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Abstract— As wind generation becomes a significant portion
of total energy production, wind power variability will introduce
more variability in system frequency. This paper presents a
method to improve primary control for frequency regulation in
large-scale power systems with high wind power penetration.
To assure system stability, a passivity-based framework is
developed for power systems by introducing a storage function
derived from the entropy of individual generators. Tellegen’s
theorem is invoked to derive the storage function for the entire
power network. Given the network parameters and the point
of interconnection of the wind farm, a single generator is
selected to balance wind power fluctuations. A passive H∞

controller is synthesized for the selected generator by using a
passive reduced-order model of the large-scale power system.
Simulation results of a 9-bus test system show the effectiveness
of the passive H∞ controller. This work also suggests several
directions for further research.

I. INTRODUCTION

The frequency of a power system must be maintained

nearly constant at nominal frequency to ensure safe and

reliable operation. System frequency deviation indicates the

imbalance between generation and load. To maintain the

frequency in an acceptable range, the generation must be

adjusted in real time to meet deviations of the load from

predicted values. Under normal conditions, frequency is

tightly controlled within a narrow band around the nominal

frequency.

Increasing the proportion of wind power to traditional

generators can degrade frequency performance. In traditional

power systems, load variation is the main disturbance in the

frequency control loop under normal operating conditions.

When a significant amount of wind energy penetrates the

power system, fluctuations in wind generation due to wind

variations need to be compensated in addition to load vari-

ations, thus increasing the amount of control effort required

to maintain system frequency. Moreover, modern variable

speed wind turbine generators are often isolated from the

grid by power electronic converters, thus contributing almost

no inertial response to the overall power system [1]. If more

synchronous machines are displaced by wind generation, the

system inertia will decrease, making the power system more

sensitive to generation-load imbalances.

Improving frequency control for power systems with high

wind power penetration is an active area of research. Bevrani
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illustrates the use of robust control design to automatic

generation control [2]. Researchers have also been investigat-

ing methods for implementing primary control on the wind

generation itself. Control schemes that allow wind turbine

generator to participate in inertial response and primary

frequency control are proposed in [1], [3], [4], [5]. Strategies

have also been proposed to improve frequency control for

systems with high wind power penetration using natural gas

generation [6], battery systems [7], flywheels [8], etc.

H∞ methods can be used to synthesize controllers to

achieve robust performance and stability in the presence of

bounded uncertainties, disturbances and noise [9]. In [10],

we apply H∞ methods to design a robust controller for a

single generator to attenuate continuous wind power fluctu-

ations. However, due to the disadvantages of standard H∞

methods, it produces a high-order dynamic controller which

is generally undesirable in practice. Therefore, the approach

in [10] is only applicable to small-scale power systems. For

large-scale power systems, reduced-order model are often

used. One intuitive thought is to use reduced-order model to

design robust controller, then attach it to the original system.

However, in general there is no guarantee that the controller

designed using reduced-order model will stabilize the real

system. To resolve this issue, we propose a passivity-based

framework, allowing robust control design through a passive

reduced-order model of the original system. The resulting

passive, low-order controller can achieve both stability and

robust performance for the overall system.

The paper is organized as follows. In Section II we present

models used in power system primary frequency regulation

and a characterization of short-term wind power fluctuations.

Section III develops a passive-based framework for power

systems by introducing a storage function derived from the

entropy of individual generators. In Section IV a passivity-

preserving model-order reduction technique is applied to

obtain a passive reduced-order model of large-scale power

systems. In Section V we synthesize a passive dynamic

output feedback controller using dissipative H∞ methods

and the passive reduced-order model obtained from the

previous section. Simulation results of a 9-Bus test system

are presented in Section VI to demonstrate the effectiveness

of the proposed controller. The final section summarizes the

contribution of this paper and suggests directions for further

research.

II. PROBLEM FORMULATION

The focus of this paper is primary frequency control

for continuous wind power fluctuations. The time scale of
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interest is from seconds to a few minutes. Mathematical

models of synchronous generators, network power flow and

wind power fluctuations are summarized as follows.

A. Synchronous Generator

Synchronous generators are represented with the classical

swing equations (1)–(2) [11]

θ̇i = ωi − ω0 (1)

2Hi

ω0

ω̇i = Tmi − Tei −KDi (ωi − ω0) (2)

where θi and ωi are the rotor angle and rotor speed of

machine i. Tmi and Tei are the per unit mechanical and

electrical torque associated with machine i. ω0 is the nominal

speed 2π60 rad/s. The relation between per unit power and

torque is Pmi = Tmiωi/ω0 and Pei = Teiωi/ω0. As the

speed is usually controlled tightly around ω0, the per unit

value of power and torque are approximately equal. The

electrical power output Pei of the generator is equal to the

sum of all the power flows from bus i to other buses in the

network, i.e. Pei =
n
∑

j=1,j 6=i

fij , where fij is the power flow

from bus i to j.

B. DC Power Flow

For the purpose of primary frequency control, we assume

that reactive power is compensated locally and bus voltages

are tightly controlled, so that the bus voltages can be assumed

to be 1 p.u. and we only need to consider real power

balance equations for the network. Consider two buses i and

j connected through a lossless transmission line of reactance

Xij . Let the voltages at two buses be 1∠θi and 1∠θj . Then

the power transferred from bus i to bus j can be expressed

as fij = (θi − θj)/Xij . This is called DC power flow [12].

C. Wind Power Fluctuations

For our study, the wind power is assumed to be an

average wind power plus fluctuation components, similar to

the model used in [13]. We assume that the wind turbines

in this study do not participate in frequency regulation and

the power output from wind farms is injected into the grid as

“negative load”. In [14], the authors show that power systems

are more sensitive to the power fluctuations in the medium

frequency range (between 0.01 Hz to 1 Hz), and that the

majority of wind power fluctuations are located in that region

and below. We characterize the wind power fluctuation by its

frequency spectrum. For a specific system, such information

can be obtained from wind power data [15].

III. PASSIVITY-BASED FRAMEWORK

The power network can be shown to satisfy the generalized

Tellegen’s theorem [16], [17]. With proper storage function

for the power system, we can choose local input and output

variables so that when local passive controllers are connected

in negative feedback to the overall system, stability is guar-

anteed.

Fig. 1. Entropy versus inventory.

A. Preliminaries

We begin with some important definitions and theorems

in passivity literature. A system is said to be dissipative with

respect to the supply rate φ (u, y) if there exists a nonnegative

real function W (x), called the storage function, such that for

all t1 ≥ t0 ≥ 0, all initial conditions and all controls, the

increase in its energy (storage function) W (x) during the

interval (t0, t1) is no greater than the energy supplied to it

via the supply rate. A system is said to be passive if it is

dissipative with respect to the supply rate φ(u(t), y(t)) =
u(t)T y(t) [18].

The negative feedback connection of two passive systems

is passive [19]. A passive system with a positive definite

storage function is stable in the sense of Lyapunov. A linear

system is passive if and only if its transfer function G(s) is

positive real [18].

B. Entropy Function and Storage Function

One major challenge in passivity-based control is to find

a proper storage function. To obtain a storage function for

the power network, we first define an inventory or extensive

variable at each bus. Here, the kinetic energy stored at each

bus is chosen as the local inventory Zi = 1

2
Jiω

2

i , where

the moment of inertia Ji = 2Hi

ω2

0

. The intensive variable is

chosen to be the speed ωi (= 2π×frequency) at each bus.

We propose the entropy function for each generator to be

Si (Zi) = −
2

3

√

2

Ji
Z

3

2

i .

This entropy function is concave in Zi and

∂Si (Zi)

∂Zi

= −
2

3

√

2

Ji

3

2
Z

1

2

i = −ωi.

Consider the tangent of the entropy function at the ref-

erence speed ω0 and kinetic energy Z∗
i . Define the storage

function as the difference between S′
i and Si as shown in

Fig. 1. We have

Wi (ω
∗
i , Zi) = S∗

i − Si − ω0 (Zi − Z∗
i ) (3)

=
Ji
6
(ωi − ω0)

2
(2ωi + ω0) ≥ 0,

which proves that the storage function Wi(Zi) is non-

negative and the equality holds when ωi = ω0.
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For a constant reference point, we have dω0/dt = 0,

dZ∗
i /dt = 0, and dS∗

i /dt = 0. Therefore, differentiating (3)

with respect to time gives

dWi

dt
=

dS∗
i

dt
−

∂Si

∂Zi

dZi

dt
− ω0

d (Zi − Z∗
i )

dt
= ωi

dZi

dt
,

where ωi = ωi − ω0 and Zi = Zi − Z∗
i are the deviation

variables.

The above derivation is for generator buses. For load

buses, there can be two different models. We can either treat

the load as motors (“negative” generators), with associated

inertia, speed, electrical power and mechanical power, or

as just the power extracted from the load bus with the

dynamics of the load not modeled. For the first case, the

dynamical load bus is essentially the same as a generator

bus, therefore it is not discussed further. For the second case,

we consider there is no inertia and hence no storage at load

buses and wind buses, i.e. the load and wind power are seen

as disturbances to the system. An inventory of kinetic energy

Zi is nevertheless assigned to the load and wind buses, with

Zi = 0 and dZi

dt
= 0. Then the time derivative of the storage

function of all buses is

dW

dt
=

n
∑

i=1

dWi

dt
=

n
∑

i=1

ωi

dZi

dt
. (4)

C. Tellegen’s Theorem

As one of the most powerful theorems in network the-

ory, Tellegen’s theorem gives a simple relation between

magnitudes of network systems that obey the generalized

Kirchhoff’s laws of electrical circuit theory. The basic as-

sumptions are the conservation of flow of extensive quantities

(Kirchhoff’s current law, KCL) and the uniqueness of the

potentials at the network nodes (Kirchhoff’s voltage law,

KVL). One formulation for Tellegen’s theorem of process

systems is presented as follows [16], [17]:

Theorem 3.1 (Tellegen’s Theorem): Consider a process

network system with extensive variables Zi, and intensive

variables wi. Let the overbar denote the deviation from the

setpoint. If each node satisfies the KCL-like conservation law

dZi

dt
= pi +

np
∑

j=1,j 6=i

f ij , i = 1, ..., np

where pi is the production term and fij is the flow

connection, and each loop satisfies the KVL-like law
∑

loop

(wi − wj) = 0, then

np
∑

i=1

wi

dZi

dt
=

np
∑

i=1

wipi +

np
∑

j>i

np
∑

i=1

(wi − wj)f ij .

For each generator bus i, the kinetic energy Zi =
1

2
Jiω

2

i .

We have

dZi

dt
= Pmi −

KDi

ω0

ωiωi −
n
∑

j=1,j 6=i

f ij . (5)

For each load bus i that is treated as power disturbance,

dZi

dt
= −PLi −

n
∑

j=1,j 6=i

f ij . (6)

For each wind bus i that is treated as power disturbance,

dZi

dt
= PWi −

n
∑

j=1,j 6=i

f ij . (7)

Equations (5)–(7) show that the network satisfies the KCL

at each bus. For each loop, we have
∑

loop

(ωi − ωj) = 0, i.e.

the KVL is also satisfied. By Theorem 3.1 and from (4),

dW

dt
=

n
∑

i=1

ωi

dZi

dt
=

nG
∑

i=1

ωiPmi +

nW
∑

i=1

ωiPWi −

nL
∑

i=1

ωiPLi

−

nG
∑

i=1

KDi

ω0

ωiω
2

i −
n
∑

j>i

n
∑

i=1

(ωi − ωj)f ij . (8)

To analyze the stability of closed-loop system, the distur-

bances from the load and wind can be temporarily ignored. It

is evident from the first term of the right hand side of (8) that

we identify ui = Pmi and yi = ωi as our local input/output

pair. Then by definition, the system is passive with respect

to the supply rate φ(u, y) = uT y =
nG
∑

i=1

ωiPmi. The proof is

omitted due to space limitations.

IV. PASSIVITY-PRESERVING MODEL ORDER REDUCTION

Passivity-preserving model order reduction is an important

topic in circuit simulation, analysis and design area [20].

Standard balanced order reduction methods cannot guarantee

that the reduced order model of a passive system remains

passive. Phillips et al. develop truncated balanced realization

(TBR)-like methods that generate guaranteed passive reduced

order models in [21]. We are interested in its application

in primary frequency control for large-scale power systems.

The preservation of passivity of model reduction is extremely

important, as it ensures that when the controller designed

based on reduced order models are connected to the real

system, the stability of the overall system is guaranteed.

A. Conversion of DAEs to ODEs

The state-space model of power systems is described by

a set of differential-algebraic equations (DAEs):

ẋ = A0x+B0u+ E0v (9)

0 = C0x+D0v + F0d (10)

where x = [ω1, θ2, ω2, ..., θnG
, ωnG

]T is the state vector, v
is the vector of algebraic variables (i.e. the non-generator

bus angles), u = Pmi is the control variable for selected

machine Gen-i, d is the wind power disturbance. Note that

θ1 has been chosen as the reference angle, hence it is absent

from x.

The DAEs (9)–(10) can be transformed into ordinary-

differential equations (ODEs) as the matrix D0 is invertible:

ẋ = Ax+Bu+ Ed, (11)

y = Cx, (12)
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where A = A0 − E0D
−1

0
C0, B = B0, E = −E0D

−1

0
F0.

The output/measurement y = Cx is the speed of selected

machine Gen-i, i.e. the elements in C are all zeros, except

the entry corresponding to ωi is one.

B. Positive-Real Truncated Balanced Realization (PR-TBR)

Given a passive system as in (11)–(12), we apply Algo-

rithm 3 in [21] to obtain a passive reduced-order model with

the following state-space representation:

˙̃x = Ãx̃+ B̃u+ Ẽd, (13)

y = C̃x̃. (14)

V. PASSIVITY-BASED H∞ CONTROLLER SYNTHESIS

In [22], a method of positive real synthesis technique with

H∞-norm constraint is proposed by Haddad et al. The main

result is recapitulated below in the form of an algorithm.

Algorithm 1: Given a stabilizable and detectable positive

real plant in the form of (11)–(12) (or (13)–(14)), determine

a dynamic controller Gc(s) of the form

ẋc = Acxc +Bcy (15)

u = Ccxc (16)

such that

• the closed-loop system is stable;

• the closed-loop transfer function from the disturbance

d to the performance variables z = [ η1y, η2u ]T =
E1x+E2u satisfies ‖G (s)‖∞ ≤ γ, where γ is a positive

pre-defined value for guaranteed robust performance;

• −Gc(s) is positive real (passive).

The procedure is as follows:

1) Find matrices Q0 and L with Q0 = QT
0
> 0 such that

AQ0 +Q0A
T = −LLT

Q0C
T = B.

2) Choose proper weights η1, η2 and γ such that

V1 = LLT +BR−1

2
BT − γ−2Q0R1Q0 > 0

R1 ≥ CTR−2

2
C,

where R1 , ET
1
E1, R2 , ET

2
E2.

3) Find non-negative definite matrices Q and P satisfying

0 = AQ+QAT + V1 + γ−2QR1Q−QCTR−1

2
CQ

0 = (A+ γ−2QR1)
TP + P (A+ γ−2QR1) +R1

−PBR−1

2
BTP + γ−2PQCTR−1

2
CQP.

If such Q and P do not exist, go to 2) and re-tune

design weights η1, η2 and γ.

4) Compute the controller matrices as

Ac = A−QCTR−1

2
C −BR−1

2
BTP + γ−2QR1

Bc = QCTR−1

2

Cc = −R−1

2
BTP.

One important remark is that Algorithm 1 only works with

a passive plant model. Therefore, the passive reduced-order

Fig. 2. Passive H∞ controller design using reduced-order models.

model obtained from the PR-TBR algorithm in Section IV

can be used in Algorithm 1 to produce a passive H∞ con-

troller. This controller can then be used in the original system

for robust performance. Stability is guaranteed because both

the controller and original system are passive, thus when

they are connected together in negative feedback, passivity

is preserved in the overall system. The closed-loop system is

hence stable in the sense of Lyapunov. This idea is illustrated

in Fig. 2.

We now propose the following procedure as the main

algorithm of this paper.

Algorithm 2: Given a power system model in (9)–(10).

1) Convert the power system model from DAEs to ODEs

as in (11)–(12).

2) Apply PR-TBR algorithm to obtain a passive reduced-

order model as in (13)–(14).

3) Based on the passive reduced-order model (13)–(14)

obtained in 2), apply Algorithm 1 to synthesize a

passive H∞ controller as in (15)–(16).

4) Evaluate the control performance of the resulting con-

troller using the full-order model (11)–(12).

The implementation of Algorithm 2 involves several linear

matrix inequalities. We use CVX [23], a package for speci-

fying and solving convex programs to solve this problem.

VI. CASE STUDY

A. IEEE 9-Bus Test System

The IEEE 9-bus test system [24] is modified to include

a wind farm that has an average output of 190 MW (about

25% of the total system capacity). The power fluctuations

are about ±5% of the average power. The point of inter-

connection of the wind farm to the grid is bus 9. Therefore

the nearby machine Gen-3 is selected to balance the fluctu-

ation of wind power so as to minimize the effects of that

fluctuation on other parts of the system. The other machines

Gen-1 and Gen-2 remain the standard proportional droop

control of their mechanical power, i.e. Pmi = − Si

SNRDω0

ωi,

for i = 1, 2, where RD = 0.05 is the droop.

B. Results of Implementing Algorithm 2

The original system has 5 states and 6 algebraic variables.

After the conversion of DAEs to ODEs, the full-order system
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Fig. 3. Schematic of the 9-bus test system.

Fig. 4. Comparison of Bode plots of the full-order model and passive
reduced-order model.

is of 5th-order. Algorithm PR-TBR gives a 3rd-order passive

reduced-order model:

Ã =





−0.3 18.01 −0.647
18.01 −0.779 5.903
−0.647 5.903 −1.456



 , B̃ =





7.913
0
0



 ,

Ẽ =





5.52
0.05207
0.8028



 , C̃ =
[

7.9135 0 0
]

. (17)

The bode plot of the full-order model and reduced-order

model is shown in Fig. 4.

With the passive reduced-order model in (17), and the

choice of weights η1 = 0.12, η2 = 0.1 and γ = 2, a passive

H∞ controller is synthesized using Algorithm 1. Its transfer

function is

Gc (s) = −
8460s2 + 5579s+ 2.411e005

s3 + 6349s2 + 1.442e004s+ 2.284e005
. (18)

The minus sign stands for negative feedback interconnection.

The bode plot of −Gc is shown in Fig. 5.

Fig. 5. Bode plot of the passive controller.
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Fig. 6. Comparison of frequency performance for different controllers.

Figure 6 shows the frequency deviations caused by wind

power fluctuations with conventional droop controller and

passive H∞ controller in (18). We can see that the new

controller can effectively narrow the band of frequency

deviations caused by wind power fluctuations.

To evaluate the control action, mechanical power devi-

ations of Gen-3 are plotted in Fig. 7 (lower figure). The

required Pm3 by the H∞ controller has a larger band than

by the conventional governor. The rate of change of mechan-

ical power also increases for Gen-3. However, the required

mechanical power changes become less for Gen-1 and Gen-

2 as seen in the upper and middle figures of Fig. 7. This

shows that by installing H∞ controller on Gen-3, it becomes

more responsible for attenuating the frequency deviation

caused by wind power fluctuations and thus requires more

control action. By installing passive robust controller on the

generator close to the point of interconnection of the wind

farm to compensate the wind power fluctuations locally, the

rest of the network is less affected.
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VII. CONCLUSIONS AND FUTURE WORK

As wind power introduces more disturbances into power

systems, the primary frequency controller of conventional

generator needs to be redesigned to attenuate frequency

deviations caused by wind power fluctuations. While stan-

dard H∞ methods tend to produce complex controllers and

hence are not suitable for large-scale power systems, this

paper presents a passivity-based framework and an algorithm

that allows the synthesis of a passive H∞ controller based

on a passivity-preserving reduced-order model. When the

passive controller is connected to the full-order system in

negative feedback, the closed-loop system remains stable,

thanks to the special properties of passive systems. One

contribution of this paper is the derivation of a proper

storage function for power networks using the entropy of

individual generators and Tellegen’s theorem. Also, this

paper summarizes and combines the positive-real truncated

balanced realization (PR-TBR) method and the positive real

synthesis technique with H∞ constraint to produce a low-

order dynamic controller with robust performance for large-

scale power systems.

Although the main focus of this paper is on single

controller design to compensate wind power variability,

the proposed passivity-based framework can also support

decentralized control of multiple generators. We are currently

investigating the application of passivity-based methods to

design decentralized robust frequency controllers for power

systems with high penetration of wind power generation.

APPENDIX

The parameters of the 9-bus test system in Section VI are:
SN=100 MVA ω0=120π rad/s f0=60 Hz

S1=247.5 MVA H1=23.64 MW·s/MVA KD1=0.0125

S2=192 MVA H2=6.4 MW·s/MVA KD2=0.0068

S3=128 MVA H3=3.01 MW·s/MVA KD3=0.0048.
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