
Accelerated Corrective Consensus: Converge to the Exact Average at a
Faster Rate

Yin Chen† Roberto Tron∗ Andreas Terzis† Rene Vidal∗

yinchen@cs.jhu.edu tron@cis.jhu.edu terzis@cs.jhu.edu rvidal@jhu.edu
Computer Science Department† Center for Imaging Science∗

Johns Hopkins University

Abstract— Averaging consensus algorithms provide an ele-
gant, fully distributed, iterative way to compute the average of
a set of measurements in a wireless sensor network. Unfortu-
nately, they typically require a large number of iterations to
reach convergence. Therefore, a great deal of effort has been
devoted into accelerating consensus with improved accelerated
consensus algorithms. Nevertheless, these techniques assume
the communication graph is undirected with fixed or switching
topologies, whereas actual low-power wireless networks present
random and asymmetric packet losses. As a consequence, these
methods might fail to converge to the correct average value
when deployed in wireless sensor networks. In this paper
we integrate accelerated consensus with corrective consensus,
a technique that can compute the correct average of the
measurements under random packet losses. Our simulation
results show that the proposed accelerated corrective consensus
converges to the correct average, presents a faster convergence
rate than corrective consensus, and, for a similar number of
iterations, it achieves convergence errors about 5,000 times
smaller than accelerated consensus.

I. INTRODUCTION

Computing the average of a group of quantities measured
separately by a network of nodes is an essential building
block for numerous applications in various domains such
as Distributed Maximum Likelihood Estimation [2], [17],
Distributed Hypothesis Testing [13] and Distributed Kalman
Filtering [16]. The average consensus algorithm [14] is a
popular way to solve this problem iteratively in a fully
distributed fashion.

One well documented critique to the consensus algorithm
is that it typically requires a large number of iterations to
reach convergence. Therefore, significant attention has been
recently given to accelerating consensus algorithms [1], [3],
[8], [9], [18], [19]. These solutions rely on the results from
past iterations to predict a more accurate estimate of the
consensus value at each node. Doing so can significantly
reduce the number of iterations needed to converge, and
in some cases convergence is guaranteed within a finite
number of iterations ([8], [18]). Unfortunately, in all these
methods the communication links between pairs of nodes are
always assumed to be symmetric. Under this assumption,
either nodes can communicate in both directions or, when
a link fails, neither one can send packets to the other.
However, in low-power wireless networks, packets could be
independently dropped on each direction of a communication
link, resulting in asymmetric network topologies [21]. As a
consequence, the consensus algorithm typically converges to

a value different from the average of the initial states [6].
As our experiments will show, accelerated consensus is also
affected by the random packet drops in a similar way.

In the case of standard consensus, our prior work in-
troduced corrective consensus [4], which converges to the
correct average even in the presence of asymmetric packet
losses. In this paper, we adopt similar techniques to the
case of accelerated consensus and show that the resultant
accelerated corrective consensus converges to the correct
value. We will show that it reduces the convergence error
by ∼5,000 times when compared to accelerated consensus
in a 10-node ring topology (with both algorithms terminat-
ing when the variation across state variables falls below a
threshold κ). In addition, accelerated corrective consensus
will asymptotically reduce its convergence error down to
machine precision.

The rest of this paper is structured as follows. Section II
briefly reviews related work, while Section III gives a more
detailed description of standard and corrective consensus,
as well as the accelerated consensus. In Section IV we
integrate corrective iterations to accelerated consensus and
demonstrate its convergence to the correct value. Section V
presents experiments that evaluate the performance of our
accelerated corrective consensus algorithm.

II. RELATED WORK

Initial work on accelerated consensus [8], [18], [19] pro-
posed to predict the consensus value at each node from a
sufficient number of past values of the local state. Under
certain conditions, these consensus algorithms converge in
a finite number of iterations. The main drawback is that
all these approaches assume the communication graph is
undirected with fixed topology. Hence they might fail in the
presence of a time-varying topology [9].

To cope with time-varying topologies (i.e., link failures),
a consensus algorithm based on adaptive filtering was de-
veloped in [3]. This method is proven to converge with
varying topologies, and it requires fewer states to be stored at
each node. Unfortunately, it provides significant convergence
speed gains only in the case of fixed topologies.

In [1], each node performs linear extrapolation from the
previous and current state values to predict the next step state
value, which in turn will be used in the consensus iteration
that follows. The work of [9] uses a similar approach,
but it proposes different methods for computing the linear

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3417

combination of the past state values. In particular, when
the method based on Newton’s polynomials is used, this
consensus algorithm is able to offer acceleration even under
link failures.

As we mentioned earlier, the common assumption shared
by all these techniques is that the links between pairs of
nodes are always symmetric and thus asymmetric packet
losses are not accounted for. Therefore, these algorithms can
easily fail when deployed in wireless sensor networks which
typically present random and asymmetric packet losses [21].

Our prior work in [4] introduced corrective consensus,
a consensus algorithm that guarantees convergence to the
correct consensus value even in presence of asymmetric
packet losses. In this paper we build upon this method by
incorporating ideas from accelerated consensus.

III. BACKGROUND

In this work we consider a group of N nodes (for instance,
wireless sensors) organized in a multi-hop wireless network,
where each node may communicate only with its one-hop
neighbors. We assume that each node i senses a physical
quantity, obtaining a value zi ∈ R. The goal of the network
is then to compute the consensus value z = 1

N

∑N
i=1 zi.

We model the multi-hop wireless network as a directed
graph G = (V, E) with the vertices V = {1, 2, . . . , N}
corresponding to the set of nodes. An ordered pair (i, j) ∈ E
denotes a directed edge from node j to node i, indicating that
node j can directly transmit packets to node i. Packets can
occasionally get lost in the wireless channel. For the sake
of simplicity, we assume that packet losses are random and
independent from each other, and denote as pij ∈ (0, 1] the
probability of each packet getting through link (i← j). Here
pij characterizes the Packet Reception Ratio (PRR) on the
wireless link i ← j, and we further assume that pij = pji,
∀(i, j) ∈ E . In other words, we are assuming that the PRRs
in directions (i← j) and (j ← i) are equal.

The probability of receiving a packet broadcasted from
node i to node j is determined by the value of pji. Nodes can
repeatedly broadcast their packets to increase the probability
of delivery. For example, if node i broadcasts n times, the
probability of delivering at least one copy of the state variable
to node j equals to p̂ji = 1 − (1 − pji)n. We define p̂ji as
the effective PRR on the j ← i link, whose value can be
controlled by the number of repeated broadcasts: n.

The adjacency matrix A(t) of graph G is defined as
Aij(t) = 1 if node i received the state variable xj(t) broad-
cast by node j during the t-th iteration, and zero otherwise.
Note that by definition Aii = 0, ∀i. We assume that the
packet losses are random and independent, therefore A(t)
is a random matrix with the entries being stationary i.i.d.
{0, 1} Bernoulli variables. We define the degree matrix as
the diagonal matrix D(t) with Dii(t) = di(t), where di(t) =∑N
j=1Aij(t) is the in-degree of node i during iteration t. The

Laplacian matrix is defined as L(t) = D(t)− A(t). Due to
Gershgorin’s theorem [7], the eigenvalues of the Laplacian
are contained in a disk centered at maxi,t(di(t)) + 0j with
radius maxi,t(di(t)) on the complex plane.

A. Standard Consensus

Average consensus [14] computes the average z through
distributed linear iterations. Specifically, each node i keeps
a local state variable xi(t) as its estimate of the consensus
value z, and exchanges the state variable with its one-hop
neighbors during each consensus iteration. At the end of an
iteration, each node updates its state variable xi(t) using a
weighted average of the state variables from the neighbors.
Under certain conditions, xi(t) asymptotically converges to
the consensus value z [10], [12], [14], [15]. In more detail,
during each consensus iteration, node i will broadcast its
state variable xi(t) to its one-hop neighbors. Then, each node
i updates its state variable xi according to

xi(t) =
∑N
j=1Wij(t− 1)xj(t− 1), xi(0) = zi. (1)

Stacked in vector form, the state variables iteration becomes

x(t) = W (t− 1)x(t− 1), x(0) = z, (2)

where x(t) and z are column vectors in RN , and W (t −
1) ∈ RN×N is the weight matrix for the t-th iteration. The
definition of the weight matrix W (t) is

W (t) = I − εL(t), (3)

where I denotes the identity matrix with compatible dimen-
sions and ε is a small positive constant. By construction we
have W (t)1 = 1, where 1 ∈ RN is the column vector of
all ones.

Denote E(W) as the expectation of W (t). Note that
E(W) is time-invariant and symmetric due to the assumption
that pij = pji,∀(i, j) ∈ E . As a result, we have both
1TE(W) = 1T and E(W)1 = 1. Provided that G is
connected, it can be shown that if we select the positive
constant ε such that ε < 1/maxi,t(di(t)), then the magnitude
of the second largest eigenvalue of E(W) is less than 1,
and the consensus iterations shown in (2) asymptotically
converges to a common value, i.e., limt→∞ x(t) = α1 ([20]).
Unfortunately, due to the random packet losses, W (t) is not
always balanced, i.e., ∃ t s.t. 1TW (t) 6= 1T , hence the
converged value α does not equal to the consensus value
z [6].

B. Corrective Consensus

Corrective consensus is capable of converging to the con-
sensus value z even when the weight matrix W (t) is not
balanced [4]. To do so, each node i keeps a set of local
auxiliary variables φij(t), and updates them as

φij(t+1) = φij(t)+Wij(t)
(
xj(t)−xi(t)

)
, φij(0) = 0. (4)

Notice that (1) can be reformulated into

xi(t+ 1) = xi(t) +

N∑
j=1,j 6=i

Wij(t)
(
xj(t)− xi(t)

)
, (5)

from which it is obvious that φij(t) stands for the amount
of change that has been made to the state variable xi(t), due
to neighbor node j.

3418

It follows from (4) that φij + φji = 0 if the link between
node i and j is undirected, i.e., Wij(t) = Wji(t), for all t. In
this case, the two packets transmitted in the two directions
are either both received or both lost. With directed links,
however, it may happen that xi(t) was delivered to node j
but xj(t) got lost. In this situation we have Wji(t) 6= 0 but
Wij(t) = 0, and as a result φij + φji 6= 0, which indicates
that some error in state variables has accumulated due to
packet exchanges between node i and node j.

For convenience, we denote ∆ij(t) = φij(t) + φji(t). In
corrective consensus, each node periodically checks ∆ij(t)
to make corrections on its state variable to ensure the con-
vergence towards z.

Specifically, each node starts with the standard consensus
iterations according to (1); after every k such iterations, the
nodes will execute a corrective iteration as follows

xi(k + 1) = xi(k)−
N∑
j=1

∆ij(k)/2 (6)

φij(k + 1) = φij(k)−∆ij(k)/2 (7)

Note that in order to compute ∆ij , node i needs to retrieve
φji from neighbor j. However, packets containing φji are
also subject to link losses and therefore occasionally node i
might be unable to compute ∆ij because it does not have
access to the value of φji. In this case, the nodes do not
include the affected ∆ij’s in (6) and (7).

To increase the probability of packet delivery, a node will
try to send each auxiliary variable repeatedly up to m times.
It is shown in [4] that corrective consensus will converge to
the consensus value z with appropriately selected m and n,
where n is the maximum number of repeated broadcasts to
deliver each state variable.

C. Accelerated Consensus

As we reviewed in Section II, significant efforts have been
devoted into speeding up the convergence of (1). As our
baseline accelerated consensus algorithm we consider the
method proposed in [9], which uses a linear combination
of past state values to predict the state value for the next
step, and can increase convergence speed under dynamic
(undirected) topologies. The accelerated consensus iterations
in [9] are defined as

xi(t+ 1) =


K∑
l=0

βK−lxi(t− l), if mod(t+ 1,K + 1) = 0

xi(t) +

N∑
j=1

Wij(t)
(
xj(t)− xi(t)

)
otherwise,

(8)

where the coefficients β0 · · ·βK satisfy the normalization
constraint

∑K
l=0 βl = 1. It can be seen from (8) that

accelerated consensus alternates between two types of iter-
ations: Standard and Predictive iterations. During standard
iterations, nodes behave identically as in standard consensus.
Every K standard iterations, the nodes execute a predictive
iteration during which each node will predict the next step

state value based on a linear combination of the past K + 1
iterations (including the previous predictive iteration).

In [9], the coefficients β0 · · ·βK are set to to minimize
the second largest eigenvalue of the weight matrix W . As a
result, the accelerated consensus as shown in (8) inherently
converges in the case of fixed topology, provided that the
weight matrix W satisfies the convergence conditions for
standard consensus. However, Kokiopoulou and Frossard
showed that (8) might diverge when the topology becomes
dynamic [9]. We note that the dynamic topologies in their
work are assumed to be undirected at any time instance,
i.e., W (t) is symmetric for all t. Therefore, it is unclear
how the accelerated consensus algorithm would perform in
wireless networks with prevalent random and asymmetric
packet losses. Intuitively, accelerated consensus would be
more vulnerable to packet losses than standard consensus,
due to the predictive iterations (the results in Section V
verify this intuition). Hence, in what follows we will integrate
the techniques developed for corrective consensus into the
accelerated consensus algorithm to enable its application in
real-world wireless networks.

IV. ACCELERATED CORRECTIVE CONSENSUS

Recall that in corrective consensus we introduced a set of
auxiliary variables φij to keep track of the changes that are
made to the state variables, and the neighbor responsible
for each such change. Likewise, we can define auxiliary
variables φij for accelerated consensus and update φij in the
same manner as in (4). Nevertheless, during the predictive
iterations, nodes do not exchange state variables with neigh-
bors and therefore it is not immediately clear as to how to
appropriately update the auxiliary variables φij .

However, notice that node i updates its state variable in the
predictive iteration based on its own past state values, hence
it appears that node i itself should be solely responsible for
changing its state variable. Accordingly, we can define φii
to represent the change that node i has made to its own state
variable during the predictive iterations. The problem with
this approach is that there is no immediate way to examine
and rectify the errors. In the case of φij(t), we can check the
sum ∆ij(t) = φij(t) + φji(t), and a value other than zero
indicates error. Instead, it is easy to see that if we require the
mean of the states to be preserved, we obtain the following
network-wide (global) constraint on the φii:

N∑
i=1

φii = 0, (9)

which can not be readily utilized in a distributed fashion to
check and correct the errors. Consequently, we decide not
to use φii but instead to search for the appropriate way of
updating the φij in the predictive iterations. To do so, we
first need to define ϕij as

ϕij(t) = Wij(t)
(
xj(t)− xi(t)

)
(10)

and decompose each of the past K state variables during the

3419

standard iterations prior to a predictive iteration as follows

xi(t− l) = xi(t−K) +

N∑
j=1

t−l−1∑
s=t−K

ϕij(s), (11)

for u = 1, 2, 3, · · · ,∀t = u(K + 1)− 1, 0 ≤ l < K, i.
We can see that each state value xi(t− l) can be written

as a linear combination of the previous ϕij’s. Therefore, the
predicted value xi(t+1) in (8) can also be decomposed into
linear terms of ϕij’s as

xi(t+ 1) =

K∑
l=0

βK−lxi(t− l) = β0xi(t−K)

+

K−1∑
l=0

βK−l

xi(t−K) +

N∑
j=1

t−l−1∑
s=t−K

ϕij(s)


= xi(t−K)

K∑
l=0

βK−l +

N∑
j=1

K−1∑
l=0

t−l−1∑
s=t−K

βK−lϕij(s)

= xi(t−K) +

N∑
j=1

K−1∑
l=0

t−l−1∑
s=t−K

βK−lϕij(s)

(12)

where the last line follows from the constraint that∑K
l=0 βl = 1. Based on (12), we can derive the relationship

between φij(t+ 1) and φij(t−K) as follows

φij(t+ 1) = φij(t−K) +

K−1∑
l=0

t−l−1∑
s=t−K

βK−lϕij(s) (13)

(13) provides the rule to update the φij in the predictive
iteration. Moreover, observe that φij(t+1)’s value is directly
determined by φij(t−K) and ϕij(s), hence we do not need
to update φij in the standard iterations. Instead, each node
can simply store φij(t − K) and ϕij(s) in memory, and
update φij only during each predictive iteration. Note that
φij(t−K) is given by the previous predictive iteration.

One problem with this update rule is that holding ϕij(s)
in memory requires O

(
Kd
)

memory space per node where d
represents the number of neighbors and K stands for the K
standard iterations between two predictive iterations. Mem-
ory space is an extremely constrained resource in today’s low
power wireless sensor network nodes (10kB RAM on one
of the most popular platforms [11]). To reduce the memory
footprint, observe that (12) can be rewritten as

xi(t+ 1) = xi(t−K) +

N∑
j=1

K−1∑
l=0

t−l−1∑
s=t−K

βK−lϕij(s)

= xi(t−K) +

N∑
j=1

K−1∑
s=0

ϕij(t−K + s)

K∑
l=s+1

βl
(14)

and hence we can define

β(t) =

K∑
l=mod(t,K+1)

βl (15)

and then write the update rules for the auxiliary variables as

φij(t+ 1) =

{
φij(t), if mod(t+ 1,K + 1) = 0

φij(t) + β(t+ 1)ϕij(t), otherwise,
(16)

Note that coefficients β(t) depend only on the K + 1 pa-
rameters β0 · · ·βK and therefore can be precomputed. As
a result, updating φij’s according to (16) does not require
additional memory space compared to the standard corrective
consensus.

(16) does not update φij in the predictive iteration, but
instead it distributes the due updates among every standard
iteration in advance. Hence, during each standard iteration,
φij is updated in a way similar (but not equal) to the actual
change to the corresponding state variable. As a result, the
property xi(t) = xi(0) +

∑
j∈Ni

φij(t) holds only immedi-
ately after a predictive iteration, i.e., when mod(t,K+1) = 0
(note that this property always holds in corrective consensus
[4]). Since corrective iterations require this property to check
for errors (i.e., whether ∆ij is equal to 0), they can only be
executed immediately after a predictive iteration. In prac-
tice, this implies that, if we run corrective and predictive
iterations, respectively, every k and K standard iterations, it
must hold mod(k,K) = 0, k ≥ K.

For ease of presentation, we group the predictive iteration
and the corrective iteration together. Specifically, we denote
xPi (t + 1) as the predicted state value and xi(t + 1) as the
corrected state value based on xPi (t+1). Then, we write the
predictive iteration and the subsequent corrective iteration as{

xPi (t+ 1) =
∑K
l=0 βK−lxi(t− l)

xi(t+ 1) = xPi (t+ 1)− 1
2

∑N
j=1 ∆ij(t)vij(u)

(17)

where vij represents the reception status of φij(t) with u
being the counter of the corrective iterations (vij = 1 if φij
was received and 0 otherwise [4]).

Algorithm 1 summarizes our accelerated corrective con-
sensus algorithm. We can see that the parameter K controls
the frequency of predictive iterations, while the parameter
k determines the frequency of corrective iterations, i.e., a
corrective iteration takes place after k

K predictive iterations.
Regarding the convergence of our algorithm, we have the

following Theorem.

Theorem 1. Algorithm 1 will converge to the correct average
if the original accelerated consensus converges.

Proof. See the appendix.

V. EVALUATION

We compared four consensus algorithms (standard and
accelerated consensus with or without corrective iterations)
in a 10-node ring topology with PRR=80% on each one of
the 20 directed links. Each node broadcasts the state variable
only once during the standard iterations (n = 1), but will try
up to 10 transmissions to deliver the auxiliary variables φij
to each of the intended neighbor nodes (m = 10, see [4] for
details).

3420

Algorithm 1 Accelerated Corrective Consensus
1: Input: constants k, K, function β(·)
2: Output: the average value z on each node
3: Initialization: φij(0) = 0, t = 0, u = 0
4: loop
5: if mod(t+ 1, K + 1) == 0 then . run predictive iteration
6: xP

i (t+ 1) =
∑K

l=0 βK−lxi(t− l)
7: if mod(t+ 1, (K + 1)k/K) == 0 then . run corrective iteration
8: u← u+ 1
9: ∆ij(t) := φij(t) + φji(t)

10: xi(t+ 1) = xP
i (t+ 1)− 1

2

∑N
j=1 ∆ij(t)vij(u)

11: φij(t+ 1) = φij(t)− 1
2 ∆ij(t)vij(u)

12: else
13: xi(t+ 1) = xP

i (t+ 1)
14: φij(t+ 1) = φij(t)
15: else . run standard iteration
16: ϕij(t) = Wij(t)

(
xj(t)− xi(t)

)
17: xi(t+ 1) = xi(t) +

∑N
j=1 ϕij(t)

18: φij(t+ 1) = φij(t) + β(t+ 1)ϕij(t)
19: t← t+ 1

A=0,C=0 A=0,C=1 A=1,C=0 A=1,C=1

Convergence Error 0.198 2.607e-5 0.248 4.562e-5
Number of Iterations 77 87 62 69

TABLE I
PERFORMANCE OF FOUR CONSENSUS ALGORITHMS. (A,C) = { (0,0),
(0,1), (1,0), (1,1) } REPRESENTS standard, corrective, accelerated, AND

accelerated corrective CONSENSUS ALGORITHMS RESPECTIVELY.

Figure 1 presents the results, averaged over 100 indepen-
dent trials. The y-axis plots the convergence error ‖x(t) −
z1‖2, whose value should decrease to zero as the state
variables converge to the consensus value z. However, both
standard consensus and accelerated consensus fail to con-
verge to the consensus value. Among these two algorithms,
accelerated consensus also exhibits larger errors. Our in-
terpretation is that speeding up convergence amplifies the
accumulated errors due to asymmetric message exchanges.
Nevertheless, after integrating the corrective iterations, both
algorithms can converge to the correct consensus value.
As we expected, the errors for both corrective algorithms
converge to zero (up to machine precision), with accelerated
corrective consensus presenting a faster convergence rate
than corrective consensus.

We have also evaluated the algorithms by stopping the
iterations when a convergence criterion is met. Here we
decide that a consensus algorithm reaches convergence at
iteration t if ‖x(t) − 1

N 11Tx(t)‖ < κ, where we set the
threshold κ = 0.001. Table I lists the final convergence
error and number of iterations taken. Even in this setting,
the error for accelerated corrective consensus (A=1,C=1) is
about 5,000 times smaller than for accelerated consensus
(A=1,C=0) for a similar number of iterations (69 versus 62).

VI. CONCLUSION

Accelerated consensus algorithms constitute a valuable
tool for quickly and efficiently computing the arithmetic
mean across a multi-hop wireless network. However, previ-
ous solutions fail to converge to the correct mean in real-
world wireless networks due to unavoidable random and
asymmetric packet losses.

0 50 100 150 200 250 300 350
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

C
o

n
v

e
rg

e
n

c
e

 E
rr

o
r

Standard Consensus

Corrective Consensus

Accelerated Consensus

Accelerated Corrective Consensus

20 22 24 26
10

−2

10
0

Fig. 1. Convergence Error and Speed of Four Consensus Algorithms.

In this paper we adopt the techniques originally developed
in corrective consensus [4] to accelerated consensus, and
show that the resultant accelerated corrective consensus
converges faster to the correct consensus value, even with
asymmetric packet drops.

In our future work, we will study methods to optimally se-
lect the intervals for predictive iterations (K) and corrective
iterations (k).

REFERENCES

[1] T. C. Aysal, B. N. Oreshkin, and M. J. Coates. Accelerated distributed
average consensus via localized node state prediction. Trans. Sig.
Proc., 57(4):1563–1576, 2009.

[2] S. Barbarossa and G. Scutari. Decentralized maximum-likelihood esti-
mation for sensor networks composed of nonlinearly coupled dynam-
ical systems. Signal Processing, IEEE Transactions on, 55(7):3456–
3470, 2007.

[3] R. Cavalcante and B. Mulgrew. Adaptive filter algorithms for accel-
erated discrete-time consensus. Signal Processing, IEEE Transactions
on, 58(3):1049 –1058, march 2010.

[4] Y. Chen, R. Tron, A. Terzis, and R. Vidal. Corrective consensus:
Converging to the exact average. In IEEE Conference on Decision
and Control, 2010.

[5] Y. Chen, R. Tron, A. Terzis, and R. Vidal. On corrective consensus:
Converging to the exact average. Technical report, Computer Science
Department, Johns Hopkins University, Mar 2010.

[6] F. Fagnani and S. Zampieri. Average consensus with packet drop
communication. SIAM J. Control Optim., 48(1):102–133, 2009.

[7] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ.
Press, 1987.

[8] E. Kokiopoulou and P. Frossard. Accelerating Distributed Consensus
Using Extrapolation. IEEE Signal Processing Letters, 14(10):665–668,
2007.

[9] E. Kokiopoulou and P. Frossard. Polynomial filtering for fast con-
vergence in distributed consensus. Trans. Sig. Proc., 57(1):342–354,
2009.

[10] T. Li and J.-F. Zhang. Consensus conditions of multi-agent systems
with time-varying topologies and stochastic communication noises.
Automatic Control, IEEE Transactions on, 55(9), 2010.

[11] Moteiv Corporation. Tmote Sky Datasheet. http://www.moteiv.
com/products/docs/tmote-sky-datasheet.pdf.

[12] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–
233, Jan. 2007.

[13] R. Olfati-saber, E. Franco, E. Frazzoli, and J. S. Shamma. Belief
consensus and distributed hypothesis testing in sensor networks. In
Network Embedded Sensing and Control. (Proceedings of NESC’05
Worskhop), volume 331 of Lecture Notes in Control and Information
Sciences, pages 169–182. Springer Verlag, 2006.

3421

[14] R. Olfati-Saber and R. Murray. Consensus problems in networks of
agents with switching topology and time-delays. Automatic Control,
IEEE Transactions on, 49(9):1520–1533, Sept. 2004.

[15] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in
multivehicle cooperative control. In IEEE Control Systems Magazine,
2007.

[16] I. Schizas, G. Giannakis, S. Roumeliotis, and A. Ribeiro. Consensus
in ad hoc wsns with noisy links—part ii: Distributed estimation and
smoothing of random signals. Signal Processing, IEEE Transactions
on, 56(4):1650–1666, April 2008.

[17] I. Schizas, A. Ribeiro, and G. Giannakis. Consensus in ad hoc
wsns with noisy links—part i: Distributed estimation of deterministic
signals. Signal Processing, IEEE Transactions on, 56(1):350–364, Jan.
2008.

[18] S. Sundaram and C. Hadjicostis. Finite-time distributed consensus in
graphs with time-invariant topologies. In American Control Confer-
ence, 2007. ACC ’07, pages 711 –716, 9-13 2007.

[19] S. Sundaram and C. N. Hadjicostis. Distributed consensus and linear
functional calculation in networks: an observability perspective. In
IPSN ’07. ACM, 2007.

[20] A. Tahbaz-Salehi and A. Jadbabaie. On consensus over random
networks. In 44th Annu. Allerton Conf. Commun., Contr. Comput.,
pages 1315–1321, 2006.

[21] J. Zhao and R. Govindan. Understanding Packet Delivery Performance
In Dense Wireless Sensor Networks. In Proceedings of the ACM
Sensys, Nov. 2003.

APPENDIX

PROOF OF THEOREM 1

Proof. The convergence of the original accelerated consen-
sus indicates that

E
∥∥x̃P ((K + 1)l

)∥∥ ≤ λE∥∥x̃((K + 1)(l − 1)
)∥∥ (18)

where 0 ≤ λ < 1 determines the speed of convergence, and
we define x̃(t) = x(t)− 1

N 11Tx(t) as the projection of the
vector x(t) onto the hyperplane that is vertical to the vector
1 ∈ RN .

In what follows we will first consider the case where φij’s
are reliably exchanged. In this case we can follow the proof
of Theorem 3 in [5] almost identically except that there
would be a weight β(s) multiplied to each ϕij(s).

Foremost, let us write the update of the state variables in
the corrective iteration similar to (26) in [5] as

x(k + 1) = xP (k + 1)− 1

2

k−1∑
s=0

T (s)6=0


∑N
i=1 β(s+ 1)δi1(s)

...∑N
i=1 β(s+ 1)δiN (s)


(19)

in which we define T (s) = mod(s+1,K+1), and δij(s) =
ϕij(s)+ϕji(s). Based on the derived results from (27), (28)
and (29) in [5], we have

E‖x̃(k + 1)‖

≤ E‖x̃P (k + 1)‖+ β̂
1

2

k−1∑
s=0

T (s) 6=0

E

√√√√ N∑
j=1

(N∑
i=1

δij(s)
)2 (20)

where we denote β̂ = maxs(|β(s)|). Substituting the results
from (30), (31) and (32) in [5], we arrive at

E‖x̃(k+1)‖ ≤ E‖x̃P (k+1)‖+ β̂
1

2
ε
√

2p̃N

k−1∑
s=0

T (s) 6=0

E‖x̃(s)‖

(21)
where we denote as p̃ a shorthand for 2(p − p2), and p =
arg min
r∈{p̂ij}

|r − 0.5|.

Note that for two successive regular iterations, we have
E‖x̃(s)‖ ≤ λ2E‖x̃(s − 1)‖ where λ2 = E

(
|λ2(W (t))|

)
which is the expected second largest eigenvalue of the weight
matrix W (t). Combining this (18), we have

k−1∑
s=0

T (s)6=0

E‖x̃(s)‖

≤ ‖x̃(0)‖
{

(1 + λ2 + λ2
2

+ · · ·+ λ2
K−1

)

+ λ(1 + λ2 + λ2
2

+ · · ·+ λ2
K−1

)

+ λ2(1 + λ2 + λ2
2

+ · · ·+ λ2
K−1

)

· · ·

+ λk/K−1(1 + λ2 + λ2
2

+ · · ·+ λ2
K−1

)

}
= ‖x̃(0)‖1− λ2

K

1− λ2

1− λk/K

1− λ
(22)

Plugging (22) into (21) and using the fact that E‖x̃P (k+
1)‖ ≤ λk/K‖x̃(0)‖ (from (18)), we have

E‖x̃(k + 1)‖

≤

(
λk/K +

1

2
β̂ε
√

2p̃N
1− λ2

K

1− λ2

1− λk/K

1− λ

)
‖x̃(0)‖

(23)

Therefore, the critical value regarding the convergence of
accelerated corrective consensus is

c = λk/K +
1

2
β̂ε
√

2p̃N
1− λ2

K

1− λ2

1− λk/K

1− λ
(24)

and it is obvious that c can be made smaller than 1 by
controlling the value of p̃, which can be set arbitrarily close
to 0 by adjusting the parameter n (the maximum number of
repeated broadcasts to deliver a state variable), as explained
in the proof of Theorem 5 in [5].

So far, we have proved Theorem 1 in the case where φij’s
are reliably exchanged. A similar proof can be given for the
case that φij’s could be lost in wireless channel, by following
the similar procedures as does Theorem 6 in [5].

3422

