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Abstract— In this work, we consider the design of a dis-
tributed model predictive control scheme using multirate sam-
pling for large-scale nonlinear systems composed of several
coupled subsystems. Specifically, we assume that the states of
each local subsystem can be divided into fast sampled states
(which are available every sampling time) and slowly sampled
states (which are available every several sampling times).
The distributed model predictive controllers are connected
through a shared communication network and cooperate in
an iterative fashion, at time instants in which full system
state measurements (both fast and slow) are available and
the network closes, to guarantee closed-loop stability. When
the communication network is open, the distributed controllers
operate in a decentralized fashion based only on local subsystem
fast sampled state information to improve closed-loop perfor-
mance. In the proposed design, the controllers are designed via
Lyapunov-based model predictive control. Sufficient conditions
under which the state of the closed-loop system is ultimately
bounded in an invariant region containing the origin are
derived. The theoretical results are demonstrated through a
nonlinear chemical process example.

I. INTRODUCTION

With the rapid growth in the area of network technol-

ogy, augmentation of local (point-to-point) process control

systems with additional networked sensors and actuators

has become a subject of increasing importance. Such an

augmentation can significantly improve the efficiency, flex-

ibility, robustness and fault tolerance of an industrial con-

trol system while reducing the installation, reconfiguration

and maintenance expenses at the cost of coordination and

design/redesign of the various control systems employed in

the new architecture [1], [2], [3]. Model predictive control

(MPC) is a principal framework to deal with the design

and coordination of control systems because of its ability to

account for process/controller interactions in the calculation

of the control actions. MPC is an online optimization-based

approach, which takes advantage of a system model to

predict its future evolution starting from the current system

state along a given prediction horizon. Using model pre-

dictions, a future manipulated input trajectory is optimized

by minimizing a typically quadratic cost function involving
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penalties on the system state and control action. Once a

future input trajectory is calculated, only the first step input

value is applied to the system and the input evaluation

process is repeated at the next sampling time; this is the

so-called receding horizon scheme.

Typically, MPC is studied within a centralized control

architecture in which all the manipulated inputs are cal-

culated in a single MPC. Because in the evaluation of

the control actions by MPC online optimization problems

need to be solved, the evaluation time of the MPC strongly

depends on the number of manipulated inputs. As the number

of manipulated inputs increases, the evaluation time of a

centralized MPC may increase significantly. This may im-

pede the ability of centralized MPC to carry out real-time

calculations within the limits imposed by process dynamics

and operating conditions.

Distributed MPC (DMPC) is a feasible alternative to over-

come the increasing computational complexity of centralized

MPC. In a DMPC architecture, the manipulated inputs are

computed by solving more than one control (optimization)

problems in separate processors in a coordinated fashion.

With respect to available results in this direction, several

DMPC methods have been proposed in the literature; please

see [4], [5], [6] for reviews of results in this area. Specifically,

in [7], a distributed control method for weakly-coupled

nonlinear systems subject to decoupled constraints was pro-

posed. In [8], a robust DMPC formulation was proposed

for decoupled linear systems. In [9], it was proven that

through multiple communications between distributed con-

trollers and using system-wide control objective functions,

the stability of the closed-loop system can be guaranteed

for linear systems. In [10], DMPC of decoupled nonlinear

systems coupled through cost functions was studied. In [11],

a DMPC algorithm was proposed for a class of nonlinear

discrete-time systems under the condition that no information

is exchanged between local controllers. In [12], a game

theory based DMPC scheme was proposed for linear systems

coupled through the inputs. In our previous works [13],

[14], two different DMPC architectures, namely, a sequential

DMPC architecture and an iterative DMPC architecture, were

designed for nonlinear systems via Lyapunov techniques.

However, the results in [13], [14] were obtained under the

assumption that each distributed controller has access to

the full system state at every sampling time. In [15], [16],

we considered the design of DMPC schemes for nonlinear

systems with asynchronous and delayed measurements of the

full system state.

In the present work, we consider the design of a DMPC

scheme using multirate sampling for large-scale nonlinear
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systems composed of several coupled subsystems. Specif-

ically, we assume that the states of each local subsystem

can be divided into fast sampled states (which are available

every sampling time) and slowly sampled states (which

are available every several sampling times). The distributed

model predictive controllers are connected through a shared

communication network and cooperate in an iterative fashion

to guarantee closed-loop stability when the network is closed

at time instants in which full system state measurements

(both fast and slow) are available. When the communication

network is open, the distributed controllers operate in a

decentralized fashion based only on local subsystem fast

sampled state information to improve closed-loop perfor-

mance. In the proposed design, the controllers are designed

via Lyapunov-based MPC (LMPC). Sufficient conditions

under which the state of the closed-loop system is ultimately

bounded in an invariant region containing the origin are

derived. The theoretical results are demonstrated through

a nonlinear chemical process example. In [17], the results

presented in this paper have been extended to account for

measurement and communication noise as well as certain

distributed convergence properties have been established.

II. PRELIMINARIES

A. Notation and class of nonlinear systems

The operator | · | is used to denote Euclidean norm of

a vector, and a continuous function α : [0, a) → [0,∞)
is said to belong to class K if it is strictly increasing and

satisfies α(0) = 0. The symbol Ωr is used to denote the

set Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a scalar

function, and the operator ‘/’ denotes set subtraction, that

is, A/B := {x ∈ Rnx : x ∈ A, x /∈ B}. The symbol

diag(v) denotes a matrix whose diagonal elements are the

elements of vector v and all the other elements are zeros. We

consider a class of nonlinear systems which is composed of

m subsystems where each of the subsystems can be described

by the following state-space model:

ẋi(t) = fi(x) + gsi(x)ui(t) + ki(x)wi(t) (1)

where i = 1, . . . ,m, xi(t) ∈ Rnxi denotes the vector of

state variables of subsystem i, ui(t) ∈ Rnui and w(t) ∈
Rnw denote the set of control (manipulated) inputs and

disturbances associated with subsystem i, respectively. The

variable x ∈ Rnx denotes the state of the whole system

which is composed of the states of the m subsystems, that

is x = [xT
1 · · ·x

T
i · · ·x

T
m]T .

The dynamics of x can be described in a compact form

as follows:

ẋ(t) = f(x) +
∑m

i=1 gi(x)ui(t) + k(x)w(t) (2)

where f = [fT
1 · · · f

T
i · · · f

T
m]T , gi = [0T · · · gTsi · · ·0

T ]T

with 0 being the zero matrix of appropriate dimensions,

k is a matrix composed of ki (i = 1, . . . ,m) and zeros

whose explicit expression is omitted for brevity, and w =
[wT

1 · · · w
T
i · · ·w

T
m]T which is assumed to be bounded, that

is, w(t) ∈W with W := {w ∈ Rnw : |w| ≤ θ, θ > 0}.

The m sets of inputs are restricted to be in m nonempty

convex sets Ui ⊆ Rmui , i = 1, . . . ,m, which are defined

as Ui := {ui ∈ Rnui : |ui| ≤ umax
i } where umax

i , i =
1, . . . ,m, are the magnitudes of the input constraints. We will

design m controllers to compute the m sets of control inputs

ui, i = 1, . . . ,m, respectively. We will refer to the controller

computing ui associated with subsystem i as controller i.
We assume that f , gi, i = 1, . . . ,m, and k are locally Lip-

schitz vector functions and that the origin is an equilibrium

point of the unforced nominal system (i.e., system of Eq. 2

with ui(t) = 0, i = 1, . . . ,m, w(t) = 0 for all t) which

implies that f(0) = 0.

B. Modeling of measurements and communication networks

We assume that the states of each of the m subsystems, xi

(i = 1, . . . ,m), are divided into two parts: xf,i, states that

can be measured at each sampling time (e.g., temperatures

and pressures) and xs,i, states which are sampled at a

relatively slow rate (e.g., species concentrations). Specif-

ically, we assume that xf,i, are available at synchronous

time instants tm = t0 + m∆, m = 0, 1, . . ., where t0 is

the initial time and ∆ is the sampling time; and assume

that xs,i, are available every T sampling times (i.e., xs,i,

are available at tk with k = 0, T, 2T, . . .). Note that, in

order to simplify the development, we assume that the

slowly sampled states of different subsystems are available

at the same time instants. This modeling of measurements is

relevant to systems involving heterogeneous measurements

which have different sampling rates; please see example in

Section IV.

We also assume that each subsystem is connected to its

local sensors, actuators and controller using point-to-point

links, which implies that xf,i and xs,i are available without

delay to controller i once they are measured. We further

assume that the controllers for different subsystems are

connected through a shared communication network which

is closed when the full system state is available (i.e., at

time instants tk with k = 0, T, 2T, . . .). When the network

is closed, each controller communicates with the rest of

the controllers to share state and future input trajectories

information.

This class of systems is relevant to the case of large-

scale chemical processes that are controlled by distributed

control systems that exchange information over a shared

communication network through which it is not cost-effective

to communicate at every sampling time. Instead, in order to

achieve closed-loop stability and good closed-loop perfor-

mance, the controllers communicate every several sampling

times. Please see Fig. 1 in Section III for a schematic of such

type of DMPC system with the local controllers designed via

Lyapunov-based MPC techniques.

C. Lyapunov-based controller

We assume that there exists a Lyapunov-based controller

h(x) = [hT
1 (x) · · · h

T
m(x)]T with ui = hi(x), i = 1, . . . ,m,

which renders the origin of the nominal closed-loop system

asymptotically stable while satisfying the input constraints
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Fig. 1. Distributed LMPC control architecture (solid line denotes fast state
sampling and point-to-point links; dashed line denotes slow state sampling
and shared communication networks).

for all the states x inside a given stability region. We note

that this assumption is essentially similar to the assumption

that the process is stabilizable or that the pair (A,B) in

the case of linear systems is stabilizable. Using converse

Lyapunov theorems [18], [19], this assumption implies that

there exist class K functions αi(·), i = 1, 2, 3, 4 and

a continuously differentiable Lyapunov function V (x) for

the nominal closed-loop system, that satisfy the following

inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)
∂x

(f(x) +
∑m

i=1 gi(x)hi(x)) ≤ −α3(|x|)

|∂V (x)
∂x
| ≤ α4(|x|), hi(x) ∈ Ui, i = 1, . . . ,m

(3)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of

the origin. We denote the region Ωρ ⊆ D as the stability

region of the closed-loop system under the Lyapunov-based

controller h(x). By continuity, the local Lipschitz property

assumed for the vector fields f and gi, i = 1, . . . ,m,

and taking into account that the manipulated inputs ui,

i = 1, . . . ,m, and the disturbance w are bounded in a convex

set, there exists a positive constant M such that

|f(x) +
∑m

i=1 gi(x)ui + k(x)w| ≤M (4)

for all x ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈ W . In

addition, by the continuous differentiable property of the

Lyapunov function V (x) and the Lipschitz property assumed

for the vector field f , there exist positive constants Lx, Lui
,

i = 1, . . . ,m, and Lw such that

|∂V
∂x

f(x)− ∂V
∂x

f(x′)| ≤ Lx|x− x′|

|∂V
∂x

gi(x)−
∂V
∂x

gi(x
′)| ≤ Lui

|x− x′|, i = 1, . . . ,m

|∂V
∂x

k(x)| ≤ Lw, |
∂V
∂x

gi(x)| ≤ Cgi, i = 1, . . . ,m

(5)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈W .

III. MULTIRATE DMPC

A. Multirate DMPC implementation strategy

In this work, the m controllers manipulating the m sets

of inputs will be designed through LMPC technique [20].

For the LMPC associated with controller i, i = 1, . . . ,m,

we will refer to it as LMPC i. A schematic of the control

system is shown in Fig. 1.

At a sampling time in which the communication network

is closed, the distributed controllers coordinate their actions

and predict future input trajectories which, if applied until the

next instant the network is closed, guarantee the closed-loop

stability. At a sampling time in which the network is open,

each distributed controller tries to further optimize the input

trajectories calculated at the latest network-closed instant

within a constrained set of values to improve the closed-

loop performance with the help of the available fast sampled

states of its subsystem.

The proposed implementation strategy of the DMPC ar-

chitecture at time instants when the communication network

is closed is as follows:

1. At a sampling time tk with k = 0, T, 2T, . . ., all the

controllers first broadcast their local subsystem states

to other controllers, so each controller has the current

full system state x(tk); and then all controllers iterate

to evaluate their future input trajectories in an iterative

fashion.

2. At iteration c (c ≥ 1)

2.1. All the distributed controllers exchange their lat-

est future input trajectories.

2.2. Each controller evaluates its own future input

trajectory based on x(tk) and the latest received

input trajectories of others.

2.3. If a termination condition is satisfied, each con-

troller sends its entire future input trajectory to

its actuators and the other controllers; if the

termination condition is not satisfied, go to step

2.1 (c← c+ 1).

The proposed implementation strategy of the DMPC ar-

chitecture at time instants when the communication network

is open and only local fast sampled states are available is as

follows:

1. At a sampling time tl with l 6= 0, T, 2T, . . ., the

shared communication network is open. Controller i,
i = 1, . . . ,m, receives its local fast sampled states,

xf,i.

2. Each controller i estimates the current full system state

and evaluates its future input trajectory and sends the

first step input value to its actuators.

In the sequel, we describe these steps in detail.

B. Multirate DMPC formulation

In this subsection, we describe the design of the distributed

controllers in the DMPC architecture. We first describe the

design of the LMPCs at time instants when the network

is closed. Before presenting the design of the LMPCs, we

need to define a nominal sampled trajectory xh(τ |tk), k =
0, T, 2T, . . ., which will be employed in the construction of

the stability constraints. This nominal sampled trajectory is

obtained by integrating recursively, for t ∈ [tk, tk+T ) and

k = 0, T, 2T, . . ., the following equation:

ẋh(τ |tk) = f(xh(τ |tk)) +
∑m

i=1 gi(xh(τ |tk))hi(xh(l∆|tk)),
∀τ ∈ [l∆, (l + 1)∆)

xh(0|tk) = x(tk) (6)
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where l = 0, . . . , T − 1, x(tk) is the actual system state

at tk. Based on this sampled trajectory, we can define the

following input trajectories:

un,j(τ |tk) =hj(xh(l∆|tk)), j = 1, . . . ,m,
∀τ ∈ [l∆, (l + 1)∆), l = 0, . . . , T − 1.

(7)

From the definition of xh, we see that this trajectory is

a prediction of the evolution of the system of Eq. 2 under

the Lyapunov-based controller h(x) applied in a sample-and-

hold fashion. xh is re-set to the actual system state every T
sampling times. This sampled trajectory, xh(τ |tk), will be

used in the LMPCs.

At time tk, k = 0, T, 2T, . . ., the LMPCs are evaluated

in an iterative fashion to obtain the future input trajectories.

Specifically, the optimization problem of LMPC j at iteration

c is as follows:

min
uj∈S(∆)

∫ N∆

0

[x̃j(τ)TQcx̃
j(τ) +

∑m

i=1 ui(τ)
TRciui(τ)]dτ

(8a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
∑m

i=1 gi(x̃
j(τ))ui (8b)

ui(τ) = u
∗,c−1
i (τ |tk), ∀i 6= j (8c)

∣

∣uj(τ)− u
∗,c−1
j (τ |tk)

∣

∣ ≤ ∆uj , ∀τ ∈ [0, T∆] (8d)

uj(τ) ∈ Uj (8e)

x̃
j(0) = x(tk) (8f)

∂V (x̃j)

∂x̃j

(

1

m
f(x̃j(τ)) + gj(x̃

j(τ))uj(τ)

)

≤
∂V (xh)

∂xh

(

1

m
f(xh(τ |tk)) + gj(xh(τ |tk))un,j(τ |tk)

)

,

∀τ ∈ [0, T∆] (8g)

where S(∆) is the family of piece-wise constant functions

with sampling period ∆, N is the prediction horizon, Qc and

Rci, i = 1, . . . ,m, are positive definite weight matrices that

define the cost, the state x̃j is the predicted trajectory of the

nominal system with uj computed by the LMPC of Eq. 8

and all the other inputs are the optimal input trajectories at

iteration c− 1 of the rest of the distributed controllers. The

optimal solution to this optimization problem is denoted by

u∗,c
j (τ |tk) which is defined for τ ∈ [0, N∆). Accordingly,

we define the final optimal input trajectory of LMPC j (that

is, the optimal trajectories computed at the last iteration) as

u∗,f
j (τ |tk) which is also defined for τ ∈ [0, N∆).

Note that for the first iteration of each distributed LMPC,

the input trajectories defined in Eq. 7 are used as the initial

input trajectory guesses; that is, u∗,0
i = un,i with i =

1, . . . ,m.

The constraint of Eq. 8d imposes a limit on the input

change between two consecutive iterations. This constraint

allows LMPC j to take advantage of the input trajectories

received in the last iteration (i.e., u∗,c−1
i , ∀i 6= j) to predict

the future evolution of the system state without introducing

significant errors. For LMPC j (i.e., uj), the magnitude of

input change between two consecutive iterations is restricted

to be smaller than a positive constant ∆uj . The constraint

of Eq. 8g is used to guarantee the closed-loop stability.

The manipulated inputs of the proposed control design

from time tk to tk+1 (k = 0, T, 2T, . . .) are defined as

follows:

ui(t) = u∗,f
i (t− tk|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (9)

For the iterations in the design of Eq. 8, there are dif-

ferent choices of the termination condition. For example,

the number of iterations c may be restricted to be smaller

than a maximum iteration number cmax (i.e., c ≤ cmax)

or the iterations may be terminated when the difference of

the performance or the solution between two consecutive

iterations is smaller than a threshold value or the iterations

maybe terminated when a maximum computational time is

reached.

Next, we describe the design of the distributed controllers

at the time instants in which the network is open. In order to

improve the performance, between two slow sampling times,

each controller uses the available local fast sampled mea-

surements to adjust its control input based on the calculated

optimal input trajectory for the current time obtained at the

last time instant in which the network was closed. In order

to guarantee closed-loop stability, the maximum deviation of

the adjusted inputs from the optimal input trajectory at each

time step is bounded.

Between two slow sampling times, each controller esti-

mates the current full system state using an observer based on

the system model and the available information. Specifically,

the observer for controller i takes the following form for

t ∈ [tl−1, tl):

˙̂xi(t) = f(x̂i(t)) + gi(x̂
i(t))u∗

i (t)

+
∑m,j 6=i

j=1 gj(x̂
i(t))u∗,f

j (t− tk|tk)

x̂i(tl−1) = xi
e(tl−1)

(10)

where x̂i is the state of this observer, u∗,f
j (τ |tk) is the

predicted optimal input trajectories at time instant tk (in

which the network was closed), u∗
i (t) is the actual input

that has been applied to subsystem i, and xi
e(tl−1) is the

full state estimate obtained at tl−1. The state estimate xi
e(tl),

l 6= 0, T, 2T, . . ., is a combination of the state of the observer

of Eq. 10 and of the available local state information xf,i(tl)
as follows:

xi
e(tl) = [x̂i

1(tl)
T · · · x̌i(tl)

T · · · x̂i
m(tl)

T ]T

where x̌i(tl)
T = [xT

f,i x̂
T
s,i].

Specifically, the optimization problem of LMPC j for a

time instant tl, l 6= 0, T, 2T, . . . is as follows:

min
uj∈S(∆)

∫ N∆

0

[x̌j(τ)TQcx̌
j(τ) +

∑m

i=1 ui(τ)
TRciui(τ)]dτ

(11a)

s.t. ˙̌xj(τ) = f(x̌j(τ)) +
∑m

i=1 gi(x̌
j(τ))ui (11b)

ui(τ) = u
∗,f
i (tl − tk + τ |tk),

∀i 6= j, τ ∈ [0, tk +N∆− tl) (11c)

ui(τ) = hi(x̌
j(τ)), ∀i 6= j, τ ∈ [tk +N∆− tl, N∆)

(11d)
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∣

∣

∣
uj(τ)− u

∗,f
j (tl − tk + τ |tk)

∣

∣

∣
≤ ∆uj ,

τ ∈ [0, tk +N∆− tl) (11e)

uj(τ) ∈ Uj (11f)

x̌
j(0) = x

j
e(tl) (11g)

where tk is the last time instant in which the communication

network is closed, the state x̌j is the predicted trajectory

of the nominal system with uj computed by the LMPC

of Eq. 11 and all the other inputs are the optimal input

trajectories determined by the constraints of Eqs. 8c and 11d.

In this optimization problem, the input uj is restricted to be

within a bounded region around the reference input trajecto-

ries given by u∗,f
j (τ |tk) and h(x). The optimal solution to

this optimization problem is denoted by u∗,l
j (τ |tl) which is

defined for τ ∈ [0, N∆).
The manipulated inputs of the control design of Eq. 11

from tl to tl+1 (l 6= 0, T, 2T, . . .) are defined as follows:

ui(t) = u∗,l
i (t− tl|tl), i = 1, . . . ,m, ∀t ∈ [tl, tl+1). (12)

In the design of Eqs. 8-9 and 11-12, the closed-loop

stability of the system of Eq. 2 is guaranteed by the design

of Eqs. 8-9 at each sampling time tk, k = 0, T, 2T, . . .,
when the full state measurements are available and the

communication network is closed. The design of Eqs. 11-

12 takes advantage of the predicted input trajectories u∗,f
i ,

i = 1, . . . ,m, at sampling times tk, k = 0, T, 2T, . . ., and

the additional available fast-sampling state measurements to

adjust the predicted inputs, u∗,f
i , to improve the closed-loop

performance.

C. Stability analysis

The proposed DMPC of Eqs. 8-9 and 11-12 computes the

inputs ui, i = 1, . . . ,m, applied to the system of Eq. 2

in a way such that in the closed-loop system, the value of

the Lyapunov function at time instant tk (i.e., V (x(tk)))
is a decreasing sequence of values with a lower bound.

Following Lyapunov arguments, this property guarantees

practical stability of the closed-loop system. This is achieved

due to the constraints of Eq. 8g incorporated in each LMPC.

This property is presented in Theorem 1 below. To prove this

theorem, we need the following propositions.

Proposition 1 (c.f. [14]): Consider the nominal sampled

trajectory xh of the system of Eq. 2 in closed-loop with

the Lyapunov-based controller h(x) applied in a sample-

and-hold fashion and with open-loop state estimation. Let

∆, ǫs > 0 and ρ > ρs > 0 satisfy

−α3(α
−1
2 (ρs)) + L∗M ≤ −ǫs/∆ (13)

with L∗ = Lx +
∑m

i=1 Lui
umax
i . Then, if ρmin < ρ where

ρmin = max{V (xh(t+∆)) : V (xh(t)) ≤ ρs} (14)

and xh(0) ∈ Ωρ, the following inequality holds:

V (xh(k∆)) ≤ max{V (xh(0))− kǫs, ρmin}. (15)

Proposition 1 ensures that if the nominal system under

the control h(x) implemented in a sample-and-hold fashion

and with open-loop state estimation starts in Ωρ, then it

is ultimately bounded in Ωρmin
. The following proposition

provides an upper bound on the deviation of the state

trajectory obtained using the nominal model, from the actual

state trajectory when the same control actions are applied.

Proposition 2 (c.f. [14]): Consider the systems

ẋa(t)= f(xa(t)) +
∑m

i=1 gi(xa(t))ui(t) + k(xa(t))w(t))
ẋb(t)= f(xb(t)) +

∑m
i=1 gi(xb(t))ui(t)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class

K function fW (·) such that

|xa(t)− xb(t)| ≤ fW (t− t0), (16)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with fW (τ) =
Rwθ(e

Rxτ − 1)/Rx and Rw, Rx are positive numbers.

Proposition 3 bounds the difference between the magni-

tudes of the Lyapunov function of two states in Ωρ.

Proposition 3 (c.f. [14]): Consider the Lyapunov function

V (·) of the system of Eq. 2. There exists a quadratic function

fV (·) such that

V (x) ≤ V (x̂) + fV (|x− x̂|) (17)

for all x, x̂ ∈ Ωρ with fV (s) = α4(α
−1
1 (ρ))s + Mvs

2 and

Mv > 0.

Proposition 4: (c.f. [16]) Consider the systems

ẋa(t) = f(xa(t)) +
∑m

i=1 gi(xa(t))u
c
i (t)

ẋb(t) = f(xb(t)) +
∑m, i6=j

i=1 gi(xb(t))u
c−1
i (t)

+gj(xb(t))u
c
j(t)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class

K function fX,j(·) such that

|xa(t)− xb(t)| ≤ fX,j(t− t0) (18)

for all xa(t), xb(t) ∈ Ωρ, and uc
i (t), u

c−1
i ∈ Ui and |uc

i (t)−

uc−1
i (t)| ≤ ∆ui, i = 1, . . . ,m and fX,j(τ) =

C2,j

C1,j
(eC1,jτ −

1) with C2,j and C1,j are positive constants.

Proposition 4 bounds the difference between the nominal

state trajectory under the optimized control inputs and the

predicted nominal state trajectory generated in each LMPC

optimization problem. To simplify the proof of Theorem 1,

we define a new function fX(τ) based on fX,i, i = 1, . . . ,m,

as follows:

fX(τ) =
∑m

i=1

(

1
m
Lx + Lui

umax
i

)

(

1
C1,i

fX,i(τ)−
C2,i

C1,i
τ
)

.

It is easy to verify that fX(τ) is a strictly increasing and

convex function of its argument. In Theorem 1 below, we

provide sufficient conditions under which the DMPC of

Eqs. 8-9 and 11-12 guarantees that the state of the closed-

loop system is ultimately bounded in a region that contains

the origin.

Theorem 1: Consider the system of Eq. 2 in closed-loop

with the DMPC design of Eqs. 8-9 and 11-12 based on the

controller h(x) that satisfies the conditions of Eq. 3 with

class K functions αi(·), i = 1, 2, 3, 4. If there exist ∆ > 0,

ǫs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥ T ≥ 1 that
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satisfy the conditions of Eqs. 13 and 14 and the following

inequality:

−Tǫs+fX(T∆)+fV (fW (T∆))+
∑m

i=1 Cgi∆ui(T −1)∆ < 0,
(19)

and if the initial state of the closed-loop system x(t0) ∈ Ωρ,
then x(t) is ultimately bounded in Ωρb

⊆ Ωρ where

ρb = ρmin+fX(T∆)+fV (fW (T∆))+
∑m

i=1 Cgi∆ui(T −1)∆.

Proof: We first consider two consecutive time instants

in which the network is closed and we have full system state

measurements: tk and tk+T (k = 0, T, 2T, . . .). We prove

that the Lyapunov function of the system is decreasing from

tk to tk+T . In the following, we will denote the trajectory

of the nominal system of Eq. 2 under the DMPC of Eqs. 8-

9 and 11-12 as x̃ and denote the predicted nominal system

trajectory in the evaluation of the LMPC of Eq. 8 at the final

iteration as x̃j with j = 1, . . . ,m.

The derivative of the Lyapunov function of the nominal

system of Eq. 2 under the DMPC of Eqs. 8-9 and 11-12 from

tk to tk+T is expressed as follows:

V̇ (x̃(τ)) = ∂V
∂x

(f(x̃(τ)) +
∑m

i=1 gi(x̃(τ))u
∗
i (τ)) . (20)

where u∗
i (τ) is the actual input applied to the system and

defined as follows:

u
∗

i (τ) =

{

u
∗,f
i (τ |tk), τ ∈ [0,∆)

u
∗,l
i (τ |tl), τ ∈ [0,∆), l = k + 1, . . . , k + T − 1.

Adding the equality of Eq. 20 and the constraints of Eq. 8g

together, we can obtain the following inequality for all τ ∈
[0, T∆]:

V̇ (x̃(τ)) ≤ ∂V
∂x

(

f(x̃(τ)) +
∑m

i=1 gi(x̃(τ))u
∗

i (τ)
)

+ ∂V
∂x

(

f(xh(τ |tk)) +
∑m

i=1 gi(xh(τ |tk))un,i(τ |tk)
)

− ∂V
∂x

(

1
m
f(x̃1(τ)) + g1(x̃

1(τ))u∗,f
1 (τ |tk)

)

− . . .

− ∂V
∂x

(

1
m
f(x̃m(τ)) + gm(x̃m(τ))u∗,f

m (τ |tk)
)

.
(21)

Reworking the inequality of Eq. 21, the following inequality

can be obtained for τ ∈ [0, T∆]:

V̇ (x̃(τ)) ≤ ∂V
∂x

(

f(xh(τ |tk)) +
∑m

i=1 gi(xh(τ |tk))un,i(τ |tk)
)

+ ∂V
∂x

(

1
m
f(x̃(τ)) + g1(x̃)u

∗,f
1 (τ |tk)

)

− ∂V
∂x

(

1
m
f(x̃1(τ)) + g1(x̃

1(τ))u∗,f
1 (τ |tk)

)

+ . . .

+ ∂V
∂x

(

1
m
f(x̃(τ)) + gm(x̃)u∗,f

m (τ |tk)
)

− ∂V
∂x

(

1
m
f(x̃m(τ)) + gm(x̃m(τ))u∗,f

m (τ |tk)
)

+
∑m

i=1
∂V
∂x

gi(x̃)
(

u∗

i (τ)− u
∗,f
i (τ |tk)

)

(22)

By the continuity and locally Lipschitz properties assumed

for the vector fields f(·), gi(·), i = 1, . . . ,m, and using the

constants defined in Eq. 5, the following inequality can be

obtained for τ ∈ [0, T∆] from the inequality of Eq. 22:

V̇ (x̃(τ))≤ V̇ (xh(τ |tk))

+
(

1
m
Lx + Lu1

u
∗,f
1 (τ |tk)

)

|x̃(τ)− x̃1(τ)|+ . . .

+
(

1
m
Lx + Lumu∗,f

m (τ |tk)
)

|x̃(τ)− x̃m(τ)|

+
∑m

i=1 Cgi

(

u∗

i (τ)− u
∗,f
i (τ |tk)

)

.

(23)

Using Proposition 4 and the inequality of Eq. 23, we have:

V̇ (x̃(τ)) ≤ V̇ (xh(τ |tk)) +
(

1
m
Lx + Lu1

umax
1

)

fX,1(τ) + . . .

+
(

1
m
Lx + Lumumax

m

)

fX,m(τ)

+
∑m

i=1 Cgi

(

u∗

i (τ)− u
∗,f
i (τ |tk)

)

(24)

Integrating the inequality of Eq. 24 from τ = 0 to τ = T∆
and taking into account that x̃(tk) = xh(tk), the constraints

of Eqs. 8d and 11e and the definitions of fX(·) and u∗(τ),
the following inequality can be obtained:

V (x̃(tk+T )) ≤ V (xh(tk+T ))+fX(T∆)+
∑m

i=1 Cgi∆ui(T−1)∆.

Using the above inequality and Propositions 1 and 3, we can

obtain the following inequality

V (x(tk+T )) ≤max{V (x(tk))− Tǫs, ρmin}
+fX(T∆) + fV (fW (T∆))
+
∑m

i=1 Cgi∆ui(T − 1)∆.
(25)

If the condition of Eq. 19 is satisfied, we know that there

exists ǫw > 0 such that the following inequality holds

V (x(tk+T )) ≤ max{V (x(tk))− ǫw, ρb} (26)

which implies that if x(tk) ∈ Ωρ/Ωρb
, then V (x(tk+T )) <

V (x(tk)), and if x(tk) ∈ Ωρb
, then V (x(tk+T )) ≤ ρb.

Because the upper bound on the difference between

the Lyapunov function of the actual trajectory x and the

nominal trajectory x̃ (the term fX(T∆) + fV (fW (T∆)) +
∑m

i=1 Cgi∆ui(T − 1)∆) is a strictly increasing function of

time, the inequality of Eq. 26 also implies that

V (x(t)) ≤ max{V (x(tk))− ǫw, ρb}, ∀t ∈ [tk, tk+T ]. (27)

Using the inequality of Eq. 27 recursively, it can be proved

that if x(t0) ∈ Ωρ, then the closed-loop trajectories of the

system of Eq. 2 under the proposed DMPC design stay in

Ωρ for all times (i.e., x(t) ∈ Ωρ for all t). Moreover, if

x(t0) ∈ Ωρ, the closed-loop trajectories of the system of

Eq. 2 under the proposed iterative DMPC design satisfy

lim sup
t→∞

V (x(t)) ≤ ρb.

This proves that the results stated in Theorem 1 hold.

IV. APPLICATION TO A CHEMICAL PLANT

The process considered in this study is a three ves-

sel, reactor-separator system consisting of two continuously

stirred tank reactors (CSTRs) and a flash tank separator. The

process description, a detailed version of which can be found

in [21], is briefly reviewed below: a feed stream to the first

CSTR F10 contains the reactant A which is converted into the

5186



desired product B. The desired product B can then further

react into an undesired side-product C. The effluent of the

first CSTR along with additional fresh feed F20 makes up

the inlet to the second CSTR. The reactions A → B and

B → C (referred to as 1 and 2, respectively) take place in

the two CSTRs in series before the effluent from CSTR 2 is

fed to a flash tank. The overhead vapor from the flash tank

is condensed and recycled to the first CSTR, and the bottom

product stream is removed. Each of the tanks has an external

heat input/removal actuator. The process model, consisting

of twelve nonlinear ordinary differential equations (ODEs),

is numerically simulated using an explicit Euler integration

method. Bounded random noise was added to the right-hand

side of the ODEs to simulate disturbances/model uncertainty.

Please refer to [21] for the detailed modeling of the process

and the process parameters used in the simulations.

This process is divided into three subsystems correspond-

ing to the first CSTR, the second CSTR and the separator,

respectively. For the three subsystems, we will refer to them

as subsystem 1, subsystem 2 and subsystem 3, respectively.

The state of subsystem 1 is defined as the deviations of the

temperature and species concentrations in the first CSTR

from their desired steady-state; that is, xT
1 = [xT

f,1, x
T
s,1]

where xf,1 = T1 − T1s and xT
s,1 = [CA1 − CA1s CB1 −

CB1s CC1 − CCs] denote fast sampled and slowly sampled

measurements of subsystem 1, respectively. The states of

subsystems 2 and 3 are defined similarly; they are xT
2 =

[T2− T2s CA2−CA2s CB2−CB2s CC2−CC2s] and xT
3 =

[T3−T3s CA3−CA3s CB3−CB3s CC3−CC3s]. Accordingly,

the state of the whole process is defined as a combination of

the states of the three subsystems; that is, xT = [xT
1 xT

2 xT
3 ].

Due to the simplicity of temperature measurement at each

sampling time, we denote the temperature as the fast sampled

measurement of each subsystem.

Each of the tanks has an external heat input which is the

control input associated with each subsystem, that is, u1 =
Q1 −Q1s, u2 = Q2 −Q2s and u3 = Q3 −Q3s where Q1s,

Q2s and Q3s are the steady-state input values corresponding

to a desired unstable operating steady-state (set-point): xT
s =

[369.53 3.31 0.17 0.04 435.25 2.75 0.44 0.11 435.25 2.88
0.49 0.12]. The inputs are subject to constraints as follows:

|u1| ≤ 5 × 104 KJ/hr, |u2| ≤ 1.5 × 105 KJ/hr, and

|u3| ≤ 2 × 105 KJ/hr. Three distributed MPC controllers

(controller 1, controller 2 and controller 3) will be designed

to manipulate the three inputs in the three subsystems,

respectively.

We assume that xf,1, xf,2, xf,3 are measured and sent

to controller 1, controller 2 and controller 3, respectively,

at synchronous time instants tl = l∆, l = 0, 1, . . ., with

∆ = 0.01 hr = 36 sec while we assume that each controller

receives xs,i every T = 4 sampling times. The three

subsystems exchange their states at tk = kT∆, k = 0, 1, . . .;
that is, the full system state x is sent to all the controllers

every T = 4 sampling times.

In the simulations, we consider a quadratic

Lyapunov function V (x) = xTPx with P =
diag([20 103 103 103 20 103 103 103 20 103 103 103]).
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Fig. 2. State trajectories of the process under the DMPC design of Eqs. 8-9
and 11-12.

We first design three P controllers with proportional

gains Kp1 = Kp3 = 5000, Kp2 = 5100 based on the

measurements of T1, T2 and T3, respectively. Through

extensive simulations, it has been verified that the three

P controllers can stabilize the process at the open-loop

unstable operating steady-state xs and satisfy the input

constraints in the state region V (x) ≤ 2000 (i.e., ρ ≤ 2000).

After designing the P controllers, we add very small integral

terms (with integral time constants τI1 = τI2 = τI3 = 106,

respectively) to the three P controllers to form three new

PI controllers to achieve offset-less tracking. Because of

the small integral terms, the closed-loop system stability

region estimate under P control is nearly preserved under

PI control. Therefore, in the design of the DMPC, the PI

controllers will be used to approximate a Lyapunov-based

controller; that is h(x).

Based on the PI controllers and V (x), we design

the three LMPCs following Eqs. 8-9 and 11-12 and

refer to them as LMPC 1, LMPC 2 and LMPC 3.

For each LMPC, we also design a state observer fol-

lowing Eq. 10. In the design of the LMPC con-

trollers, the weighting matrices are chosen to be Qc =
diag([20 103 103 103 20 103 103 103 20 103 103 103]),
R1 = R2 = R3 = 10−6. The prediction horizon for

the optimization problem is N = 5 with a time step

of ∆ = 0.01 hr. In the simulations, we put a maxi-

mum iteration number cmax on the DMPC evaluation and

the maximum iteration number is chosen to be cmax =
2. Also, we set ∆ui as 10% percent of umax

i (i =
1, 2, 3). The optimization problems are solved by the open

source interior point optimizer Ipopt. The initial condition

which is utilized to carry out simulations is x(0)T =
[350.69 3.19 0.15 0.03 410.91 2.76 0.34 0.08 420.42 2.79
0.38 0.08].

Figures 2 and 3 show the temperature, concentration and

input trajectories of the process under the DMPC design of

Eqs. 8-9 and 11-12. As it can be seen from these figures,

the proposed DMPC system can steer the system state to

the desired steady-state. We have also carried out a set of

simulations to compare four different control schemes from a

performance point of view. The four control schemes consid-

ered are as follows: (1) the proposed DMPC design of Eqs. 8-

9 and 11-12; (2) a DMPC design with LMPCs formulated
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Fig. 3. Input trajectories of the process under the DMPC design of Eqs. 8-9
and 11-12.

TABLE I

TOTAL PERFORMANCE COST COMPARISON ALONG THE CLOSED-LOOP

SYSTEM TRAJECTORIES UNDER DIFFERENT CONTROL SCHEMES.

sim. (1) (2) (3) (4)

1 7650 8158 9034 10182
2 7722 8388 9028 9033
3 7824 8570 9404 10020
4 7918 9286 9744 11863
5 7947 8815 9631 10048
6 8089 9803 9917 12868
7 8126 9051 9207 10056
8 8158 9151 9510 10463
9 8278 9499 9797 11154

10 11189 12036 13794 13988
11 20459 21843 22201 22882
12 33637 36814 36818 40737
13 40913 45335 45149 53374

as in Eq. 8 which are only evaluated at instants when full

system states are available and the inputs are implemented

in open-loop between two full system state measurements;

in this case, the additional fast sampled measurements are

not used to improve the closed-loop performance; (3) the

proposed DMPC but without communication between dis-

tributed controllers and each controller estimates the full

system states and the actions of the other controllers based

on the process model and h(x); in this case, a distributed

LMPC in the DMPC design takes advantage of both fast and

slowly sampled measurements of its own local subsystem

but does not receive any input or state information from

the other subsystems; (4) the DMPC design as in (2) but

without communication between distributed controllers and

each controller estimates the full system states and actions

of the other controllers based on the process model and

h(x). We perform these simulations under different initial

conditions and different process noise/disturbances. To carry

out this comparison, we have computed the total cost of each

simulation based on the index of the following form:

J =
∑M

i=0[x(ti)
TQcx(ti) +

∑3
j=1 uj(ti)

TRcjuj(ti)]
where t0 = 0 is the initial time of the simulations and tM =
1 hr is the end of the simulations. Table I shows the total

cost computed for 13 different closed-loop simulations under

the four different control schemes. From Table I, we see that

the proposed DMPC design gives the best performance in

all the simulations.

In the final set of simulations, we compared the ratio

of the evaluation times of the LMPC problems in the

centralized LMPC [20] and the proposed DMPC design. We

consider the case where each controller evaluates the input

trajectories every T = 4 sampling times and evaluate the

computational time of the LMPC optimization problems for

1000 independent closed-loop runs. We found that the ratio

of the mean evaluation time of the LMPC that requires the

largest evaluation time in the DMPC architecture versus the

mean evaluation time of the centralized LMPC is 0.277.

The reduction in real time units depends on the type of

processor used to carry out the calculations. From this set of

simulations, we see that the proposed DMPC design leads

to about 70% reduction in the controller evaluation time.
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