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Abstract

In this paper, we derive conditions under which one
may safely set the hysteresis constant to zero in the well-
known hysteresis switching algorithm of adaptive con-
trol without the risk of chattering instability. The case
of continuously parameterized controllers is examined
and conditions for global convergence are derived.

1. INTRODUCTION

Adaptive control is usually used to control impre-
cisely known plants. The main goal of adaptive control
is to achieve improved performance by choosing a
controller k from given set of candidate controllers K
using real-time data and prior information. The general
architecture of an adaptive control system is shown
in Figure 1. Two different techniques of choosing
among the candidate controllers K ∈K have been used:
continuous adaptive tuning and logic-based switching.
In both methods, a primary goal of adaptive control is
to ensure stability and convergence to a controller that
achieves optimum performance.

One challenge facing a switching adaptive systems
is the type of instability called chattering in which
the supervisor cycles endlessly among two or more
of the candidate controllers without converging, even
when there is no change in the plant. This undesirable
phenomenon was a motivation for several studies
([11],[12],[8],[13],[10]). A fundamental contribution
to the solution to the chattering problem was made
by Morse et. al. [13], who introduced the hysteresis
switching algorithm of adaptive control along with
the celebrated “hysteresis convergence lemma” which
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Figure 1. Adaptive control system Σ(P, k̂)

guarantees convergence after a finite number of
switches under very mild assumptions.

In the hysteresis switching algorithm, the adaptive
control systems is assumed to have the general archi-
tecture shown in Figure 1. The task of supervisor is to
select at each time a controller K ∈K based on the value
of a real-valued performance function

V (k,z, t) (1)

where k ∈K, t ∈ [0,∞] is time and

z =
[

u
y

]
(2)

where u,y are the plant input and output signals respec-
tively. Given an initial controller k̂(0), the task of the
supervisor is to determine at each time t > 0 which con-
troller k̂(t) ∈ K to insert into the feedback loop. In the
original formulation of Morse [13], the hysteresis algo-
rithm is permitted to switch controllers only at times
ti (i = 1,2, . . .) at which another controller improves the
performance by a given constant h > 0 called the hys-
teresis constant; i.e.,

V (kL(ti),z, ti)≤V (k̂(ti),z, ti)−h (3)
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where for all t > 0

kL(t) = argmin
k∈K

{V (k,z, t)}. (4)

At each switching time ti, the active controller k̂(t) is
changed to

k̂(ti) = kL(ti). (5)

A key result is the Morse-Mayne-Goodwin hysteresis
switching convergence lemma, which may be stated as
follows.

Lemma 1.1 (Convergence Lemma [13]) Suppose
that both of the following hold:

1) Monotonicity: For all k and z it holds that

V (k,z, t)≥V (k,z,τ) for all t > τ

2) Feasibility: There exists a controller krobust ∈ K
for which the performance function is uniformly
bounded

sup
z,t

V (krobust,z, t) < ∞.

Then, if h > 0 and if the number of controllers in the set
K is finite, the hysteresis switching algorithm converges
after at most finitely many controller switches. �

When the conditions of Lemma 1.1 hold, then we de-
note the final switching time and final controller respec-
tively as

t f
∆= max

i
ti (6)

k f
∆= k̂(t f ). (7)

With additional assumptions on the plant beyond
feasibility, Morse et. al. [13] was also able to show
that the final controller stabilizes the plant. Wang et.
al. [17] showed that such additional plant assumptions
are actually unnecessary, provided that the performance
function V (k,z, t) is selected to have a property called
cost-detectability. Stefanovic et. al. [16] proved
that the requirement that the controller set be finite
can also be removed if the cost function V (k,z, t)
is equi-continuous (i.e., uniformly continuous in k
for all t). A number of successful applications of
hysteresis switching have been reported for both finite
and infinite (or continuum) sets of candidate controllers
(e.g., [13],[10],[9],[7],[16]). But, all of these results
require that the hysteresis constant h be strictly positive.

A concern with the strictly positive h required by
Lemma 1.1 is that it inherently tends to slow super-
visor’s adaptive response and it limits the accuracy
with which the supervisor is able to minimize the
performance function V (k,z, t) to ±h. Using a smaller
h can partially address these concerns, but as h is de-
creased toward zero the number of controller switches
usually tends to increase and chattering instability may
sometimes occur in the limit as h→ 0 — though not
always.

In present paper we derive sufficient conditions un-
der which we can set h = 0 without chattering insta-
bility, thereby allowing supervisor to respond instanta-
neously and continuously using the zero-hysteresis op-
timal adaptive law

k̂(t) = kL(t) (8)

where kL(t) is given by (4). The paper is organized
as follows. In Section 2 preliminary facts are given.
Section 3 contains the main result. A simple example
of the performance function satisfying sufficient condi-
tions for convergence is provided in Section 4. Conclu-
sions follow in Section 5.

2. Preliminaries

The linear truncation operator Pτ is a projection
operator that truncates the signal at t = τ , τ ∈ R+, and

the L2−norm of x is given as ||x||=
√∫

∞

0
x(t)T x(t)dt.

For brevity, we also denote xτ = Pτ x and ‖x‖τ = ||Pτ x||.

Definition 2.1 (Stability [20, 19, 18]) We say a system
Σ with input v and output z is stable if there exists con-
stants β ,α ≥ 0 such that

‖z‖τ < β‖v‖τ +α, ∀τ > 0,v ∈ L2. (9)

Otherwise, it is said to be unstable. Furthermore, if (9)
holds, then the system Σ is said to be finite-gain stable,
the least β for which (9) holds is called the L2-gain of
Σ. �

Definition 2.2 Suppose that f : Rn→ R is twice differ-
entiable on X ⊂ Rn and that, for some α > 0,

∇
2 f (x)≥ αI ∀x ∈ X . (10)

Then, we say f is strongly convex (or uniformly convex)
on X. �
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One implication of strong convexity is that if f (x) is
strongly convex on a connected set X ⊂ Rn, then for
every α > 0 satisfying (10) we have [3, Prop. A.23]

f (y)− f (x) = (∇ f (x))T (y− x)+
∫ 1

0

∫ 1

0
(y− x)

∇
2 f (x+ τy)(y− x)dτdt ≥ (∇ f (x))T (y− x)+

α

2
‖y− x‖2 (11)

for any α > 0 satisfying (10).

Definition 2.3 A function ν(k,z, t) is said to be equi-
quasi-positive definite (EQPD) in k if for some continu-
ous monotone function φ : [0,∞) 7→ [0,∞] with φ(0) = 0
and φ(x) > 0 ∀x > 0, it holds for all z 6= 0 and all t
sufficiently large that

k̂(t) = argmin
k
{ν(k,z, t)} exists, and (12)

ν(k,z, t) − ν(k̂(t),z, t) ≥ φ(||k− k̂(t)||) > 0 (13)

�

A sufficient condition for ν(k,z, t) to be EQPD is
that it be uniformly positive definite in k for all z and all
t sufficiently large. A uniformly positive definite func-
tion is a special case of an EQPD in which the minimum
occurs at k̂ = 0.

The following lemmas will be used in proving our
main result.

Lemma 2.1 Let K ⊆ Rn and the function V (k,z, t) is
twice differentiable in k. If ∇2

kV (k,z, t) > αI for α > 0.
Then V (k,z, t) is EQPD function.

�

Lemma 2.2 Let ν(k,z, t) be monotonically increasing
in t for all z,k and suppose a minimizing value k̂(t,z) =
argmin

k
{ν(k,z, t)} exists for all t. Then,

ν(k̂(t2),z, t2)≥ ν(k̂(t1),z, t1) for all t2 ≥ t1.

�
Proof
By monotonicity

ν(k,z, t2)≥ ν(k,z, t1) ∀t2 ≥ t1 (14)

Also, since k̂(t) minimizes ν(k,z, t)

ν(k̂(t),z, t)≤ ν(k,z, t) ∀k ∈K. (15)

From (14) ν(k̂(t2),z, t2) ≥ ν(k̂(t2),z, t1) and from (15)
ν(k̂(t2),z, t1)≥ ν(k̂(t1),z, t1). Hence,

ν(k̂(t2),z, t2)≥ ν(k̂(t1),z, t1) ∀ t2 ≥ t1.

�

Lemma 2.3 Let ν(k,z, t) be monotonically increas-
ing in t for all z,k and suppose a minimizing value
k̂(t,z) = argmin

k
{ν(k,z, t)} exist for all t. If ν(k,z, t)

is EQPD in k then, ν(k̂(t2),z, t2) − ν(k̂(t1),z, t1) ≥
φ(||̂k(t2)− k̂(t1)||) ∀ t2 ≥ t1.

Proof
Since ν(k,z, t) is an EQPD in k,

ν(k̂(t2),z, t1) − ν(k̂(t1),z, t1) ≥ φ(||̂k(t2)− k̂(t1)||)

and, since ν(k,z, t) is monotonic in t, we have

ν(k̂(t2),z, t2)≥ ν(k̂(t2),z, t1) ∀ t2 ≥ t1.

Therefore,

ν(k̂(t2),z, t2)−ν(k̂(t1),z, t1)≥ ν(k̂(t2),z, t1)−ν(k̂(t1),z, t1)

≥ φ(||̂k(t2)− k̂(t1)||) ∀ t2 ≥ t1

and hence for all t2 ≥ t1

ν(k̂(t2),z, t2) − ν(k̂(t1),z, t1) ≥ φ(||̂k(t2)− k̂(t1)||).

�

3. Main Result

The following theorem establishes that if one
replaces the requirement that hysteresis constant h be
strictly positive in the Morse-Mayne-Goodwin Conver-
gence Lemma with a requirement that the performance
function be equi-quasi-positive definite in k, one still
obtains convergence of the controller k̂(t) as t→ ∞.

Theorem 3.1 (Main Result) Consider the feedback
adaptive control system Σ(P, k̂) in Figure 1.

Suppose that both of the following hold:

1) Monotonicity: For all k and z it holds that

V (k,z, t)≥V (k,z,τ) for all t > τ

2) Feasibility: There exists a controller krobust ∈ K
for which the performance function is uniformly
bounded

sup
z,t

V (krobust,z, t) < ∞.

If V (K,z, t) is an EQPD function of k, then the zero-
hysteresis adaptive law (8) converges as t increases to
infinity to a point in the closure of the set K.

3544



Proof:
By feasibility VL(z) = sup

t
V (k̂(t),z, t) exists and, by

Lemma 2.2, V (k̂(t),z, t) is monotonic in t and, by feasi-
bility, it is bounded above. Hence,

VL(z) = lim
t→∞

V (k̂(t),z, t) (16)

≥ V (k̂(t),z, t) ∀t (17)

Since V (k,z, t) is EQPD, it follows from Lemma 2.3)
that for all t2 ≥ t1

V (k̂(t2),z, t2) − V (k̂(t1),z, t1) ≥ φ(||̂k(t2)− k̂(t1)||).
(18)

So, for all t2 ≥ t1 it holds that

VL(z)−V (k̂(t1),z, t1) ≥ V (k̂(t2),z, t2)−V (k̂(t1),z, t1)

≥ φ(||̂k(t2)− k̂(t1)||)

Thus, for every ε > 0 there exists tε such that for all
t1, t2 ≥ tε

ε ≥V (k̂(t2),z, t2)− V (k̂(t1),z, t1)≥ φ(||̂k(t2)− k̂(t1)||).

and hence φ(||̂k(t2)− k̂(t1)||)→ 0 as t → ∞. Since, φ

is nondecreasing continuous function satisfies φ(0) = 0
and φ(x) > 0 for x > 0, it follow that for every δ > 0,
there exists a tδ such that ||̂k(t2)− k̂(t1)|| < δ for all
t1, t2 ≥ tδ . Therefore, the sequence {k̂(t)}∞

t=0 is Cauchy.
Since every Cauchy sequence converges [14], it follows
that k̂(t) converges as t→ ∞ to a point in the closure of
the set K.

�

4. Performance Function Example

An example of the performance function and the con-
ditions under which it ensures convergence according
to the previous theorem may be constructed as follows.
Consider a model reference adaptive control algorithm
shown in Figure 2 with integral norms of estimation er-
rors as our performance function.

V (K,z(t),τ) =
1
2

∫
τ

0
‖ẽ(z;K)‖2dt (19)

where

ẽ(z;K) = ỹm(z;K)− y (20)
ỹm(z;K) = Wm ∗ r̃(z;K) (21)

r̃(z;K) = (1+θ
T Q)∗u+ y (22)

where Q is a given proper stable vector of transfer
functions and ∗ denotes convolution..

+ +

+

--

-

e

r u

Figure 2. Model reference adaptive control

Then,

∇θV (k,z(t),τ) =
∫

τ

0
((Wm(y+(1+θ

T Q)u)T

uT QT dt (23)

and

∇
2
θV (k,z(t),τ) =

∫
τ

0
Q u uT QT dt (24)

Definition 4.1 We say that the system is persistently ex-
cited if ∇2

θ
V (k,z(t),τ)≥ αI for some α > 0).

�
Under the persistent excitation assumption, the

function V (ki,z(t), t) is uniformly convex function in k
for sufficiently large time t.
Therefore, whenever the systems is persistently ex-
cited, this performance function has the uniform con-
vexity property. The persistent excitation (PE) prop-
erty defined here is crucial in many adaptive schemes
where parameter convergence is one of the objectives
and is closely related to convergence conditions of
[15, 6, 5, 4, 2, 1].

Comment 4.1 The performance function in this ex-
ample is not a cost-detectable performance function.
The main difficulty with such performance function is
that it needs prior information (i.e., standard adaptive
control assumptions) to ensure feasibility. The ques-
tion of whether there exist cost functions that are cost-
detectable for which h can safely be set to zero remains
open.

�

5. Conclusion

In this paper we studied the problem of conver-
gence in adaptive control for the case of continuum
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set of candidate controllers. We have examined the
Morse-Mayne-Goodwin hysteresis switching algorithm
for continuous adaptive control; our main result es-
tablishes that when a feasible controller exists, then
the hysteresis constant may be set to zero if the cost
function is monotone in time and, additionally, has a
property that we call equi-quasi-positive definiteness
(EQPD). The quadratic model-reference cost function
without fading memory in our example has this prop-
erty.
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