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Abstract— A novel virotherapy cancer model based on tumor
capillarity irrigation is proposed and compared to previous
developed models. The proposed model consists of blood
irrigation layers distributed radially along the tumor and
attached to a common blood circulation compartment. It also
considers the immune system cell generation and consumption
in the blood circulation compartment and its propagation
inside the tumor boundary. The model equilibrium conditions
result in a quadratic function for which the tumor radius
reaches steady state under virotherapy. Such a condition
permits determination of the minimum drug dose required to
halt the cancer growth. This novel model has great potential
for advanced controllers because therapy dose delivery and
immune system measurements can actually be applied at the
blood compartment.

I. INTRODUCTION

Viruses that selectively replicate in tumor cells have re-
cently demonstrated their potential use in cancer treatment
[1][2]. These viruses, known as oncolytic viruses, are ge-
netically altered to infect and reproduce inside the confined
tumor mass without affecting the surrounding organs. An
oncolytic virus consists of tumor-tropic RNA, which will
only permit the virus to grow inside cells with a defective
antiviral response system, in particular cells that lack a func-
tional interferon response. Among the oncolytic viruses with
potential use for virotherapy are the adenovirus Onyx-015
[3], the herpes simplex virus HSV-1 [4] and the Newcastle
disease virus, NDV [5].

Although analysis of lab results indicates that virotherapy
has a very promising future for cancer treatment, there are
several factors that could diminish its effectiveness. Among
these factors is the development of undesirable immune
responses that attack the oncolytic virus inside the tumor [6].
The innate immune system can destroy not only free virus
particles but also infected tumor cells, which enables the tu-
mor growing process. Therefore, immune suppression drugs
like cyclophosphamide (CPA) have been used in conjunction
with Oncolytic viruses in order to maintain the effectiveness
of virotherapy during cancer treatment [7]. The delivery and
blood concentration of such drugs is also limited to avoid
the eradication of the immune system and the development
of diverse infections in treated patients [8].

Mathematical models for cancer treatment have con-
tributed to the development of therapy protocols, tumor
growth predictions and planning of cancer therapy [9] [10]
[11] [12] [13], especially for radiation treatment [14] [15]
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[16] and chemotherapy [17] [18]. Two tumor dynamic mod-
els have been recently developed to study the effectiveness
of virotherapy in conjunction with immune suppression treat-
ment. The first model, developed by Friedman et. al [6] and
analyzed by Wang and Tian, [19] considers a convective
radial migration of immune system cells along the solid
tumor. This model is referred to as convective immunization,
and it is based on the assumption that immune cells are large
enough to be considered part of the tumor mass. A second
model developed by Tao and Guo [20] considers the immune
cells to be small enough to penetrate and migrate by diffusion
inside the tumor mass. Although the virus diffusivity is one
order of magnitude larger than the immune cell diffusivity,
migration by diffusion is governed by concentration gradi-
ents. Therefore, for the diffusion model, the space occupied
by immune cells plays no role in the tumor volume.

This study proposes a novel virotherapy model based on
tumor irrigation, where the immune cell dynamics take place
outside the tumor mass and the immune suppression drug is
applied at the bloodstream level. The immune system dynam-
ics as well as the immune suppression drug are applied at the
blood compartment attached to the tumor irrigation layers.
The concept of immunization by irrigation is introduced here
to make the application of the immunization model at the
blood compartment realistic.

This paper is organized as follows: Section II provides the
description and mathematical formulation of the irrigation
model. In Section III the simulation response is analyzed to
provide the effect of treatment and to measure the therapy
progress. Section IV compares the irrigation model with the
convection and diffusion models available in the literature
in view of cancer treatment effectiveness. Conclusions and
future work are provided in Section V.

II. IRRIGATION MODEL

A. Model Description

The immune system response consists mainly of four
phases: recognition, amplification of defense, attack and
suppression. Some of these phases take place outside the
tumor boundary. Body organs like the bone marrow and the
thymus are the main producers of immune cells. Other organs
like the spleen produce large amounts of antibodies to fight
against antigens, and lymph nodes filter the antigens to evoke
a full-fledged immune response. Therefore, it is natural to
consider that the dominant dynamics of the immune system
response and the application of CPA are connected at the
blood level compartment that irrigates the tumor. Therefore,
the virotherapy irrigation model is developed to make viable
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TABLE I
MODEL PARAMETERS FROM FRIEDMAN ET AL. [6]. THE ABBREVIATION

’VAR’ INDICATES THAT THE PARAMETER CHANGES DEPENDING ON THE

CASE IN STUDY.

Dv Virus diffusivity coefficient 3.6× 10−2mm2/h
Dz Immune cell diffusivity coefficient 3.6× 10−4

k Immune killing rate 2.0× 10−8mm3/h
k0 Take-up rate of viruses 10−8mm3/h
P Cyclophosphamide concentration var
s Stimulation rate by infected cells 56× 10−8mm3/h
U Radial tumor cell velocity var
w Clearance rate of immune cells 20× 10−8mm3/h
β Infection rate var
γ Clearance rate of viruses 2.5× 10−2h−1

δ Infected cell lysis rate 5.6× 10−2h−1

θ Density of tumor cells 106cells/mm3

λ Proliferation rate of tumor cells 2× 10−2h−1

µ Removal rate of necrotic cells 2.1× 10−2h−1

τe Blood circulation time constant 50h
τt Tumor time constant 1h

the application of CPA and its interaction with the immune
system at the bloodstream level.

The variables used to describe the tumor progress and its
interaction with the oncolytic virus and the immune system
are:

• The volumetric fraction of uninfected tumor cells, X:
this fraction represents the major cause of tumor en-
largement and cancer metastasis. Cancer therapy should
maintain X at a low value during treatment.

• The volumetric fraction of infected tumor cells, Y :
this fraction represents the tumor cells attacked by the
virus, which will promote the virus propagation inside
the tumor. Infected tumor cells eventually become dead
cells.

• The volumetric fraction of dead tumor cells, N : the
increase of this fraction tends to slow down the tumor
enlargement or reduce the size of the tumor.

• The immune system concentration, Z: this variable is
considered a volumetric fraction or a density in the
convection or diffusion model, respectively. The im-
mune suppression drug affects Z, which will eventually
impact the tumor growth.

• The density of the free virus particles, V : the virus
particles are injected in the tumor at the start of the
virotherapy treatment. They propagate by diffusion in-
side the tumor.

• The radial cell velocity, U : the propagation velocity of
the tumor cells determines the rate at which the tumor
enlarges or shrinks.

The Table I describes the main parameters used for the
irrigation model.

B. Mathematical Formulation

The virotherapy mathematical formulation for spherical
tumors results in a nonlinear PDE system, with partial deriva-
tives along the radial coordinate ρ. The azimuthal and polar
angle coordinates are not considered due to the assumption
of radial symmetry, which simplifies the problem without

significantly affecting the accuracy of the solution. The size
of the tumor is given by R(t), where t represents time.
Because the tumor changes its size during treatment, any
evaluation of an external boundary condition also changes
with time. Nevertheless, this difficulty is overcome by defin-
ing the radial coordinate as r ≡ ρ

R(t) , where r = 1 represents
the tumor surface.

The PDE’s that define the dynamic response for the
quantities X , Y , N , and V are given by

∂X

∂t
+

(
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)
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∂
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(
r2U

)
= F

and
F = λX − µN (1)

Fig. 1. Irrigation model for virotherapy. The immune system cells
circulate in the blood stream and reach the interior of the tumor through
blood irrigation capillarity. Irrigation layers are placed in predefined node
locations, and immune cells migrate from irrigation layers to the tumor inner
tissue by diffusion.

The main differentiator of the irrigation model when
compared to the convection and diffusion models is the
treatment of the immune system dynamics. The virotherapy
irrigation model partitions the spherical tumor into shells
and relocates the generation of immune system cells to the
blood circulation level. Figure 1 illustrates the notion of an
irrigated tumor divided into spherical shells. Inner tumor
shell compartments have both faces exposed to irrigation
layers. The core inner portion of the tumor is equivalent to a
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spheroid, while the most external tumor shell is exposed to an
immune cell surface density, ZR. The location of the tumor
determines the boundary value ZR. The immune system cells
migrate from the blood irrigation layers to the inner tumor
tissue by diffusion.

The irrigation layers are a subset of the actual nodes used
for the calculation of radial profiles. These irrigation layers
or nodes are considered in contact with the bloodstream.
For convenience, in this work the nodes are equally dis-
tributed along the tumor radius. However, in a more general
framework, the nodes can be distributed to match the actual
location of the tumor capillarity layers.

The partial differential equation for the immune cell den-
sity at the irrigation nodes is given by:

∂Z

∂t
−

(
rṘ

R
+

2Dz

R2r

)
∂Z

∂r
− Dz

R2

∂2Z

∂r2
= − (Z − Ze)

τt
(2)

where Ze is the immunization density at the blood stream.
The time constant τt is in the order of one hour and
determines the rate at which the irrigation node density Z is
impacted by the blood stream density, Ze.

A diffusion expression, like the one obtained for the
diffusion model, governs the migration of the immunization
cells to the non-irrigated nodes,

∂Z

∂t
−

(
rṘ

R
+

2Dz

R2r

)
∂Z

∂r
− Dz

R2

∂2Z

∂r2
= 0 (3)

This type of model considers no generation or suppression of
the immune system inside the tumor. Such effects take place
in the innate blood stream compartment outside the tumor
confinement, and directly impact the immune cell density
rate of change at the blood stream level,

τe
dZe
dt

= [sŶ − w(Ze − Zn)− P (t)]Ze (4)

where Zn represents the nominal immune cell density at
the bloodstream compartment in the absence of tumor cells
and immune suppression drugs. Such a parameter indicates a
minimum immunization cell density at the bloodstream level
during normal conditions. The time constant τe is on the
order of 50hr, typical for the time required by CPA to impact
the immune system. The average infected cell fraction Ŷ is
used in the place of the local fraction Y to account for an
overall effect of the infected cells on the immunization sys-
tem generation. A more complete mechanism should include
the recognition and amplification of the immune system cells
in the bloodstream due to the presence of infected tumor
cells. Nevertheless, such a mechanism has been significantly
simplified to compare the models presented in this paper
using equivalent generation and suppression parameters.

C. Equilibrium Conditions

The equilibrium condition expressions based on the irri-
gation model for Z(R) = Ze are given by:

Ȳ =
V̄ (wγ − k0P + k0wZn)

wδ − k0sV̄
(5)

Z̄ = Z̄e (6)

Z̄e =
sV̄ γ − Pδ + wZnδ

wδ − k0sV̄
(7)

where,

V̄ = (λ− F̄ )/β (8)

X̄ =
Ȳ (kZ̄ + δ + F̄ )

βV̄
(9)

N̄ = 1− X̄ − Ȳ (10)

The condition F̄ = 0 provides the following quadratic
polynomial form in terms of P ,

aP 2 + bP + c = 0 (11)

where the polynomial coefficients are given by

a = kk0βδ(λ+ µ)
b = −k(2k0wZnβδ + wβγδ + k0sγλ)(λ+ µ) +

k0(−wβδ + k0sλ)(λµ+ δ(λ+ µ))
c = −k0

2s2λ2µ+ w2βδ(−βδµ+ γ(λµ+ δ(λ+ µ)))+

swλ
(
kγ2(λ+ µ)− k0(−2βδµ+ γ(λµ+ δ(λ+ µ)))

)
The substitution of the parameter values of Table I in the
expressions above give

a(β) = 0.005143β (12)
b(β) = −0.6102(β − 0.137) (13)
c(β) = −2.95(β − 7.7014)(β − 0.3181) (14)

The Static Line (SL) in Fig.(2) represents the solution of
the quadratic polynomial in Eq.(11) for different β. Points
to the right of SL (F̄ < 0) define treatment conditions in
which the tumor shrinks in time, while the region to the left
of SL (F̄ > 0) represents treatment conditions for tumor
enlargement. Points { A, B, C } show the progress from
tumor enlargement (F̄ = 0.5) to tumor reduction (F̄ = −0.5)
by increasing β and keeping P = 4. Point B is at the SL and
represents the response for β = 6.88, which makes the tumor
reach a constant radius R̄ 6= 0 after several days of treatment.
The assumption of a nominal density Zn > 0 increases
the requirements for larger β in the irrigation model, as is
demonstrated in Section IV.

III. SIMULATION RESULTS

The dynamic responses for the tumor radius at points { A,
B, C } in Fig.(2) are illustrated in Fig.(3). Although these
points share the same immune suppression drug delivery,
their β values of { 5.61, 6.88, 8.694 } make the responses
significantly different. The addition of the bloodstream com-
partment in the irrigation model increases the time required
for the CPA dose to affect the immune system, which will
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Fig. 2. Static Line (SL) for the irrigation model as a function of the
infection rate parameter, β. Point A is at the left of SL, which indicates
tumor enlargement. The contrary occurs at the right of SL (point C), where
the tumor shrinks after some hours of treatment. Points at the SL (like point
B) prevent tumor enlargement by keeping the tumor size constant after days
of treatment.

eventually improve the virus replication. A delay term was
introduced in the diffusion model presented by Tao [20] to
account for the length of time it takes for P to have an
effect in the immune system, Z. The irrigation model takes
into account such an effect by bringing the generation and
attenuation of the immune system to a blood compartment.

Fig. 3. Tumor radius dynamic responses at points { A, B, C } of Fig. (2).

Stability analysis for the cell fraction dynamics is achieved
by linearizing the irrigation model around feasible equilib-
rium conditions. Figure 4 shows negative real part eigenval-
ues for the linearized system along the feasible range of β.
Such a result indicates stable dynamic responses along SL. A
complex pair of eigenvalues is also present in the irrigation
model, which makes the response oscillate as shown in
Figure 3.

Stable dynamic responses indicate that Eqs. (5) to (7)
provide stable cell equilibrium fractions and immune system
density. Figure 5 illustrates such steady state values for SL.
Controllability conditions were verified along SL. Further-
more, the immune cell density in the blood stream (Ze) can
be measured and used to estimate the remaining states in
the irrigation model. Using this measurement, the remaining
states proved to be observable along SL. This result indicates

Fig. 4. Eigenvalues (real part) for the linearized model around points along
the SL in Figure 2.

Fig. 5. Tumor cell steady state fractions for the irrigation model along SL.

the potential use of Ze measurements to estimate the tumor
cells’ fractions in order to find an optimal treatment.

The next section compares the proposed immune cell
migration model based on the virotherapy treatment effect
on the cancer growth.

IV. VIROTHERAPY MODEL COMPARISON

The different model assumptions may impact the predicted
success of virotherapy. Therefore, it is important to compare
them in order to determine which assumption gives the most
beneficial result based on the following treatment aspects:

• The relative location of the Static Lines, which de-
termines the amount of CPA required to avoid tumor
growth for a given β.

• The dynamic response time, which establishes the re-
sponse time for treatment progress.

• The reduction of metastasis risk, which determines the
chances of cancer propagation in other areas of the host
body.

The comparison will determine optimistic and pessimistic
predictions for tumor treatment. Furthermore, the fact that
convection, diffusion and irrigation models share equivalent
model parameters helps to determine the effect of the dif-
ferent immune system cell migration in the effectiveness of
cancer treatment.
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A. CPA Dose Requirements

A consistent way to compare the immune suppressive drug
requirement for the different models is by plotting the static
lines of each model on the same graph. Figure 6 illustrates
how the SL of the convection model tends to require larger
doses of CPA than in the diffusion and irrigation models.
These last two models have a very similar SL profile shifted
by a constant value ∆β = 0.22. Such a small difference is
due to the nominal immune suppressive drug density in the
blood stream, Zn = 0.06.

Low CPA doses for the diffusion model indicate that the
immune suppression drug is more effective when the immune
system cells migrate by a diffusion mechanism. The immune
cell diffusivity Dz was made two orders of magnitude lower
than the virus diffusivity coefficient, Dv . Such an assumption
is in accordance with Tao [20], but might have reduced
drastically the effectiveness of the immune system for the
diffusion model.

Fig. 6. Comparison of the convection, diffusion and irrigation Static Lines.

In terms of the shape of the P (β) function that defines
the SL plots, the diffusion and irrigation lines have steeper
profiles than the convection one. Steep SL profiles indicate
that the same ∆β results in larger changes in P for the diffu-
sion and irrigation models when compared to the convection
model. Such a characteristic makes the cancer more difficult
to control under the diffusion and irrigation models than with
the convection model.

B. Treatment Response Time

Treatment response time is related to the effectiveness of
virotherapy in reducing the tumor size. For that reason, a
treatment point to the right of SL is considered for all three
models. The treatment point under consideration is given by
β = 7 and P = 8 as it lies to the right of the SL for all three
models. Such a condition allows comparison of radial size
reduction using the same infection rate and drug delivery.
Figure 7 shows the phase diagram for all three models with
time stamp locations for 100, 500, 1000 and 1500 hours of
treatment. The colored dots used for each model tend to be
close to each other at every time stamp considered in the
figure. Nevertheless, differences can be appreciated, and the
diffusion model shows the most favorable progress in tumor
reduction size. It is important to mention that even though

the equilibrium region seems to represent a small portion of
the response in the phase diagram, it becomes more than half
of the virotherapy treatment in time domain because the last
750 hrs of therapy occur inside the equilibrium region.

Fig. 7. Phase diagram comparison for the convection, diffusion and
irrigation models with time stamp locations of 100, 500, 1000 and 1500
hours of treatment. Equilibrium conditions are achieved after 750 hrs of
treatment.

C. Risk of Metastasis

The risk of having metastasis is proportional to the fraction
of uninfected tumor cells, X . Therefore, it is important to
keep this fraction low during treatment and reduce oscilla-
tions that could spark metastasis. The equilibrium fractions
provide the final values for the fraction X , while phase dia-
grams are useful to determine the magnitude of the response
oscillations that are detrimental for cancer propagation.

Figure 8 compares X̄ for the different models along SL.
The equilibrium fractions of uninfected cells seem to be
lowest for the convection model along SL. Irrigation and
diffusion models share the same equilibrium fractions be-
cause the equations that describe their equilibrium conditions
are similar. Furthermore, the larger β is, the larger X̄ is for
the irrigation and diffusion models. The contrary happens in
the convection model, where large β values provide lower
X̄ . Therefore, the convection model gives more favorable
results to prevent metastasis than the diffusion and irrigation
models.

Fig. 8. Uninfected equilibrium fraction for the convection, diffusion and
equilibrium models along SL.
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A second way to determine the effectiveness of the
virotherapy in reducing metastasis is by looking at the
oscillations in the phase diagram defined by X̂(t) vs. R(t).
Figure 9 shows that the tumor radius under the convection
model has the slowest initial response to the treatment
because it goes well above the tumor initial radius of 2mm.
Nevertheless, the treatment is very effective at reducing X̂(t)
as soon as the virotherapy starts for all three models. The
largest oscillation occurs for the irrigation model at close
to 250 hrs of treatment, where X̂(t) reaches values above
0.65. Therefore, the irrigation model tends to predict larger
chances of metastasis that the other two models.

Fig. 9. X̂(t) vs. R(t) phase diagram comparison for P = 8 and β = 7.
The irrigation model predicts large oscillations in X̄ .

V. CONCLUSIONS

An irrigation model is developed in this paper to account
for the effect of the innate bloodstream compartment. This
blood compartment is where generation and consumption of
immune cells occurs, and it interacts with the tumor cells
by means of irrigation layers. Such layers are distributed
along the spheroidal tumor and partitions it into shells.
This model scheme permits the application of the immune
suppression drug as well as the measurement of the immune
cell density at the bloodstream level. Such aspects provide a
realistic view of the virotherapy treatment estimation and
control, where the drug delivery takes the place of the
manipulated variable and the immune system cell density
represents the measured variable. Stability, controllability
and observability properties were verified in a linearized
model around equilibrium points.

Convection, diffusion and irrigation models were com-
pared to determine the effect of virotherapy treatment un-
der the different model assumptions. There is no major
discrepancy among the models, as these adjust accordingly
to experimental data collected from animal labs. However,
the irrigation model accounts for possible adjustable and
measurement variables taken at the bloodstream level, which
allows continuous monitoring and control action. Advanced
control techniques should account for constraints related
to the maximum drug concentrations allowed in the blood
circulation system as well as minimum acceptable levels
of immune system density. This last constraint should be

strongly enforced to avoid the proliferation of harmful in-
fections during cancer treatment.
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