
  

  

Abstract—For multiple-input and multiple-output (MIMO) 
process control, when inputs and outputs are equal in number, 
a widely adopted scheme in practice is to first decouple the 
process using a low-frequency square pre-compensator, and 
then ‘tune’ the decoupled loops as single control loops. Within 
the MIMO class, there are also problems having more process 
variables to be controlled than the available control inputs. 
This is referred to as the Profile Control (PC) problem. For PC 
problems, pre-compensation decoupling cannot apply. 
Applicable methods for PC include Receding-Horizon based 
real-time optimization and Singular Value Decomposition 
(SVD) based mode-decoupling configuration. We describe in 
this paper a simple alternative, the least-squares (LS) 
configuration, which employs an intuitive post-compensator, 
and retains the easy-to-tune decoupling control feature. Under 
mild conditions, we show convergence of this scheme to the 
steady-state LS solution. We also discuss its robustness against 
output disturbances, and its flexibility to accommodate 
actuator range limitations.  

I. INTRODUCTION 
OR multiple-input and multiple-output (MIMO) process 
control problems with equal number of control inputs 

and controlled outputs, a widely adopted strategy is to first 
reduce the (cross-coupling) interactions between the inputs 
and the outputs. With reduced interactions, the modified 
MIMO process can often achieve the so-called Diagonal 
Dominance (DD) condition, under which a controller can be 
designed and operated as a collection of multiple parallel 
single control loops [1], [2]. A first step in reducing MIMO 
interaction is to ensure proper pairing between the control 
inputs and the process outputs. Physical justifications, 
Bristol’s Relative Gain Array (RGA) [2], and Singular Value 
Analysis [2] are among the tools available for input-output 
pairing. Given a proper pairing, interactions may be further 
reduced by placing a square compensator in front of the 
process to significantly weaken the cross-couplings, thereby 
achieving DD. The presence of DD in the low-frequency 
region is often sufficient to assure process stability after 
closing the individual ‘decoupled’ loops. An often adopted 
further simplification is to use the inverse of the steady-state 
process gain matrix as the decoupling pre-compensator, 
making the compensator a constant matrix1.  
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1 When the process is relatively poor-conditioned, or the gain matrix is 

not accurately known, there are ‘regularization’ techniques that can reduce 
the risk of uncertainty-induced side effects [3]. 

With reduced interactions, each ‘decoupled’ individual 
loop can usually be closed with a controller that involves 
integral action, such as the Proportional and Integral (PI) 
controller. As such, the controlled process variables can 
satisfy the set points at steady state, provided that the control 
actions are within the actuators’ range. Dynamic tuning of 
these PI controllers is fairly straightforward, due to reduced 
loop interactions. 

However, when it is desired to control more process 
variables using fewer control inputs, this class of MIMO 
problems is referred to as Profile Control (PC). For PC, the 
above described pre-compensation scheme would not work. 
For one, the process gain matrix would be non-square – 
rendering square-inverse pre-compensator inapplicable. 
Secondly, by manipulating a smaller number of controls, one 
cannot expect that the process output variables comply with 
arbitrary set-points. For example, by manipulating two 
control inputs one can only influence a two-dimensional 
subspace in a higher-dimensional process output space. This 
two-dimensional subspace is the ‘Range Space’ of the n x 2 
steady-state process gain matrix, K, denoted by R[K], where 
n > 2. Among generically applicable PC control methods, 
there are Receding-Horizon based real-time optimization [2], 
[4] and SVD-based mode-decoupling scheme [2]. Both 
come with varied degrees of sophistication and complexity.  

In this paper, we discuss a simple alternative, based on the 
conventional least-squares (LS) concept. In the sense of LS, 
the best attainable performance with respect to the specified 
set-points is the projection of these set-points onto R[K]. 
Geometrically, Fig. 1 depicts this projection operation and 
the orthogonality property that determines the best solution. 

 
Fig. 1.  Least-squares, projection and orthogonality. 

 
Let yo denote the specified set-points, y* the attainable 

performance with LS error e*, and let u* be the controls that 
would produce y*. Then, the orthogonality property dictates  
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  (1) 

where u stands for arbitrary controls, and superscript T 
designates matrix/vector transposition. Since e* =  yo - y*, 
the above becomes  With u being 

arbitrary, this requires , leading to the 
well-known static LS solution 

  (2) 

where we have introduced the pseudo-inverse notation, 
, which maps the set-point yo to the 

(static) LS control solution, u*, and K K + is the Projection 
Operator mapping yo to the attainable y*. Fig. 2(a) describes 
this static LS solution with a block diagram.  

 A major question remains: How do we translate this 
static LS solution to a feedback control solution in a 
dynamic process setting? Fig. 2(b) illustrates the proposed 
dynamic control scheme, which can achieve steady-state LS 
error, while maintaining the ease of controller tuning and 
loop decoupling, as described in the following sections. 

 
Fig. 2.  LS solution and feedback control configurations. 

II. STEADY-STATE LS PERFORMANCE AND ROBUSTNESS 
If we assume 1) open-and-closed loop stability, 

2) existence of integral-control-action (I-action) in 
controller, C, and 3) LS solution u* being within the 
actuators’ range, we can then show the convergence of the 
proposed dynamic feedback control to the LS steady state 
performance.  

Since the loops are (asymptotically) stable, steady state 
can be reached under set-point control. At steady state, the 
inputs to the I-action controller, C, must be 0. That is,  

  (3) 

which implies that  is the LS error , in the 

absence of output disturbance. This is because  

means that  is orthogonal to R[K], the range space of K, 
thereby satisfying the definition of LS solution.  

When subjected to a bounded output disturbance, d, with 
steady-state bias, dss, the proposed control scheme has the 
‘smallest’ steady-state error among all schemes facing the 
same dss. In fact, the controller will accommodate the 
component (of dss), dss

||
, that lies in R[K], even though 

‘blinded’ to the component dss
+ that is orthogonal to R[K]. 

That is, the proposed scheme preserves the LS-property and 
is ‘LS-robust,’ with respect to output disturbance dss, as 
Fig. 1 illustrates. 

III. LOOP DECOUPLING, TUNING, AND ACTUATOR LIMITS  
With a reasonably accurate K, steady-state decoupling is 

essentially accomplished for the 2 x 2 control loops from the 
output of the controller, C, going around and back to the 
controller’s input, because  
Steady-state decoupling often leads to low-frequency DD, 
which in practice facilitates ease of controller tuning and 
loop stability.  The stably tuned control loops will 
accommodate the disturbance component d ||, while leaving 
its orthogonal counterpart, d  +, unattenuated.   

A very useful interpretation of the proposed LS 
configuration is obtained by moving to the feedback 
path and to the forward set-point path (Figure 2(c)). This 
gives a post-compensation interpretation of the feedback 
scheme. The ‘transformed’ set-points now clearly show their 
connection with the actuators. Moreover, we can replace the 
pseudo-inverse in the set-point path with a more general 
inverse problem solver that could take the actuators’ finite 
range into consideration. Quadratic Programming (QP) is 
one such inverse solver. Alternatively, a simple Constrained 
Estimation algorithm as described in [5] can be applied here.  

IV. SUMMARY 
As a practical alternative to Receding-Horizon based on-line 
optimization and SVD-based mode-decoupling, a least-
squares (LS) based feedback configuration is discussed as a 
simple, tunable method for Profile Control. Extension to 
weighted LS is straightforward.   
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