
Robust Control of Predator-Prey-Hunter Systems

Juan C. Cockburn, Ken McLoud and Jeffrey Wagner

Abstract

We explore the use of robust control techniques to manage
conflicting economic and ecological goals and constraints
that naturally arise in many predator-prey-hunter systems. In
particular, we focus on a general predator-prey-hunter system
in which both the predator and prey may be harvested. Our
goal is to design and test a controller that can maintain
populations at prescribed target levels in the presence of
uncertainty in the system dynamics and noisy measurements,
while rejecting external disturbances. The dynamic equations
of the model are based upon Brown et al. (2005, Marine
Resource Economics), suitably modified for control systems
design. Given this specification, we define a robust control
problem and simulate its properties using the set of pa-
rameters for which performance of the closed-loop system
is worst. One of the main advantages of using a robust
control approach is that it provides deterministic tools for
analysis of sensitivities and robustness to multiple uncertain
parameters and affords the designer a framework to balance
competing objectives. Simulations of the controlled system
show promising results, with policy implications not only for
managing existing predator-prey-hunter systems, but also for
the planning of sustainable reintroduction efforts involving
large, mammalian carnivores.

I. INTRODUCTION

The successful reintroduction of large, mammalian carni-
vores, and the sustainable management of the ecosystems
they inhabit, depends upon a careful integration of several
ecological, economic and social factors. Such carnivores
(we focus upon wolves in this paper) provide use value in
helping to maintain balance in predator-prey relationships
within local ecosystems, and they provide non-use value to
citizens who seek opportunities to view wolves or who derive
utility from their mere existence. The carnivore’s presence,
however, lowers the population of recreationally harvested
ungulates (such as elk) and they occasionally cause external
damage (e.g., prey on livestock outside official reintroduction
program boundaries). Active management of the predator-
prey-hunter relationship following species reintroduction ef-
forts is therefore of social value. However, as Eberhardt
et al. (2003), Fieberg and Jenkins (2005) and others note,
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managers must proceed with an imperfect, evolving un-
derstanding of the ecosystem’s structure and of economic
valuations collected from stakeholders.

Both ecological and economic literatures speak to the
challenges in modeling the changes in ecosystem structure
that one may expect from the reintroduction of large mam-
malian carnivores under uncertainty. The ecological literature
focuses primarily upon measuring the carnivore’s ability,
as a keystone species, to maintain stability in ecosystem
dynamics, and therefore guard against trophic cascades. For
instance, multiple studies (Ripple et al. (2001), Beschta
(2003), Ripple and Beschta (2003), White et al. (2003), and
White and Garrott (2005)) find that predator reintroduction
in the US/Canadian Rocky Mountain West region altered
ungulate behavior (feeding and migration behavior) in a
manner that seems to have enhanced the sustainability of
local ecosystems (e.g., by enabling saplings along riverbanks
that were overgrazed by elk in the absence of wolves to
instead mature, thereby providing shade and erosion control
that reduces stress on other species). In the absence of large
mammalian carnivores, ungulates must be regulated by costly
professional culling and fertility control methods, and if
outside national parks, by recreational hunting. Bradford and
Hobbs (2008) simulate the efficacy of the first two strategies
in controlling the elk population in Rocky Mountain National
Park (where recreational hunting is not permitted); White and
Garrott (2005, 150) discuss multiple studies of the impact of
recreational hunting on elk populations, noting that there is
disagreement in the literature regarding the magnitude of the
impact. Eberhardt et al. (2003, 782) note that recreational elk
hunting may turn out to be the driver of the elk-wolf system.
Varley and Boyce (2005) present the standard ecological
model of wolf reintroduction efforts, entitled WOLF 6, based
upon adaptive management principles. Additional features of
the WOLF 6 model are discussed below.

On the economic side of the literature, Tu and Wilman
(1992), Ströble and Wacker (1995), Brown et al. (2005), and
Hoekstra and van den Bergh (2005) present general economic
predator-prey models that capture many important elements
of the predator reintroduction dynamic under uncertainty.
Tu and Wilman (1992) analyze the stability properties of
a predator-prey equilibrium model (featuring wolves and
elk) that takes into account self-limiting density effects,
minimum viable population levels, and harvesting of both
the predator and prey. They show how the stability of
the equilibrium decreases if there is parametric uncertainty
regarding the intrinsic growth rates for one or both species.
While their paper does shed light on the stability properties
of the species’ population dynamics, those dynamics are
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not modeled in their paper within a larger private or social
welfare maximization framework. Ströble and Wacker (1995)
present a model in which a manager chooses harvest rates for
both the predator and prey in order to maximize social wel-
fare. The flows of both species thus enter the maximization
objective, but the stocks of the species do not. While they
are able to solve for optimal rates of harvest, they note (p.
79) that stability analysis of their four-dimensional system
of differential equations (governing population growth and
harvest rates for each of the two species) does not readily
yield interpretable results. Thus, they assume a steady-state
predator population and analyze the stability of the system
in which only the prey is harvested.

Brown et al. (2005) present a predator-prey model in
which a manager seeks to maximize an infinite stream of
profit from the harvest of two fish species in Lake Victoria:
perch (predator) and dagaa (prey). As in the Ströble and
Wacker (1995) model, Brown et al. enable harvesting of
both species and potential existence or ecosystem value of
the species do not enter the maximization routine. They
derive equilibrium rates of harvest for each species; conduct
a comparative static analysis of the steady-state predator-
prey equilibrium (pp. 228-229); and conclude with some
simulations of the model based upon the best available data.
Hoekstra and van den Bergh (2005) build upon Tu and
Wilman (1992) and others by substituting existence value
of the predator for the harvest value of the predator. They
present an optimal control model in which harvesting of the
prey is controlled and harvesting of the predator is illegal
in order to maximize a stream of social welfare that is
therefore a function of the harvesting benefits from the prey
and ecosystem benefits from the predator.

Rondeau (2001) and Dyar and Wagner (2003) also present
models related to the uncertainties involved in species rein-
troduction programs; however, their models do not capture
the predator-prey relationship. Rondeau (2001) presents an
optimal control model in which a wildlife manager seeks to
maximize a discounted stream of net benefits from a single
species (white–tailed deer). The net benefits comprise three
components: non-consumptive benefits, damage the species
causes (e.g., automobile accidents in urban areas, in the case
of white-tailed deer), and net benefits from harvesting the
species. His model demonstrates the importance of plan-
ning for the future management of reintroduced species, on
economic efficiency grounds, and he shows that while the
model is estimated using data on white-tailed deer control,
the lessons learned extend to the case of wolf reintroduction.
Dyar and Wagner (2003) focus upon the uncertainty that
the Department of Interior (DOI) faces over liability for
harm caused by reintroduced large mammalian carnivores
(such as wolves). They show that such concern can alter the
types of management strategies that DOI takes in a manner
that probably yields spillover ecological benefits (i.e., the
theoretical model suggests that DOI should favor placing
more land (buying easement rights) between wolves and
ranchers and local communities in order to reduce harm
over placing radio collars on wolves or erecting engineered

barriers).
While all of the above ecological and economic models

shed important light on the topic, all of the above models
proceed under the assumption that we are either certain of
the model’s correctness (and that the model will not change
over time) or that there is uncertainty only over a relatively
small subset of parameters of the model (as opposed to
uncertainty over more fundamental aspects of the model).
Since Varley and Boyce (2005) and White and Garrot (2005),
among others, show that different models of the wolf-elk-
hunter relationship yield significantly different results, there
is a need to consider more robust modeling alternatives.
Norton and Reckhow (2008) advocate employing robust
control methods in our particular wolf-elk-hunter context of
interest, and there is relatively recent and growing interest in
robust control theory in the economics literature (Janssen et
al. (2004, 2007), Brock and Durlauf (2005), and Gonzalez
(2008), for instance).

The purpose of our paper is to introduce the preliminary
design and simulation of a controller for general predator-
prey-hunter systems based on robust control theory. We
therefore assume that socially optimal rates of predator
(wolf) and prey (elk) populations and harvest rates have
been determined using an economic model along the lines of
Ströble and Wacker (1995) or Brown et al. (2005), and we
focus upon the problem of keeping actual population rates
“near” the optimal rates prescribed by such models.

This type of problem is analogous to keeping an airline
flight close to its optimal path, given inherent uncertainties
and stochasticities involved in the flight’s actual journey. An-
other example comes from the process control industry where
a “golden recipe” dictates the optimal sequence of operations
required to obtain a product of a desired quality. The actual
replication of the recipe is subject to stochasticities (accuracy
of sensors, environmental changes, equipment aging) and
scientific uncertainty regarding the theoretical properties of
the product.

The dynamic model used in this work is a continuous
time second order, parameter dependent, state space model
inspired by the dynamic model of Brown et al. (2005). The
two states are the size of the wolf population (predator)
and the elk population (prey). While we could have used
a more detailed model, for example WOLF6, the focus of
our work is to highlight the potential that robust control
offers to real-time management in face of uncertainty in both
system dynamics and changes in the environment. All of
the parameters in our model are assumed to be uncertain
(in a deterministic way). It is worth noting that parametric
uncertainty can be used to represent nonlinear phenomena at
the expense of conservatism. These uncertainties allow the
designer to accommodate for partially known dynamics and
inaccurate population estimates. The controller is designed
using a robust control approach that minimizes the effect
of worst case exogenous disturbances on certain carefully
chosen output error signals in the presence of uncertainty in
the dynamic model (Doyle (1985)). The controller accepts
population estimates as inputs and produces control signals
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prescribing the number of wolf and elk hunting tags to
issue per time period1. Simulations using the preliminary
controller show promising results. Population levels quickly
converge to their target values for a wide range of initial
conditions and parameter values. Populations also rapidly
converge to target levels after deviations caused by seasonal
disturbances such as harsh winters or birth seasons. In
addition to demonstrating a way to handle significant model
and parametric uncertainty in this particular wolf-elk-hunter,
predator-prey relationship, our paper introduces the DK
iteration method to the economics literature where various
other types of problems may be fruitfully explored with this
method.

II. THE PREDATOR-PREY-HUNTER MODEL

The main objective of this paper is to explore the use of
robust control techniques to manage conflicting economic
goals and ecological constraints that naturally arise in many
predator-prey-hunter systems. In particular, we will focus on
a wolf-elk-hunter system in which both the predator and
prey can be harvested. The standard approach (described
in the previous section) in the environmental/ecological
economics literature is one of optimal control, either under
the assumption of model and parametric certainty or under
the assumption that there is uncertainty over a relatively
small subset of model parameters. Given significant model
and parameter uncertainty in ecological, economic systems,
however, we focus instead upon the problem of designing a
mechanism that will maintain any particular population levels
of interacting species sufficiently near their target levels.
The target levels may not be “optimal” in the traditional,
global sense we would like (and that we could derive if we
were certain of the model and its dynamics). However, the
robust control approach is based on the premise that some
inefficiency of this type is tolerable if it leads to greater
certainty that the selected population levels are sustainable.

The control system designed in this paper takes two
measurements for feedback: the current wolf and elk pop-
ulations. The controller then generates two control signals,
corresponding to the rate at which wolf hunting tags (in tags
per day) and elk hunting tags should be issued. The objective
of the controller is to maintain the elk and wolf populations
at prescribed target values in the presence of uncertainty in
the system dynamics and noisy measurements while rejecting
external disturbances, such as harsh winters and disease.

Several assumptions will be made to make the problem
tractable. First, we assume that the elk and wolf populations
can be sensed in “real time”. In practice these measurements
may come from estimates; so we are ignoring the dynamics
of the estimators. However, we take into account the uncer-
tainty in these estimates by introducing a noise signal in the
feedback path. While many methods currently exist to obtain

1Thus, in contrast with Hoekstra and van den Bergh’s (2005) model that
features recreational hunting of prey but not the predator, our model enables
recreational hunting of both the prey and the predator. A particularly timely
example of such an arrangement is in the state of Idaho, wherein controlled
hunting of both elk and wolves is permitted (beginning in September 2009).

these estimates, the frequency at which these estimates are
made would have to be increased for this controller to be ap-
plied in practice. Second, we assume that the elk-wolf-hunter
system spans a large enough geographic area that the net
migration of wolves and elk into and out of the region can be
considered essentially zero. Most conventional conservation
policies (such as hunting seasons and bag limits) are applied
over wildlife management zones specifically chosen so that
this assumption is not too restrictive. A third assumption lies
in the realm of public policy. In order for this controller to be
implemented, public officials will need to relinquish control
of conservation policy to the controller. Easing this transition
will be the fact that officials will still be able to choose
the target elk and wolf populations. However, one of the
more challenging aspects of implementing such a controller
would be the break from traditional hunting practices such
as hunting only in the fall season or hunting primarily males.

From a control systems point of view, a dynamic model
of the elk-wolf-hunter system that captures the essential
behavior that we want to control will suffice. This is in
contrast with models used for forecasting populations. The
dynamic equations of the predator-prey-hunter system used
in this work are based on Brown et al. (2005), suitably
modified for control systems design. The nonlinear dynamic
equations are

ẋ1 = r1x1

(
1− x1

q1

)
+ αx1x2 − k1h1(t) + d1(t) (1)

ẋ2 = r2x2

(
1− x2

q2

)
− β x2x1 − k2h2(t) + d2(t) (2)

where x1 is the size of the predator (wolf) population and
x2 is the size of the prey (elk) population. The inputs to
the system are the rates of hunting tags for predator, h1, and
prey, h2, respectively. The parameters r1 and r2 represent the
intrinsic growth rate of the predator and prey, respectively;
q1 and q2 are the carrying capacities of predator and prey.
Alpha and beta are the interaction parameters. Our model
also includes the factors k1 and k2 to model the rates of
success of hunters, and introduced external disturbances d1

and d2 to represent unmodeled environmental effects such
as harsh winters and disease.

All the parameters of the model are assumed uncertain
and given in Table I. Nominal values and bounds on the
parameters are chosen to reflect prior knowledge of the
system.

Our main objective is to design a controller that main-
tains desired predator-prey populations, X1 and X2, in the
presence of uncertainty in the model dynamics and the
environment. Therefore, the nonlinear equations (1) and (2)
will be linearized around a desired equilibrium (including
states and inputs). At equilibrium it is assumed that there
are no external disturbances, i.e., d1 = d2 = 0. Under this
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Description Nominal Range
growth rate (pred.), r1 0.15 [0.04, 0.30]
growth rate (prey), r2 0.20 [0.1, 0.40]
carrying capacity (pred.), q1 1500 [500, 2000]
carrying capacity (prey), q2 10000 [6000, 12000]
interaction coefficient, α 5E−7 [1E−6, 7E−7]
efficiency (pred.) , β 5E−5 [1E−5, 7E−5]
hunting success (pred.) , k1 0.80 [0.6, 1.0]
hunting success (prey) , k2 0.80 [0.6, 1.0]

TABLE I
MODEL PARAMETERS AND UNCERTAINTY RANGES

assumption the equilibrium harvesting rates are

H1 =
X1

k1

(
r1 −

r1

q1
X1 + αX2

)
(3)

H2 =
X2

k2

(
r2 −

r2

q2
X2 − βX1

)
(4)

The state-space equations of the system linearized about the
equilibrium (X1, X2;H1, H2) are

˙δx1 = (r1− 2
r1

q1
X1+ αX2)δx1 + αX1 δx2− k1δh1+ d1

˙δx2 = −βX2 δx1 + (r2− 2
r2

q2
X2− βX1)δx2− k1δh1+ d2

δy1 = δx1 + n1

δy2 = δx2 + n2

where δ denotes deviation from equilibrium. Note also that
we added the noise signal n1 and n2 to model the uncertainty
in sensing the populations. In the sequel we will let xi, yi
and hi denote both the original variables and the deviation
variables. The meaning should be clear from the context.

III. THE ROBUST CONTROL PROBLEM

uv

z w

K

G

∆
u∆y∆

Fig. 1. The standard robust control problem

In this section we will give an overview of the robust
control problem formulation and solution. Figure 1 describes
the standard robust control problem setup. For more details
see, e.g., Skogestad and Postlethwaite (2007). The vector w
represents all exogenous inputs to the system (e.g., severity
of the weather, behavior of species not specifically modeled
and noise in the measurements) and z is a vector of all
“error” signals (in our case, deviations of populations from

their targets). G is a transfer function that represents a
“generalized plant” that includes the system dynamics as
well as models of the exogenous signals and performance
weights used to penalize certain sensitivity functions, and
∆ is an block diagonal operator that models the effect and
location of uncertainties in the dynamic model. The objective
is to design a controller K such that the closed loop system
is stable for all possible perturbations ∆ in a prescribed set
∆ and for all possible exogenous inputs w in a prescribed
set, and minimizes a certain norm of the error z.

If the signals w and z are assumed to be square integrable,
i.e., have finite energy, and all the operators are linear-time
invariant, the problem becomes

inf
K,∆∈∆,||w||2≤1

||z||2 = inf
K,∆̃∈∆̃′

µ (Tzw(G,K)) .

In the control literature this is called the µ-synthesis problem
(Doyle (1995)); its solution requires the minimization of
the structured singular value (called µ) of the transfer
function from w to z, Tzw. The controller will achieve robust
performance if the µ̂ < 1.

The computation of the structured singular value is in
general intractable (NP hard); therefore, in practice an upper
bound for the structured singular value, µ̂, is minimized,
leading to the following problem

inf
K,D∈∆̃′

µ̂ (Tzw(G,K)) = inf
K,D∈∆̃′

∥∥DTzw(G,K)D−1
∥∥
∞ ,

where D are scaling systems that commute with the structure
of an augmented set of perturbations ∆̃. Since the perturba-
tion block has real and complex blocks this is a mixed µ
problem. An approximate solution can be found using the
DK iteration approach (or more precisely a D−G−K it-
eration) where the variables D and K are fixed, alternatively,
and a corresponding optimization problem in each variable is
solved. The result is a linear time invariant robust controller
K.

A critical step in the formulation of a robust control
problem is the choice of dynamic weights or filters to
scale signals, shape their spectra, and trade-off conflicting
objectives. These weights must be chosen to be stable with
a stable inverse. If the weights are not chosen properly the
robust control problem may not have a solution. A block
diagram showing where these dynamic weights are placed is
shown in Figure 2.

ymeasurements (v) control (u)

control effort (z1)

3
2

1

P

Wu

We

Vd

Vn

Predator Prey Dynamics

3

measurement noise
(w2)
2

disburbances (w1)

1

1

Fig. 2. Shaping Filters and Dynamic Weights for Robust Design
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The filters Vd and Vn are used to scale and shape the
spectrum of disturbances and noise. Vd is a biproper low
pass filter with low frequency gain of 2, high frequency gain
of 0.001 and crossover frequency of 0.5/π cycles/month.
Vn is a biproper filter with low frequency gain of 0.1,
high frequency gain of 10 and crossover frequency of 5/π
cycles/month. This high pass filter models errors in the popu-
lation estimates without significantly introducing a constant
bias. The tracking error weight We is designed to control
the allowable tracking error for the target population. It
must be large at frequencies where the tracking error should
be small. For tracking constant target populations, it was
chosen as a biproper low pass filter with low frequency
gain of 2, crossover of 0.05/π cycles/month and a high
frequency gain of 0.001. The low frequency gain of this filter
determines the achievable steady-state tracking error. Finally
the control effort weight Wu is used to limit the bandwidth
and aggressiveness of the control signal. It is a biproper low
pass filter with low frequency gain of 0.001, crossover of
1/π cycles/month and a high frequency gain of 2.

IV. RESULTS

The problem was solved via DK iterations using MAT-
LAB/Simulink with the robust control toolbox. The DK
iterations yield a linear state-space controller of 26th order.
While it is possible to reduce the order of the controller,
at the expense of loss of performance, we deemed it un-
necessary since the controller we propose can easily run on
a standard microcomputer. We also performed a robustness
analysis of the closed loop system that includes finding
the sensitivity of the closed loop system to changes in
uncertain parameters and the set of parameters (e.g., the
block perturbation ∆) that causes the worst performance.
( this can be done using wcgain in the Robust Control
Toolbox.) The results are summarized in Table II

Description Sensitivity Worst Case
growth rate (pred.), r1 3% 0.30
growth rate (prey), r2 2% 0.10
carrying capacity (pred.), q1 100% 2000
carrying capacity (prey), q2 1% 10000
interaction coefficient, α 0% 7E−7
efficiency (pred.) , β 2% 7E−5
hunting success (pred.) , k1 4% 0.6
hunting success (prey) , k2 2% 0.6

TABLE II
CLOSED LOOP SENSITIVITIES AND WORST CASE PARAMETERS

Sensitivity analysis revealed that the controller rendered
the closed loop mostly insensitive to all but one parameter,
the carrying capacity of predators (q1). Indeed, the sensitivity
to changes in the carrying capacity of predators is 100%, e.g.,
increasing q1 by 25% will decrease the stability margin by
the same amount. With this controller, the predator carrying
capacity parameter can exert a disproportionately strong role
in the closed loop performance, suggesting that the economic

impact of research focused upon this parameter would be
relatively great. It is important to note that this is a property
of the controlled system. By choosing different filters and
weights the designer can, in principle, adjust the closed loop
sensitivities. Note also that these results are valid only for
the particular operating point chosen.

To validate the controller, simulations of the closed loop
system were conducted with the nonlinear dynamic equations
and the worst-case parameters. To use the linear controller
with the nonlinear plant, the measurement and control signals
were properly biased. The measurement bias is just an offset
to the desired target populations, while the control bias is
an estimate of the hunting tags required for the equilibrium
given by equations (3) and (4). Note that this would require
exact knowledge of the parameters describing the dynamics
of the predator-prey system. This is not realistic since our
best a priori knowledge is given by the nominal parameters.
Therefore, we used the nominal parameters to calculate this
bias, that is, the harvesting rates of the predator and prey to
achieve the desired target populations. In addition, saturation
limits were added at the input of the plant to avoid “negative”
harvesting rates, e.g., releasing individuals into the wild. In
practice a low threshold should be used to warn the manager
of dangerously low stocks. The simulation results for a period
of 5 years are shown in Figure 3. After a transient period,
the controller was able to keep target populations close to
the desired (reference) values of 5000 (for elk) and 250
(for wolves). Note there is a small but noticeable non-zero
“steady-state” tracking error. This is partially due to the
fact that equilibrium harvesting rates were calculated using
the nominal values of the parameters, while the nonlinear
dynamics of the predator-prey-hunter system are based upon
the worst-case set of parameters. The steady-state error can
be reduced to zero by changing the tracking error filter We to
enforce integral action, if desired. Finally, it should be clear
that the results obtained are only local. In practice several
controller would be designed at different operating points
and their robustness analyzed.
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V. CONCLUSION

Simulations suggest that the robust controller designed
via DK iterations is able to maintain its performance (set-
point tracking) in the face of a wide range of uncertain-
ties and disturbances. While the target populations for the
competing species may or may not be at globally optimal
levels, the advantage of this robust control approach to
controlling predator-prey-hunter systems is that it allows one
to explicitly take into account uncertainty in the system
dynamics and the environment. These results are promising
but further research has to be done to make it practical.
First, the model can be revised to include more states to
distinguish cows from bulls, and calves from sexually mature
adults. Second, the model could allow for a more realistic
separation of “antlered” versus “antlerless” elk hunting tags.
Third, the wolf component of the model could be improved
to account for the number of packs. This is important because
wolf social structure features only one breeding pair per
pack; thus, the number of packs has a dramatic impact on
the reproduction rate. While the objective of the controller
presented in this paper is to minimize the effect of worst-
case disturbances to the target populations of wolves and
elk in the presence of uncertainty in a dynamic model,
we anticipate generalizing this framework such that the
controller minimizes the effect of worst-case disturbances
to a social welfare function that accounts for both stock
and flow benefits and costs of both predator (wolves) and
prey (elk) management. Such benefits and costs include those
from recreational hunting opportunities for both predator and
prey.

Finally, it should be noted that the application of this
control problem is not without ethical concerns. In natural
ecosystems, populations are determined by a complex bal-
ance between the ecosystem’s resources and the dynamics
of the predator and prey species. We humans often view
these systems as less than ideal. However, this balance
drives the process of natural selection and certainly has
complex, unmodeled interconnections with other systems.
The application of this controller essentially removes the
regulation of population levels from nature and delivers them
to politicians. It should be noted, however, that politicians
already regulate the size of game populations and have done
so for many decades. Robust control strategies simply allow
them to accomplish this goal in a more effective manner.
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