. POTENTIAL FUEL ECONOMY IMPROVEMENTS USING
DYNAMIC PROGRAMMING

An optimal control problem can be solved numerically
using the Dynamic Programming (DP) method, a numerical
method of minimizing a functional originally developed
by Richard Bellman [14]. The implementation of the DP
method essentially reduces to an iterative calculation of a
cost function at each time step of the form:

J∗ (x, t) = min
u
{J (x,u,v)+ J∗ ( f (x,u,v), t +1)} (11)

where J∗ (x, t) is the optimal cost-to-go from time t and any
state in the state vector x to the end of the computational
horizon, which is computed by a minimization over all
admissible controls in the control vector u for the func-
tional shown. The incremental cost for the current control
decision, given the current state vector x, control vector
u, and system input vector v, is given by J (x,u,v). The
optimal cost for the future control decisions is based on the
resulting state from the control vector, and is accounted for
by the last term, J∗ ( f (x,u,v), t +1). The results of the DP
method show the potential for up to a 40% improvement in
fuel economy for the M1081 vehicle on the CSHVR cycle.
Even higher fuel economy improvements are achievable if
the vehicle is simulated on lower speed urban cycles such
as the Manhattan Bus route.

V. THE MODEL PREDICTIVE CONTROL ALGORITHM

Model Predictive Control, or MPC for short, is an
optimization-based receding horizon control strategy which,
unlike Dynamic Programming techniques, has the potential
to be implemented on a hybrid vehicle. In MPC a cost
function is minimized over the prediction horizon and a
set of optimal control actions over a finite control horizon
(of length less than or equal to the prediction horizon) is
calculated. Only the first input of the calculated control se-
quence is applied, the prediction horizon is moved forward
one step and the process is repeated [15], [16], [17].

The previous section solved the nonlinear fuel mini-
mization problem over the entire cycle length by assuming
known future demands. In the receding horizon MPC frame-
work, the DP solution method is still used for solving the
fuel minimization problem at each time step. Of course, the
MPC solution will be suboptimal when compared to that of
a full horizon DP, but it is desired to explore the compromise
made on fuel economy in order to reduce the computational
effort and create a real-time implementable control strategy.
Because of its receding horizon nature, the Model Predictive
Control strategy can adapt to changing future demands,
an advantage over DP. Since the typical MPC horizon
length is a fraction of the whole cycle time, the nonlinear
optimization problem can be solved much faster than a
DP optimization solved over a whole cycle. If required for
implementation in a fast process, the computational effort
can be further reduced if the cost function is quadratic and
the system constraints are linear or linearized [17], [15].

The cost function for MPC was initially chosen iden-
tical to that from the DP method. However, to avoid the
simulation errors associated with the short-sighted nature
of the MPC method, an SOC-based penalty cost has been
developed to maintain the vehicle SOC within a narrow
range. This “soft” SOC constraint has been created based
on the results of the DP method, using the relative frequency
of SOC values. A small penalty cost is used to influence the
SOC and maintain it, but not to rigidly confine it, within the
desired region. With this added SOC-based soft constraint
cost, the performance index for the MPC is of the form:

J (k)=
Np

∑
i=1

(
ṁ f (k+ i|k)+q∆e(k+ i|k)+h

(
SOC(k+ i|k)

))
∆t

(12)
where k is the current time step, Np is the length of the
prediction horizon, ṁ f is the engine fuel rate, q the constant
engine on/off cost, ∆e is the engine on/off switch signal, and
h(SOC) is the added SOC cost. Here (k+ i|k) denotes the
i step prediction at step k.

When the vehicle is simulated under MPC control with a
ten second prediction horizon, assuming fully known future
demands, the potential fuel economy improvement is 38%,
very close to the DP calculated maximum. Investigations
in varying the horizon length between three and fourteen
seconds results in improvements between 38-39%, as seen
in the later Figure 5. In this case, however, the complete
future torque demands have been assumed to be known over
the prediction horizon, which is not realistically possible.

A. Prediction Method Development

It is impossible to be certain about future driving de-
mands over the next 30 seconds or even the next two
seconds. The critical part of MPC is the prediction method,
to which a variety of methods have been proposed including
the use of current speed/acceleration trends in [18] or the
use of an exponential decay relationship for the driving
torque in [5]. The use of a simple exponential decay rela-
tionship has shown promising results and will be explored
as the prediction method in this study over the various short
horizon lengths.

B. Exponential Decay Trending

In [5], it is assumed that the torque demand decays ex-
ponentially over the prediction horizon with a time constant
that is a function of current torque demand. In this work,
the time constant for the torque decay and penalty weights
assigned to the fuel rate are all quantized functions of the
current torque demand. Higher torque demands are assumed
to decay much more quickly than lower demands, and
the fuel cost is penalized more on lower torque demands
since these are usually the less efficient operating region
of the engine [5]. The heuristic governing equation for the
exponential decay is given in Equation 13, where k is the
current time step, i is the prediction step, and τd is the time
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TABLE I
HEURISTIC METHOD: DISCRETE EXPONENTIAL DECAY VALUES

Torque Demand Range Time Constant, τd Decay Rate, λ = 1/τd

Tdmd ≥ 7000 τd = 0.1 λ = 10
7000 > Tdmd ≥ 2500 τd = 1 λ = 1

2500 > Tdmd ≥ 0 τd = 10 λ = 0.1
Tdmd ≤ 0 τd = 0.1 λ = 10

constant for the decay rate:

Tdmd(k+ i|k) = Tdmd(k)e−i∆t/τd (13)

The torque decay method used in [5] will be applied here
on the M1081 heavy hybrid vehicle using similar torque
decay constants, with the torque regions modified of course
for the difference in vehicle demands. An example of
the results of the future torque prediction algorithm based
on exponential decay is shown below in Figure 2. The

Fig. 2. MPC Prediction Method - Exponential Torque Decay

future torque demands over the MPC prediction horizon
are assumed to start at the current “given” torque value
and decay exponentially. The discretized torque regimes
and associated time constants are given below in Table I.
Simulations employing this heuristic method of exponential
decay prediction are able to achieve potential fuel economy
improvements between 29-34% over the original vehicle.
Since the method determining these decay rates is largely
heuristic, a more analytic way of tuning these parameters
is presented next.

C. Decay Parameters Based on Expected Vehicle Demands

The particular parameter values used in [5] were largely
determined based on experience and testing to determine
suitable values and regions. A more analytic method for
determining these decay parameters is presented here, based
on the expected vehicle demands over the cycle. In practice,
this method might be applied over the known future route,
as given by GPS telematic data, or over a stochastic model-
based prediction of the expected future driving demands. By
plotting the vehicle torque demands for the CSHVR cycle
against their relative temporal frequency (in terms of cycle
time above a certain demand level), the relationship shown

in the solid line of Figure 3 results. A very similar curve
results for the vehicle demands imposed by other cycles.

Fig. 3. CSHVR Torque Spectrum With Piecewise Linear Curve Fits

The slope of this line is essentially a piecewise linear
estimation of the decay rate λ, or time constant τd , which
can be numerically approximated to relate the current torque
demand to the most likely decay rate. An example of a few
of these linear fits along the curve (exaggerated for plotting)
are also shown in Figure 3. Figure 4 plots the decay values
for the heuristic method of [5] alongside these analytically
derived demand-based values.

Fig. 4. Decay Rate Comparison, Heuristic vs. Demand-based Values

Similar to the assumptions in [5], at higher torque values
(both positive and negative) the decay rate is larger. For
comparisons, Figure 5 shows the MPC results for the
different prediction methods over the short horizon lengths
considered. A decrease in fuel economy with increasing
horizon length can be seen for the heuristic torque decay
prediction method, while the more robust demand-based
method shows a consistent 36% improvement is achievable
for all horizon lengths considered. It can be seen that there
is only a small window for improvement here between the
MPC and DP-established maximum. The potential gains in
fuel economy through use of telematic future information
are investigated next.
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Fig. 5. MPC Horizon Variation - Comparison of Decay Methods

VI. MPC WITH TELEMATIC FUTURE INFORMATION

Only a small amount of research has focused on the
use of future information to improve fuel economy in a
hybrid electric vehicle. The research in [19] focused on the
development of a driving behavior model to help predict
future inputs based on a nonlinear driver model, recent
driving statistics, and historical traffic information. [20]
predicted vehicle velocity with the help of future road
grade information in an ECMS online optimization routine
over a relatively long (hundreds of seconds) horizon length.
Optimal control methods have been applied on PHEV
control simulations which use a simple driving model based
on acceleration and deceleration trends from current and
past traffic information to help predict future demands [21].
The potential fuel economy benefits from the use of future
road grade information in a battery-based hybrid vehicle
has been investigated in [8]. However, the focus of these
research efforts were not on the types and character of the
future information, but rather the simple application of this
information to predict demands.

Here, simulated future information will be generated for
the CSHVR cycle to aid in the prediction of future cycle
demands. This information will be representative of that
either currently available through commercial sources or
from local government traffic authorities. The following
types of information will be considered:

1) Speed limit information. This is already available in
many places through commercial GPS receivers [22].

2) Traffic information. Currently only provided as a
general “level of congestion” in many commercial
GPS units, this could easily be made available as an
average speed of traffic through an area [22].

3) Traffic signal information. In this case implemented
as known “stop” and “go” locations, this type of
information is sparsely available, and would depend
highly on the local municipality.

A. Simulated Future Information for CSHVR Cycle

The CSHVR cycle speed profile is analyzed and simu-
lated telematic future information is created using general

knowledge about urban driving conditions. Figure 6 depicts
this artificial information.

The suburban cycle speed limits given range from 25mph
up to 40mph. The “general” traffic information is a level of
traffic congestion, similar to that seen on modern GPS units
[22]. In this study it is assumed that: low traffic means the
expected traffic speed is the speed limit, for moderate traffic
two-thirds of the speed limit, and for heavy traffic one-third
of the speed limit. An “approximate” traffic speed is also
considered and is based on a smoothed velocity curve. Stop
and go signal information developed for the cycle is shown
as well. These signals are based on the assumption that
as the vehicle comes to a stop or accelerates there is an
associated signal (from a traffic light, known stop sign, or
otherwise) that is available for approximately 10 seconds
before and after the stop. Portions of the suburban cycle
are assumed to be spent waiting at a light in heavy traffic.

B. Future Information Benefits

These different types of future information are imple-
mented using simple heuristic rules to improve the pre-
diction method in the MPC framework. In shorter horizon
lengths, mixed results were obtained for the benefits of the
future information. However, the demand-based exponential
torque decay method and longer horizon lengths (10, 12,
14 seconds) demonstrates a potential improvement of 1%
above the previous case. Figure 7 shows the results of all the
exponential torque decay-based MPC simulations using the
various types of future information. As would be expected,
the results show more detailed future information allow
more potential improvement in fuel economy.

VII. SUMMARY AND CONCLUSIONS

This study has developed an ultracapacitor heavy hybrid
vehicle model and demonstrated the potential fuel economy
improvements attainable using a Model Predictive Control
energy management strategy. After the upper limit to the
potential fuel economy is calculated using Dynamic Pro-
gramming techniques, a forward-looking Model Predictive
Control (MPC) method is implemented which makes use
of an exponential torque decay prediction method based on
the work of [5]. The parameters of this MPC prediction

Fig. 6. Future Speed Limit and Traffic Information on CSHVR Cycle
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model were tuned based on the vehicle cycle demands to
better represent the future expected demands. A consistent
improvement in fuel economy of around 35.5% has been
shown for this demand-based prediction method with re-
spect to the conventional vehicle, and compared to 29-34%
improvement for the heuristically based method.

A variety of simulated telematic future information sig-
nals were used along with simple rules to improve the
prediction of future torque demands. The use of this in-
formation showed the potential to improve the attainable
fuel economy up to one percent more with the presence of
relatively simple information currently available in telematic
and GPS devices.

Table II gives a summary of the attainable fuel economy
improvements demonstrated through this study. The overall
benefits of the more robust demand-based tuning procedure
for the MPC exponential decay prediction method are
shown here along with the further benefits from the addition
of simulated telematic future information.

TABLE II
SUMMARY OF ATTAINABLE FUEL ECONOMY IMPROVEMENTS

COMPARED TO CONVENTIONAL POWERTRAIN

Control Method % Improvement
Dynamic Programming Maximum +40.5%

MPC Full Future Demands +38-39%
MPC Exponential Decay using

Heuristic Decay +29-34%
Demand-Based Decay +35.5%

Simulated Telematic Information +35.5-36.5%

In order to improve the applicability of this work, future
simulations should make use of a vehicle-specific veloc-
ity and road grade information. If possible, a real route
should be used containing speed limits, traffic conditions,
and signal locations and timings. This would allow for
a more complete assessment of the potential benefits of
future information in predicting future torque demands and

Fig. 7. MPC Results - Future Information Benefits on Longer Horizons

improving mileage.
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