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Abstract— This paper presents randomized methods to solve
partial information dynamic zero-sum games. We extend the re-
cently introduced sampled saddle-point (SSP) algorithm, which
provided probabilistic security guarantees in static zero-sum
matrix games. A straightforward extension to partial infor-
mation dynamic games is to apply the SSP algorithm to the
matrix obtained by recording the outcomes of playing every
policy of one player against every policy of the other player.
However, the matrix so obtained has typically a very large size.
This paper formalizes a novel extension of the SSP algorithm
to partial information dynamic games, which does not require
generating the entire matrix. We show that the bounds derived
for the SSP algorithm in the static case, provide the same level of
probabilistic security for a partial information dynamic game.
The effectiveness of the procedure is demonstrated by solving a
prototypical example of a board game with partial information,
for which no deterministic security levels have been published.

Index Terms— Dynamic Games, Randomized Algorithms,
Partial Information

I. INTRODUCTION

A game is termed to be dynamic if it has a state that

evolves as a function of the actions of the players. Dynamic

games provide an effective framework to model problems in

diverse areas such as surveillance, network security, oper-

ations research and economics. For full information games,

such as Chess, in which both players have access to the entire

state, dynamic programming (cf. [1]) is an efficient method

to compute optimal strategies for the players. However, for

partial information games, such as Poker, wherein each

player must hypothesize on the past moves of the opponent,

the method often leads to solving very large matrix games

making the approach computationally intractable [2].

Recently, randomized methods were proposed in [3] to

solve zero-sum matrix games for large-sized matrices. Each

player reduces her search space by taking a random sub-

matrix to construct a much smaller version of the original

game. Players then solve these smaller sub-matrix games

and utilize the saddle-point policies so obtained against each

other. We showed that when the size of the sub-matrix is

sufficiently large, there is only a small probability that the

outcome of the game is significantly worse than the outcome

anticipated by a player. This approach leads to probabilistic

notions of security values and security policies for the game.

While these techniques and results were focussed on single

stage matrix games, this paper formalizes the approach from

[3] to partial information dynamic games.

This material is based upon work supported by ARO MURI Grant number
W911NF0910553. The authors are with the Department of Electrical and
Computer Engineering, University of California at Santa Barbara, CA, USA.
Email: {sdbopardikar, hespanha}@ece.ucsb.edu

A classic approach to evaluate dynamic games is to write

the game in an extensive “tree” form, and then evaluate

the tree recursively to obtain the optimal strategies and

the value of the game [1]. However, this approach turns

computationally unattractive when the number of stages or

the action space is large. Imposing a partial information

structure further adds significant complexity to the problem.

Randomized methods have been successful in providing

efficient solutions to complex control design problems with

probabilistic guarantees. [4] adopts a probabilistic approach

to show the existence of randomized algorithms with poly-

nomial complexity to solve complex robust stability analysis

problems. [5] proposes a randomized method to determine

the minimum number of samples that provide a probabilistic

guarantee of the level of worst-case controller performance.

In [6], [7], the authors demonstrate the use of randomized

algorithms in statistical learning theory to solve control

design problems and a number of well known complex

problems in matrix theory. In [8], [9], the authors introduce

the scenario approach to solve convex optimization problems

with an infinite number of constraints, and discuss possible

applications of the approach to systems and control. In [10],

the authors provide an improvement in sample-size bounds

and also over the bounds on the scenario approach for convex

optimization. In [3], we used these results to provide bounds

on the size of the subgames for probabilistic security.

There have been recent efforts to provide efficient so-

lutions to partial information games. [11] presents a novel

representation of the game tree which reduces the com-

plexity of finding optimal mixed strategies to linear in the

size of the game tree. [12] characterizes initial information

state of a stochastic imperfect information game, for which

the information state propagation is tractable. [13] presents

idempotent methods for dynamic games.

This paper extends the recently introduced sampled

saddle-point (SSP) algorithm [3], which provides probabilis-

tic security guarantees in static zero-sum matrix games, to

the class of partial information dynamic games. A straight-

forward extension to partial information dynamic games

is to apply the SSP algorithm on a matrix obtained by

recording the outcomes of playing every policy of one player

against every policy of the other player, for every compatible

information structure. In [2], this procedure was used to show

existence of Nash equilibrium among stochastic behavioral

policies in Markov games, but not as a computational tool.

However, the matrix so obtained has typically a very large

size. The novelty of our extension of the SSP algorithm

to partial information dynamic games is that the procedure

proposed here does not require generating the entire matrix.
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We show that the bounds derived for the SSP algorithm in the

static case, provide the same level of probabilistic security

for a partial information dynamic game.

To demonstrate the effectiveness of this general algorithm,

we consider a prototypical example of a Tic-Tac-Toe game

with partial information, i.e., neither player can view the

entries in certain squares. The complexity of such a version

grows rapidly with the size of the game, and the number

of “hidden” squares considered. However, to the best of

our knowledge, even for a simple three-by-three version

with three hidden squares, deterministic security policies

and levels have not been published. We apply our general

algorithm to compute probabilistic levels of security for this

game. Our approach is independent of the size of the game

and depends only on the size of the subsets that each player

looks at, in order to arrive at her strategy. This is possible

because each player concentrates on a subset of her policy

set, and probabilistic guarantees rather than deterministic

guarantees on the quality of the solution with respect to the

actual game outcome are considered.

This paper is organized as follows. The SSP algorithm

and the related main results are reviewed in Section II. The

version of the SSP algorithm for dynamic games and the

related results are presented in Section III. An extension

to policy domination in dynamic games is considered in

Section IV. Finally, we demonstrate the procedure applied

to a partial information Tic-Tac-Toe game in Section V.

II. REVIEW: SAMPLED SADDLE-POINT ALGORITHM

In the Sampled Saddle-Point (SSP) algorithm [3], each

player samples a sub-matrix from the original matrix, solves

a smaller game and utilizes the saddle-point policy so ob-

tained against the other. Specifically, if Bk×l denotes the set

of k × l left-stochastic (0, 1)-matrices (i.e., matrices whose

entries belong to the set {0, 1} and whose columns add up to

one), then the SSP algorithm can be summarized as follows.

Algorithm 1: Sampled Saddle-Point Algorithm

1 For P1: Select random matrices Γ1 ∈ BM×m1 ,

Π1 ∈ BN×n1

2 Compute sub-matrix: A1 = Γ′
1AΠ1

3 Security policy: y∗1 ∈ argminy1∈Sm1

maxz∈Sn1
y1

′A1z

4 Security value: V̄ (A1) = maxz∈Sn1
y∗1

′A1z

5 For P2: Select random matrices Γ2 ∈ BM×m2 and

Π2 ∈ BN×n2

6 Compute sub-matrix: A2 = Γ′
2AΠ2

7 Security policy: z∗2 ∈ argmaxz2∈Sn2

miny∈Sm1
y′A2z2

8 Security value: V (A2) = miny∈Sm1
y′A2z

∗
2

Output: y∗′Az∗ := y∗1Γ
′
1AΠ2z

∗
2

The SSP algorithm is ǫ-secure for player P1 with confi-

dence 1− δ if

PΓ1,Π1,Γ2,Π2

(

y∗
′

Az∗ ≤ V̄ (A1) + ǫ
)

≥ 1− δ.

The subscript in the probability measure P emphasizes which

random variables define the event that is being measured. To

provide guarantees for specific policies/values, the following

notions of security that refer to specific policies/values are

introduced. The policy y∗ with value V̄ (A1) is ǫ-secure for

player P1 with confidence 1− δ if

PΓ1,Π1

(

y∗
′

Az∗ ≤ V̄ (A1) + ǫ| y∗, V̄ (A1)
)

≥ 1− δ.

The first result provides a bound on the size of the sub-

matrices for the players that guarantees ǫ-security with ǫ = 0.

Theorem II.1 (A-priori bounds, [3], [14]) Suppose that

the matrices Γ1,Π1,Γ2,Π2 are statistically independent. If

Π1 and Π2 have identically distributed columns and

n1 =
⌈m1 + 1

δ
− 1

⌉

n̄2, (1)

for some n̄2 ≥ n2, then the SSP algorithm is ǫ = 0-secure

for P1 with confidence 1− δ. Further, if

n1 =
⌈1

δ

(

ln
1

β
+m1 +

√

2m1 ln
1

β

)⌉

n̄2, (2)

then, with probability1 higher than 1−β, the policy y∗ with

value V̄ (A1) is ǫ = 0-secure for P1 with confidence 1− δ.

Suppose that, due to computational limitations, player

P1 cannot satisfy the above bounds. Then, one option to

maintain the same high level of confidence 1 − δ would

be to accept a larger value for ǫ. Algorithm 2 summarizes

an a-posteriori procedure for P1. Let ej(k1) denote the jth

element of the canonical basis of Rk1 .

Algorithm 2: A-posteriori procedure

1 Pick some values for m1, n1

2 Determine y∗ and V̄ (A1) using SSP algorithm

3 Randomly select Π̄1 ∈ BN×k1 using distribution of Π1

Output: v̄ := maxj∈{1,...,k1} y
∗
1

′AΠ̄1ej(k1)

The following a-posteriori guarantees can be obtained.

Theorem II.2 (A-posteriori bounds, [3], [14]) Suppose

that the matrices Γ1,Π1,Γ2,Π2 are statistically independent.

If Π1 and Π2 have identically distributed columns and

k1 =
⌈1

δ
− 1

⌉

n̄2, (3)

for some n̄2 ≥ n2, then the SSP algorithm is ǫ-secure for

P 1 with confidence 1− δ for any

ǫ ≥ v̄ − V̄ (A1). (4)

If one further increases k1 to satisfy

k1 =

⌈

1

δ
ln

1

β

⌉

n̄2, (5)

then, with probability higher than 1− β, the policy y∗ with

value V̄ (A1) is ǫ-secure for P1 with confidence 1− δ.

1The confidence level 1− β for P1 refers solely to the extraction of the
matrix Π1 and holds for any given matrix Γ1.
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III. SSP ALGORITHM FOR DYNAMIC GAMES

In this section, we describe a version of the SSP algorithm,

and extend the previous bounds for the class of dynamic

games. We begin by formalizing the notion of policies in

dynamic games. Let I ∪ ∅ denote the set of all information

states, where ∅ denotes the empty set. Let A denote the set of

all allowed actions. In a dynamic game, a completely defined

policy is a map γ : I ∪∅ → A that assigns an allowed action

for every information state.

A naive version of the SSP algorithm is the fol-

lowing: Consider all possible completely defined policies

{γ1, . . . , γM} of P1 and {σ1, . . . , σN} of P2. For every

(i, j) ∈ {1, . . . ,M} × {1, . . . , N}, the entry aij of matrix

A is the outcome of playing policy γi of P1 against σj of

P2. The naive version of the SSP algorithm is now exactly

identical to that in Section II, with a difference that the rows

and the columns of the matrix A now correspond to policies

instead of actions, as in the case of static matrix games. Thus,

Theorem II.1 holds for this naive version of the SSP.

However, the size of the matrix A is potentially very large

for dynamic games, especially when the entire information

state is not accessible to either player. So, instead of gener-

ating the entire matrix and then sampling from the matrix,

we will now present an incremental procedure wherein each

player independently constructs her sub-matrix using the

same set of rules, and then both players play their resulting

sampled security policies against each other.

A. SSP algorithm with Incremental Matrix Construction

The main idea behind our approach for constructing the

sampled sub-matrix is that each player plays some of her

policies one-by-one against some policies which the oppo-

nent is anticipated to play, with each of the policies being

undefined to begin with. Whenever a player encounters a

new (hitherto unseen) information state, she picks an action

using a stochastic heuristic. In this process, the policies of the

player, as well as the anticipated policies of the opponent are

defined partially, and the outcome of the game is recorded

as an entry of the sampled sub-matrix. By a partially defined

policy γ, we mean that for some information state I ∈ I∪∅,

γ(I) = ∅. In the end, a player obtains a partially defined set

of policies and her sampled sub-matrix.

The SSP algorithm for dynamic games is described as

follows, with a summary provided in Algorithms 3 and 4.

1) Player P1 first initializes her policies {γ1, . . . , γm1
}

and the policies {σ̄1, . . . , σ̄n1
}, which refer to P1’s

guess of the policies which P2 will employ to play

the game, to the empty set (Step 1 of Algorithm 3).

2) Player P1 then generates her sub-matrix A1 using

Algorithm 4. This algorithm takes as inputs the number

of policies m1 and n1, and the policies γ and σ̄ which

have been initialized to the empty set.

3) Algorithm 4 begins by playing policy γ1 against σ̄1.

The information state I is initialized to the empty

set (Step 3). Whenever a new information state is

encountered (Steps 5 and 8), P1 plays a random action

chosen using a stochastic heuristic Heur1, and expects

that P2 will also play a random action chosen using a

stochastic heuristic Heur2, where given a probability

space (Ω,F ,P), the heuristics are stochastic maps

Heur1,Heur2 : (I ∪∅)×Ω → A. After a player plays

her action, the information state I is updated (Steps

7 and 10) using update functions Update1,Update2 :
(I ∪ ∅) × A → I. When the game terminates, the

outcome is set equal to the entry a11 of matrix A1.

4) Player P1 then repeats this procedure (inner for

loop) and plays the policy γ1 against other policies

{σ̄2, . . . , σ̄n1
}, and the outcomes represent the first row

of the sampled matrix A1. The resulting policy γ1 may

not be completely defined.

5) Player P1 repeats the procedure (of items 3 and 4

above) that define policies {γ1, . . . , γm1
} at least par-

tially (outer for loop of Algorithm 4). This procedure

defines the sampled sub-matrix A1.

6) Player P1 computes the mixed security policy and the

security value for her sub-matrix A1 (Steps 3 and 4 of

Algorithm 3) using

V̄ (A1) = max
z∈Sn1

y∗1
′A1z = min

y∈Sm1

max
z∈Sn1

y′A1z,

where Sm1
and Sn1

denote the probability simplexes

of appropriate dimensions. We call y∗1 as the sampled

mixed security policy and V̄ (A1) as the sampled secu-

rity value of the game for player P1.

7) Player P2 repeats the steps from items 1 – 6 to ob-

tain her sampled policies {σ1, . . . , σn2
}, her sampled

mixed security policy z∗2 and her sampled security

value V (A2) (Steps 5 – 8 of Algorithm 3).

8) Player P1 selects a policy out of {γ1, . . . , γm1
} using

the distribution y∗1 and plays it against P2’s policy

chosen out of {σ1, . . . , σn2
}. Thus, the expected out-

come of this procedure is equivalent to the following:

the players generate the sub-matrix A12 (Step 9 of

Algorithm 3), i.e., play the policies γ and σ against

each other using Algorithm 4. Then, the expected

outcome is given by y∗1
′A12z

∗
2 .

Consistent with Section II, we say that the above SSP

algorithm is ǫ-secure for player P1 with confidence 1− δ if

PHeur1,Heur2

(

y∗1
′A12z

∗
2 ≤ V̄ (A1) + ǫ

)

≥ 1− δ.

We say that the mixed security policy y∗ with value V̄ (A1)
is ǫ-secure for player P1 with confidence 1− δ if

PHeur1,Heur2

(

y∗′A12z
∗ ≤ V̄ (A1) + ǫ | y∗, V̄ (A1)

)

≥ 1− δ.

The random variables in these probability definitions are the

heuristics Heur1 and Heur2.

Remark III.1 (Partial Information games) To generate

sampled matrices in Algorithm 4, the players need not

have access to the entire information state I . Therefore, as

we are concerned only with the probability of unpleasant

surprises, the above procedure extends also to the class of

partial information games.
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Algorithm 3: SSP for Dynamic Games

1 P1 Initialization: γ := [γ1, . . . , γm1
] = [∅, . . . , ∅],

σ̄ := [σ̄1, . . . , σ̄n1
] = [∅, . . . , ∅]

2 Generate sub-matrix:

[A1, γ, σ̄] = GenMatrix(m1, n1, γ, σ̄)
3 Security policy: y∗1 ∈ argminy1∈Sm1

maxz∈Sn1
y1

′A1z

4 Security value: V̄ (A1) = maxz∈Sn1
y∗1

′A1z
5 P2 Initialization: γ̄ = [γ̄1, . . . , γ̄m2

] = [∅, . . . , ∅],
σ = [σ1, . . . , σn2

] := [∅, . . . , ∅]
6 Generate sub-matrix:

[A2, γ̄, σ] = GenMatrix(m2, n2, γ̄, σ)
7 Security policy: z∗2 ∈ argmaxz2∈Sn2

miny∈Sm2
y′A2z2

8 Security value: V (A2) = miny∈Sm2
y′A2z

∗
2

9 Play sampled policies: Generate sub-matrix

[A12, γ, σ] = GenMatrix(m1, n2, γ, σ)
Output: y∗1

′A12z
∗
2

Algorithm 4: GenMatrix

Input: m, n, [γ1, . . . , γm], [σ1, . . . , σn]
1 foreach i = 1, . . . ,m do

2 foreach j = 1, . . . , n do

3 I = ∅
4 while (i, j)-th game not terminated do

5 if γi(I) = ∅ then

6 γi(I) = Heur1(I, ω1)

7 I = Update1(I, γi(I))
8 if σj(I) = ∅ then

9 σj(I) = Heur2(I, ω2)

10 I = Update2(I, σj(I))

11 aij is the outcome of the (i, j)-th game

Output: A, [γ1, . . . , γm], [σ1, . . . , σn]

B. Probabilistic guarantees

Since both players use the same procedure to compute

their respective sampled security policies, Algorithm 3 is

equivalent to both players sampling rows and columns in-

dependently from identical distributions from the matrix A
of the outcomes of all policies of P1 against all policies of

P2. Thus, the following result follows from Theorem II.1.

Corollary III.2 (A-priori bounds) Assume that both play-

ers use the same set of heuristics Heur1 and Heur2 and

same set of update functions Update1 and Update2 in

Algorithm 4. If n1 satisfies Eq. (1) for some n̄2 ≥ n2,

then Algorithm 3 is ǫ = 0-secure for P1 with confidence

1 − δ. If one further increases n1 to satisfy Eq. (2), then,

with probability2 higher than 1−β, the policy y∗ with value

V̄ (A1) is ǫ = 0-secure for P1 with confidence 1− δ.

2The confidence level 1−β for P1 refers solely to the generation of the
matrix A1 which defines y∗ and V̄ (A1).

Akin to Section II, we now address a-posteriori guarantees

that can be provided with a value of n1 lower than that given

by Corollary III.2, but with a higher value of ǫ. For brevity,

we only consider the procedure, presented in Algorithm 5,

from the perspective of P1.

Steps 1 – 4 are identical to that of Algorithm 3. In step 5,

the policy σ̄ is re-initialized, which ensures that the partially

defined policies γ are played against k1 initialized (new)

policies of the opponent (Step 6). Note that the γ’s are not

re-initialized, which ensures that the new k1 policies of the

opponent will be played against the partially defined policies

of P1 obtained from steps 1 – 4.

Algorithm 5: A-posteriori procedure

1 P1 Initialization: γ := [γ1, . . . , γm1
] = [∅, . . . , ∅],

σ̄ := [σ̄1, . . . , σ̄n1
] = [∅, . . . , ∅]

2 Generate sub-matrix:

[A1, γ, σ̄] = GenMatrix(m1, n1, γ, σ̄)
3 Security policy: y∗1 ∈ argminy1∈Sm1

maxz∈Sn1
y1

′A1z

4 Security value: V̄ (A1) = maxz∈Sn1
y∗1

′A1z
5 Re-Initialization: σ̄ := [σ̄1, . . . , σ̄k1

] = [∅, . . . , ∅]
6 Generate sub-matrix:

[B, γ, σ̄] = GenMatrix(m1, k1, γ, σ̄)
Output: A-posteriori security level:

v̄ := maxj∈{1,...,k1} y
∗
1

′B

Similar to Theorem II.2, we can show the following a-

posteriori guarantee for dynamic games.

Corollary III.3 (A-posteriori bounds) Suppose that both

players use the same set of heuristics Heur1 and Heur2
and same set of update functions Update1 and Update2
in Algorithm 4. Then, with k1 satisfying Eq. (3) for some

n̄2 ≥ n2, the Algorithm 3 is ǫ-secure for P1 with confidence

1 − δ for any ǫ satisfying Eq. (4). If one further increases

k1 to satisfy Eq. (5), then, with probability3 higher than

1 − β, the policy y∗ with value V̄ (A1) is ǫ-secure for P1

with confidence 1− δ.

IV. DYNAMIC GAMES WITH DOMINATING HEURISTICS

Suppose that P1 is aware of a good heuristic that P2 may

apply to play the game. Then P1 should secure herself by

playing against those better heuristics of P2 while construct-

ing her sub-matrix A1. This motivates the scenario of policy

domination, which we discuss in this section.

A. Review: Matrix games with Dominated policies [14]

In particular, we consider the following notion.

Definition 1 (ǫ-Dominance in Matrix Games) Given an

M × N matrix A and two left-stochastic (0,1)-matrices

Π∗ ∈ BN×n∗

and Π ∈ BN×n, Π∗ is said to ǫ-dominate Π

3The confidence level 1−β for P1 refers solely to the generation of the
matrix A1 which defines y∗ and V̄ (A1).
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for some ǫ ≥ 0 if there exists a policy zdom ∈ Sn∗ such that,

for every j ∈ {1, . . . , n} and for every i ∈ {1, . . . ,M},

ei(M)′AΠ∗zdom ≤ ei(M)′AΠej(n) + ǫ.

For instance, if ǫ = 0, then the column choice of Π is

worse for P1 and better for P2 than the columns Π∗. The next

definition essentially states that in such a case, the probability

of sampling a column from Π, which are worse for P1 and

better for P2, should be higher for P1 than that for P2.

Definition 2 (Perturbed sampling) Let Π∗ ∈ BN×n∗

and

Π ∈ BN×n two left-stochastic (0,1)-matrices. Given two

probability measures P∆(·) and P∆̄(·) on BN×n̄, P∆(·) is

a perturbation of P∆̄(·) with respect to the pair (Π,Π∗) if

1) the probability of selecting a column which is neither

in Π nor in Π∗ is equal in both measures, i.e.,

P∆(ej(N) ∈ Range(∆)) = P∆̄(ej(N) ∈ Range(∆̄)),

for all j such that ej(N) /∈ Range(Π∗) + Range(Π),
where the operation + denotes sub-space sum.

2) the probability of selecting a column which is in Π is

larger for the measure P∆(·), i.e.,

P∆̄(ej(N) ∈ Range(∆̄)) ≤ P∆(ej(N) ∈ Range(∆)),

for all j such that ej(N) ∈ Range(Π).

Then, the following result holds for P1.

Theorem IV.1 (Domination) Given the matrix A, suppose

that for some ǫ ≥ 0, there exists a matrix Π∗ ∈ BN×n∗

which

ǫ-dominates another matrix Π ∈ BN×n. If the probability

distributions of Π1 and Π2 are ǫ-perturbed, then, with n1

satisfying Eq. (1), for some n̄2 ≥ n2, the SSP algorithm

is ǫ-secure for P1 with confidence 1 − δ. If one further

increases n1 to satisfy Eq. (2), for some β ∈ (0, 1), then,

with probability higher than 1− β, the policy y∗ with value

V̄ (A1) is ǫ-secure for P1 with confidence 1− δ.

B. Extension to Dynamic Games

The sub-matrix A1, and therefore, its entries aij generated

by Algorithm 4 can be viewed as functions of the stochastic

heuristics Heur1 and Heur2 used by the players. Now,

suppose that for some ǫ ≥ 0, the heuristic Heur2 ǫ-dominates

another heuristic Heur2 in the sense that for each information

state I , for every outcome ω ∈ Ω, and for every (i, j),

aij(Heur1,Heur2(I, ω)) ≤ aij(Heur1,Heur2(I, ω)) + ǫ.
(6)

If ǫ = 0, then Heur2 is a superior heuristic for P2 as

compared to Heur2, and so, P1 might as well assume that P2

will use Heur2 instead of Heur2 to avoid an unpleasant sur-

prise. This is formalized by the next result, which essentially

extends Theorem IV.1 to dynamic games.

Proposition IV.2 (Dominating Heuristics) Suppose that

P1 uses Heur2 instead of Heur2, which satisfies Eq. (6)

for some ǫ ≥ 0. Then, with n1 satisfying Eq. (1), for some

n̄2 ≥ n2, the Algorithm 3 is ǫ-secure for P1 with confidence

1 − δ. If one further increases n1 to satisfy Eq. (2), then,

with probability higher than 1− β, the policy y∗ with value

V̄ (A1) is ǫ-secure for P1 with confidence 1− δ.

Proof: Consider the large M × N matrix A obtained

by playing every completely defined policy of P1 against

that of P2 by using Heur2. Similarly, let Ā denote the

matrix thus obtained by using Heur2 instead of Heur2. If

we now consider the concatenated matrix Ã := [A Ā], then

Algorithm 3 is equivalent to using Algorithm 1 on the matrix

Ã, from which P1 and P2 sample columns of their sub-

matrices using the measures PΠ1
(·) and PΠ2

(·), respectively,

where Π1 ∈ BN×n1 and Π2 ∈ BN×n2 .

Since the heuristics Heur2 and Heur2 satisfy Eq. (6), there

exists a matrix Π∗ ∈ B2N×M (corresponding to the columns

of A) which ǫ-dominates another matrix Π ∈ B2N×M

(corresponding to the columns of Ā) with respect to the

matrix Ã. Further, when P1 uses Heur2 in place of Heur2,

the measures PΠ1
(·) and PΠ2

(·) are perturbed with respect

to the pair (Π,Π∗). The result now follows by applying

Theorem IV.1 to the matrix Ã.

V. EXAMPLE: PARTIAL INFORMATION TIC-TAC-TOE

We now apply the SSP procedure from Section III to a

partial-information version of the Tic-Tac-Toe game. Partial

information means that neither player can see the entries in

certain squares. The rules of this game are as follows.

1) Player P1 gets to play first. The game proceeds with

alternate moves. P1 marks squares with X’s and P2

with O’s. Neither player can see the entries in squares

2, 6 and 7 of the board, as shown in Figure 1.

2) If a player plays into one of the squares 2, 6 or 7,

and the opponent has already played into that square,

then the player misses the turn, and the mark that was

already in the square stays. However, the player is not

informed of this occurrence.

3) The game terminates when there are either three X’s

or three O’s in a row or column or diagonal. The game

ends in a draw if all the squares of the board are full

and neither player has won. The value of the game is

−1,+1, or 0 depending on whether P1 wins, loses or

the game ends in a draw respectively.

9

1

2

3 6

5

4 7

8

Fig. 1. Partial Information Tic-Tac-Toe. Neither player can view the entries
in the shaded squares. The first player to play into a shaded square gets the
square. The goal is to get three squares in a row or column or a diagonal.

We implemented Algorithm 3 with identical heuristics for

Algorithm 4, i.e., Heur1 = Heur2 = Heur, described below
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from the point of view of P1. Let Î(I), initialized to ∅, denote

an estimate of the true state of the board.

1) If a winning move can be deduced from the visible

moves, play the winning move. Thus, given the es-

timate Î , if Awin is the set of winning moves, then

Heur(Î(I), ω) ∈ Awin.

2) Otherwise, if P2 can win the game in the next move,

then block P2’s move. Thus, if Ablock denotes the

set of moves that prevent P2 from winning, then

Heur(Î(I), ω) ∈ Ablock.

3) Otherwise, uniformly randomly select a square to play

into from the allowed squares. Thus, Heur(Î(I), ω) ∈
rand(A).

4) Update Î(I) after every move. If P1 believes that

she should have won the game, and yet the game

has not ended, then toggle the entry (change X

to O) of the hidden square in the corresponding

row/column/diagonal in her estimate of the board. The

functions Update1,Update2 update the information

state I if the move of a player is visible; and leave

I unchanged if the move of a player is in the hidden.

For a fixed value of n̄2, β, and δ, the a-posteriori security

level v̄ is determined by testing the sampled security policy

y∗ against k1 new policies of the opponent, where k1 is

determined by bounds in Corollary III.3. To generate the

plots in Figure 2, we ran several Monte Carlo simulations

of the SSP algorithm for the partial information Tic-Tac-Toe

game. Since v̄ is a random variable, it takes different values

in the different Monte Carlo simulations. Figure 2 shows the

solid 90 (resp. dashed 50) percentile curve such that 90%
(resp. 50%) of the realizations of v̄ were below this curve.

We observe that both the 90 and the 50 percentile curves

for v̄ are relatively “flat”, implying that with a much lesser

number of columns n1 (five times lesser), P1 obtains only

a small increase (by 15 per cent) in the 90-percentile value

of a-posteriori security level. Thus, by using a much smaller

number of column samples, significant computational sav-

ings can be obtained at the expense of a relatively small

increase in the a-posteriori security level.
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90−percentile curve using bound (4)

50−percentile curve using bound (4)

90−percentile curve using bound (3)

50−percentile curve using bound (3)

n1

v̄

Fig. 2. Experimentally determined percentile values of the a-posteriori
outcome v̄ (cf. Section III) in the partial information Tic-Tac-Toe for
different values of n1. Here, m1 = n2 = 20, δ = 0.1, β = 0.001.

VI. CONCLUSION AND FUTURE DIRECTIONS

We addressed the use of sampling methods to provide

probabilistic guarantees of security in partial information

dynamic games. We presented a general procedure that

allows for the solution of partial information dynamic games.

We provided bounds on the sizes of the sub-matrices to

be generated, which guarantee that with a sufficiently high

probability, the outcome of the dynamic game will not violate

the anticipated value of the game. Finally, we demonstrated

the effectiveness of our procedure on a partial information

version of the classic Tic-Tac-Toe game, for which no deter-

ministic security levels or strategies have been published.

Extensions of this work to games with continuous decision

spaces is an important future direction. Challenging problems

also include providing probabilistic guarantees when players

do not possess perfect recall of all past actions.
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