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Abstract— A general mathematical model of viral infections
inside a spherical organ is presented. Transported quantities
are used to represent external cells or viral particles that
penetrate the organ surface to either promote or combat
the infection. A diffusion mechanism is considered for the
migration of transported quantities to the inner tissue of the
organ. Cases that include the generation of latent infected
cells and the delivery of anti-viral treatment are analyzed.
Different anti-viral mechanisms are modeled in the context of
spatial variation. Equilibrium conditions are also calculated to
determine the radial profile after the infection progresses and
therapy is delivered for a long period of time. The dynamic and
equilibrium solutions obtained in this paper provide insight into
the temporal and spatial evolution of viral infection for optimal
therapies.

I. INTRODUCTION

The development of virus dynamic models under different
infection scenarios has gained attention during recent years
[1] [2] [3]. Analysis of the progression of an infection has
provided insight into the optimization of anti-viral therapies.
[4] [5]. Nevertheless, most virus dynamic models are devel-
oped for well-mixed environments, which does not account
for the migration of immune system cells, virus particles and
anti-viral molecules to the infected areas of the host organ.

Viruses circulate in the host blood stream, and their con-
centration may vary depending on the susceptibility of some
host cells to the infection. Viruses can also target solid organs
made of susceptible cells, as is the case for the Hepatitis C
virus (HCV), in which a chronic liver infection is established
for more than 85% of patients [6]. The penetration and
migration of the virus into the inner portion of a susceptible
organ have not been modeled using spatial coordinates and
partial differential equations. Here we present a model of
the progress of a viral infection in a spherical organ where
immune cells and viral particles may penetrate and migrate
to the inner organ tissue.

Organ viral infections are characterized by a high number
of localized infected cells or virus particles in specific tissues.
In such cases spatial variability is vital to understanding the
disease progression [7]. A diffusive transport mechanism is
considered for the virus particles to penetrate to the inner
portion of a susceptible organ in order to replicate and
proliferate [8]. Immune system cells may also penetrate
the infected tissue to combat the infection, but their ability
to diffuse and proliferate within solid tissue is limited. In
practice, organ vascularity improves immune cell reach to the
infected tissue to the extent that the immune system response
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to infections could promote vascular endothelial growth [9]
[10].

The diffusive mechanism of migration, also known as
motility [11], incorporates second order spatial derivatives
into the well established nonlinear system of differential
equations for virus dynamic models [12]. The specification
of boundary conditions decouples the organ infection from
the compartment that surrounds it. The numerical solution
to the resulting partial differential equation model is demon-
strated here using radial profiles of the virus dynamic and
equilibrium profiles for the virus particles, infected cells and
immune system cells.

This paper is organized as follows. Section II presents
the mathematical formulation of the organ dynamic model
response to a viral infection. The use of active and latent
infected cells in virus dynamic modeling is introduced in
Section III. Different anti-viral mechanisms of action are
explained and modeled in Section IV. The radial profiles
of the virus and infected cells show how the infection
diminishes in time during anti-viral therapy. Conclusions are
provided in Section V.

II. MATHEMATICAL FORMULATION

The infected organ is of spherical shape such that the radial
coordinate r is used to describe the spatial variations of the
stationary and transported quantities. Stationary quantities
are the density of the different types of cells that compose
the infected organ. Transported quantities represent external
cells or particles that penetrate the susceptible organ surface
and travel radially following a diffusive mechanism of trans-
portation,
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r2
∂T
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where T (r, t) represents a transported quantity, D◦ is its
diffusion coefficient and t denotes time. Such a partial
differential term requires two boundary conditions. These
conditions are given by the penetration of the transported
quantity at the surface boundary and the radial symmetry at
the center of the organ.

In general all stationary and transported variables are
contained in the vectors ~S and ~T , respectively,

~S = [S1 S2 · · · Sm]T ~T = [T1 T2 · · · Tl]
T
,

where m and l represent the number of stationary and
transported variables necessary to describe the infection
dynamics. The evolution equations for stationary variables
are given by,
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,
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where ~F is a vector of nonlinear functions that represent the
generation and consumption terms of the stationary variables.
Note that ~F is a function of ~S and ~T . Each stationary quantity
requires an initial condition.

The partial differential equations (PDÉs) for the trans-
ported variables include the diffusion term defined in equa-
tion 1,

∂ ~T

∂t
= ~D◦.
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(
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)
,

and each PDE requires two boundary and one initial con-
dition. The vector operator (.) represents an element by
element product of two vectors with the same dimension.
The function vector ~G denotes the generation-consumption
terms for the transported variables.

TABLE I
MODEL PARAMETERS AND VARIABLES WITH INITIAL CONDITIONS (IC).

Parameter Value
a death rate of active infected cells 0.5
aL death rate of latent infected cells 0.1
u clearance rate of free virus 10
k virus replication rate 1000
β infection rate of host cell 0.001
λ production rate of host cells 1
d death rate of host cells 0.1
p infected cells elimination rate 0.3

by the immune system
b death rate of immune cells 0.2
c production rate of immune cells 2
Dv virion diffusivity factor 0.01
Dz immune cells diffusivity factor 0.001
Dw anti-viral diffusivity factor 0.02
Pv virus penetration factor 33.5
Pz immune cells penetration factor 50
Pw anti-viral penetration factor 10
α activation rate of latent infected cells 0.1
q portion of active infected cells 0.75
e anti-viral clearance rate 0.3
g virus elimination rate by anti-viral 0.5
φ viral infection reduction parameter 0.05
ψ viral replication reduction parameter 0.05

Variable IC
V free virus concentration 0
W population of anti-viral particles 0
X volumetric density of organ uninfected cells 10
Y volumetric density of organ infected cells 0
Z density of immune system cells 0

It is convenient to normalize the spatial coordinate r
between [0 1]. For this reason, the dimensionless variable
η = r/R is used as the radial coordinate, where R represents
the radius of the infected organ. The infection dynamic
response is given by the solution of a system composed by
m+ l differential equations,

∂~S
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(
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)
, (2)
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where the elements of the vector ~D ≡ 1
R2

~D◦ have inverse
time units. These equations are subject to the initial condi-

tions ~S(η, 0) = ~S0 and ~T (η, 0) = ~T0, while the boundary
conditions are

∂ ~T (η, t)
∂η

|η=0 = 0,

∂ ~T (η, t)
∂η

|η=1 = P
[
~S
~T

]
η=1

,

The constant matrix P represents the penetration factor
matrix. The specific model parameters used in this study
are presented in Table I. The equilibrium conditions for the
stationary and transported variables are obtained by setting
the time derivatives in Eqs. 2 and 3 to zero, which results in

~F
(
~̄S, ~̄T

)
= ~0,
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)
= ~0,

where ~̄S and ~̄T are the stationary and transported variable
vectors at their equilibrium conditions, respectively. Notice
that the equilibrium conditions represent a differential alge-
braic system of equations in η, where the radial boundary
conditions need to be satisfied.

Finally, tt is convenient to express the distributed spatial
solution obtained from Eqs.(2,3) using an average spatial
response in time,

Q̂(t) = 3
∫ 1

0

Q(η, t)η2dη,

where Q represents a generic quantity.

III. ACTIVE AND LATENT INFECTED CELLS

Immune system cells acknowledge the presence of the
virus as it penetrates and replicates inside the organ cells.
Part of the virus survival mechanism consists of remaining
in a latent state inside susceptible cells. This type of infected
cell, also known as latent cells, carries the infection without
triggering replication or destroying the cells. In this manner,
the immune system can not detect them or combat a virus
that remains in such a dormant state. At later stages of the
infection, latent infected cells can become active replicators
of the virus. What activates the viral response in a latent cell
is still considered a topic of investigation [13].

A. Dynamic Response

The parameter q ∈ [0 1] determines the probability of
an infected cell to be active or become latent from the first
moment of the infection. This parameter is used to split
the infection term βXV into a portion that generates active
infected cells qβXV and a portion that engenders latent
infected cells, (1−q)βXV . Latent infected cells are denoted
by YL and represent a stationary quantity. The generation-
consumption terms for the stationary and transported vari-
ables that include latent cells are given by the following
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expressions,

~F
(
~S, ~T

)
=

 λ− dX − βXV
qβXV − aY − pY Z + αYL
(1− q)βXV − aLYL − αYL

 ,
~G
(
~S, ~T

)
=

[
kY − uV
−bZ

]
,

where ~S = [X Y YL]T and ~T = [V Z]T . The initial
condition assumes all cells are susceptible at t = 0. It
is important to emphasize that the immune system cell
penetration is proportional to the active infected cells at
the organ surface. Because not all infected cells are active,
the penetration of immune cells into the infected organ is
reduced in the presence of latent infected cells at the surface.
A large population of latent cells compared to active cells at
the organ surface becomes a natural tendency for the viral
infection because active infected cells are effectively elimi-
nated at the organ surface, where immune cell concentration
tends to be large. At the same time, the immune system
cell penetration is diminished due to low active infected
cell density at the surface. Therefore, high density of latent
infected cells at the organ surface diminishes immune cells
penetration, while high density of the active infected cells at
the organ core replicates virus particles.

The solid line responses in Figure 1 illustrate the pop-
ulation difference between active and latent infected cells
(Y − YL) at different radial locations. The response at
the organ surface demonstrates that the difference Y − YL
remains negative after 10 time units of simulation, while the
profile at all other locations shown in the figure remains
positive. Such a solution corroborates that latent infected
cells prevail at the surface of the infected organ because they
are not eliminated by the immune system.

The increase of the penetration factor Pz increases the
amount of immune cells at the organ surface, which reduces
the amount of active infected cells at that location. Such an
effect limits the immune system cell propagation to the inner
portion of the organ, especially when Dz is small. Figure
1(a) shows how the increase of Pz makes the profile of Y −
YL more negative at the surface, while the profiles at inner
locations remain unaffected.

The larger Dz is the larger is the larger the amount of
immune cells transported to the organ inner region. Such a
phenomenon propagates the elimination of active infected
cells in the organ’s inner portion. Therefore, the latent
infected cells may become more dense than the active cells,
as the former are not diminished by immune system cells.
Figure 1(b) illustrates how the increase of the immune cells
diffusivity factor makes the profile Y − YL negative at
η = 0.8, which indicates a better chance of survival for the
latent than for the active infected cells.

B. Equilibrium Condition

The coefficient for the generation of latent infected cells
(1 − q) and the factor that determines the rate at which
latent cells are reactivated (α) represent decision variables
for the virus to perpetuate the infection. Many infections

(a) Effect of the immune system penetration factor

(b) Effect of the immune system diffusivity factor

Fig. 1. Profiles of the difference between active and latent infected cells
at different radial locations.

remain latent in a hostage organ until the hostage immune
system weakens. At this stage, the viral infection’s chances
of proliferating are enhanced by either generation ( q → 1 )
or reactivation (α increases).

The dynamic model presented here considers q and α con-
stant during simulation. Their influence on the equilibrium
conditions is described by solving the following system of
algebraic differential equations

X̄ =
λ

d+ βV̄
,

Ȳ =
βX̄V̄

a+ pZ̄
f, (4)

ȲL = βX̄V̄

(
1− q
α+ aL

)
, (5)

d2V̄

dη2
+

2
η

dV̄

dη
=

V̄ u

Dv

(
1− R̃L

)
.

d2Z̄

dη2
+

2
η

dZ̄

dη
=

Z̄b

Dz
,

where

f = q + (1− q)
(

α

α+ aL

)
, R̃L = R̃If,
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R̃I =
RI

1 + V̄ β
d

, RI =
R0

1 + Z̄ p
a

.

subject to

dV̄ (η)
dη
|η=0 = 0 ,

dZ̄(η)
dη
|η=0 = 0,

dV̄ (η)
dη
|η=1 = PvX̄(1) ,

dZ̄(η)
dη
|η=1 = PzȲ (1).

where R0 is the basic reproductive ratio. The ratio of the
expressions 4 and 5 provides the effect of q, α and Z̄(η) for
the amount of active and latent infected cells at equilibrium
conditions,

ϕ(η) ≡ Ȳ

ȲL
=

aLq + α

(a+ pZ̄)(1− q)
(6)

which clearly shows that by either increasing q or α the
generation or transformation to active infected cells is being
promoted by the viral infection. Furthermore, the larger the
number of immune system cells at equilibrium conditions
(Z̄), the less the value of ϕ. An analytical expression for the
index ϕ is given by

ϕ(η) =
aLq + α

(a+ 2pSinh(
√
σzη)

η P̃z)(1− q)
, (7)

where

P̃z =
PzȲ (1)

2Sinh(
√
σz) + 2

√
σzCosh(

√
σz)

.

Notice that ϕ depends on Ȳ (1), which in turn is a function
of V̄ (1).

Figure 2(a) illustrates the effect of q and α on ϕ. Note
that the effect of both parameters is significant and very
similar. Therefore, q and α have a large influence on ϕ when
equilibrium conditions are analyzed. An important feature
of all plots shown in Figure 2(a) is that the index ϕ drops
towards η = 1 because the number of latent cells tends to
increase close to the surface when compared to the active
ones. The drop of ϕ towards η = 1 is triggered by the
large concentration of immune cells at the organ surface.
Figure 2(b) demonstrates the immune cell profile for the
same parameter changes defined in Figure 2(a). The large
concentration of immune cells towards the surface favors the
survivorship of latent infected cells at the same location.

The immune system cell profile is impacted by the
equilibrium distribution between latent and active cells at
the surface, as is illustrated in Figure 2(b). Immune cell
penetration is enhanced for cases where ϕ(1) is elevated.
This is the case of having large values of q and α, which
corroborates the results obtained from the dynamic response
analysis in Section III-A.

Medication is required to combat viral infections in situa-
tions where the infection can not be controlled by the natural
immune system defense. The next section demonstrates the
effect of such medication on the virus dynamics equations.

(a) ϕ = Ȳ
ȲL

(b) Immune system cell

Fig. 2. Effect of q and α on the equilibrium condition profiles

IV. EFFECT OF ANTI-VIRAL DRUG THERAPY

The virus mechanism of engendering latent infected cells
in order to extend the existence of a viral infection in a
hostage represents a major threat to the life of the host.
Viral infections tend to flourish in patients with low immune
defenses. This is typical in organ transplant cases, where the
patient’s immune system is reduced to avoid organ rejection
[14]. Chemotherapy also reduces the amount of immune
cells in the human body. Therefore, patients treated for
cancer or undergoing organ transplants are usually under
anti-viral therapy prevents viruses from becoming active and
replicating.

There are different ways to account for the effect of anti-
viral therapy in such infections. The anti-viral drug can
reduce the virus’s ability to either infect susceptible cells or
to replicate inside active infected cells. The presence of anti-
viral particles can also be modeled by adding a consumption
term in the virus PDE. These different ways to adjust the
dynamic model in order to account for anti-viral therapy are
presented next.

Anti-viral doses are periodically provided via the blood
stream compartment. They penetrate into the different host
organs and are cleared by the host’s natural mechanisms
for reducing external agents. The population of anti-viral
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particles in the host is denoted by W and represents a
transported quantity with no generation term inside the
solid organ. This work assumes that anti-viral particles tend
to penetrate inside the solid organ at a rate proportional
to the concentration of virus at the surface, V (1, t). This
assumption is acceptable for the mathematical study of virus
dynamics in infected organs. Nevertheless, hosts treated with
anti-viral drugs present significant concentration of anti-viral
particles in organs that are not necessarily infected.

The generation-consumption vectors of viral organ infec-
tion undergoing anti-viral therapy are given by,

~F
(
~S, ~T

)
=

 λ− dX − βWXV
qβWXV − aY − pY Z + αYL
(1− q)βWXV − aLYL − αYL

 ,
~G
(
~S, ~T

)
=

 kWY − uV − gV W
−bZ
−eW

 ,
where ~S = [X Y YL]T and ~T = [V Z W ]T . Anti-
viral particles can diminish the viral infections through three
different mechanisms. These are:

1) Attenuating the virus’s capacity to infect susceptible
cells by reducing the infection factor β. This mechanism
is equivalent to the reverse transcriptase inhibitors for
anti-HIV drugs. A simple expression that characterizes
the effect of W in β is given by

βW = βe−φW

where φ is a constant parameter that determines how
effective the anti-viral drug is in preventing healthy cells
from being infected. Note that this parameter influences
the generation of latent and active infected cells in equal
proportion.

2) Diminishing the virus replication by reducing the num-
ber of new virus particles that an active infected cell can
replicate. This effect is similar to the protease inhibitors
in HIV treatment, and can be modeled by diminishing
k with a similar expression to the one considered for
βW ,

kW = ke−ψW

where the larger ψ is the more effective W is in
reducing replication in active infected cells.

3) Reducing the amount of the virus inside the solid organ.
This effect is achieved by adding a consumption term
in the virus partial differential equation. This term is
made proportional to the number of virus and anti-
virus populations, gV W . The proportional factor g
determines how effective is the therapy is at eliminating
virus particles.

Specific anti-viral drugs affect one of the three mecha-
nisms listed above. Viral infection treatment tends to provide
more than one kind of anti-viral drug at a time in order to
combat the virus population using simultaneous mechanisms
[15]. Such a strategy increases the effectiveness of the
therapy in cases of virus mutations that may enhance their

resistance to one particular drug mechanisms. Nevertheless,
this work will only consider one of the mechanism above at
a time.

The initial conditions for the dynamic simulation depends
of how promptly the treatment is administrated to the host
after infection has been detected. For simplicity equilibrium
conditions are considered for the initial profile before the
anti-viral drug is delivered. Such initial conditions corre-
spond to a hostage with a weakened immune system, i.e
with an immune penetration factor five times less than the
one provided in Table I.

Figures 3(a) and 3(b) illustrate the time progression of
the infected organ undergoing therapy for the case where
the virus ability to infect is diminished by the anti-viral
drug. Figure 3(a) shows how susceptible cells increase their
number from the initial condition (t = 0 profile) to an
equilibrium profile close to their normal value of ten. Most
of these transitions occur in a lapse of 50 units of time with
minor oscillations at η < 0.6.

Figure 3(b) shows the drop in the amount of virus to
about one third of their initial value. Even though the anti-
viral treatment shows effective to control the disease, the
infection does not disappear completely due to the persistent
penetration of virus into the organ. A model that includes the
organ vascularity and the blood compartment that surrounds
the infected organ is required to illustrate the complete
disappearance of the disease. Figure 3(c) demonstrates the
time progression of infected cells for the case where the
virus replication is reduced by the anti-viral drug. Latent
cells follows a very similar progression than the active ones
because the anti-viral therapy affects equally both type of
cells. Figure 3(d) shows that the number of immune cells
inside the infected organ decreases during anti-viral therapy
because the number of active cells at the organ surface
is reduced considerably. Recall that a reduced number of
active cells at the organ surface diminishes the penetration
of immune cells into the infected organ.

The expressions for the equilibrium conditions in the
presence of antiviral therapy are similar to the ones obtained
in Section III. The PDE related to the anti-viral population
is given by:

d2W̄

dη2
+

2
η

dW̄

dη
=

Z̄e

Dw
,

which indicates that the solution has the form,

W̄ (η) = 2
Sinh(

√
σwη)

η
P̃w, (8)

where σw = e/Dw and

P̃w =
PwV̄ (1)

2Sinh(
√
σw) + 2

√
σwCosh(

√
σw)

.

The dimensionless form of the anti-viral concentration is
defined by,

W̄ ?(η) ≡ W̄ (η)− W̄ (0)
W̄ (1)− W̄ (0)

,

and its profile resembles the one for the immune system cells.
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(a) Effect of βW in susceptible cells

(b) Effect of βW in virus concentration

(c) Effect of kW in active infected cells

(d) Effect of virus consumption term in immune cells

Fig. 3. Time progression in an infected organ undergoing anti-viral therapy

V. CONCLUSIONS
This work demonstrates the advantage of representing

the viral infection dynamics in solid organs using station-
ary quantities that characterize the organ tissue cells and
transported quantities that penetrate from an external source
and populate the susceptible organ. Such a representation
provides the flexibility to consider a variety of viral infection
cases following a common line of reasoning and notation.
Equilibrium conditions in the radial direction are used to
determine areas of high concentration of virus or infected
cells that could propagate the infection at later stages of
the disease. The use of a spatial-coordinate in organ viral
infection dynamics helps to visualize the distribution of each
quantity along the radial coordinate. The effects of diffusiv-
ity coefficients, penetration factors and anti-viral treatment
parameters are here analyzed with the temporal and local
evolution of viral infections for optimal therapies.
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