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Abstract— Dirac structures are used to mathematically for-
malize the power-conserving interconnection structure of phys-
ical systems. For finite-dimensional systems several represen-
tations are available and it is known that the composition
(or interconnection) of two Dirac structures is again a Dirac
structure. It is also known that for infinite-dimensional systems
the composition of two Dirac structures may not be a Dirac
structure.

In this paper, the theory of linear relations is used in the
first instance to provide different representations of infinite-
dimensional Dirac structures (on Hilbert spaces): an orthogo-
nal decomposition, a scattering representation, a constructive
kernel representation and an image representation. Some links
between scattering and kernel/image representations of Dirac
structures are also discussed. The Hilbert space setting is large
enough from the point of view of the applications. Further,
necessary and sufficient conditions (in terms of the scattering
representation and in terms of kernel/image representations)
for preserving the Dirac structure on Hilbert spaces under
the composition (interconnection) are also presented. Complete
proofs and illustrative example(s) will be included in a follow
up paper.

I. INTRODUCTION

Port-based modeling leads to port-Hamiltonian systems

which are defined with respect to a geometric struc-

ture, called Dirac structure (see [2] and the references

therein). The study of power conserving interconnections

of port-Hamiltonian systems makes use of the intercon-

nection of Dirac structures (up to a certain extent). For

finite-dimensional systems it is known that the composi-

tion or interconnection of two Dirac structures is again

a Dirac structure. It is also known that for infinite-

dimensional systems this is not always the case (see

[8] for a counterexample). During the last years efforts

have been made towards understanding of the Dirac struc-

tures and their composition for infinite-dimensional systems

(see [8],[10],[9],[11],[16],[24],[25],[17],[27]). A mathemat-

ical formulation of the interconnection structure in Hilbert

spaces and some properties have been presented for the

first time in [10]. The reasons to study Dirac structures on

Hilbert spaces was twofold. The Hilbert spaces are generally

enough to cover a large class of physical systems and they

offer enough tools for analyzing such systems. Necessary
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and sufficient conditions for the composition of two infinite-

dimensional Dirac structures to be again a Dirac structure

have been identified for the first time (independently) in [16]

and [24] and the connection with the Redheffer star product

has been also remarked.

The investigation of Dirac structures on Hilbert spaces

and their composition has been continued in [17]. However,

the very closed connection between Dirac structures and

linear relations on Hilbert spaces deserves (in our opinion)

more attention and this is the starting point of the analysis

presented in this paper. After a preliminary section, the focus

will be on different representations of Dirac structures on

Hilbert spaces. It will be first shown in Section III that a

Dirac structure can be orthogonally decomposed into three

”elementary” Dirac structures. Using techniques from linear

relations, a scattering representation (different from the one

used in [17]) is then provided in Section IV. In Section

V, kernel and image representations of Dirac structures

on Hilbert spaces are derived; the kernel representation is

constructive. Necessary and sufficient conditions for pre-

serving the Dirac structures under composition are provided

in Section VI: one set of two conditions in terms of the

scattering representation and another set of two conditions

in terms of the kernel/image representations. The paper ends

with a concluding section.

II. PRELIMINARIES

A. Linear relations on Hilbert spaces

A linear relation from a Hilbert space F to a Hilbert space

E is a linear subspace A of the Cartesian product F ×E . The

following self-explanatory notions domain, range, kernel,

and multi-valued part of A will be used throughout the paper:

domA = { f ∈ F : ( f ,e) ∈ A},

ranA = {e ∈ E : ( f ,e) ∈ A},

kerA = { f ∈ F : ( f ,0) ∈ A},

mulA = {e ∈ E : (0,e) ∈ A}.

The formal inverse A−1 is defined as A−1 = {(e, f ) : ( f ,e) ∈
A}; it is a linear relation from E to F . Observe the following

formal identities domA−1 = ranA and kerA−1 = mulA.

For relations A1 and A2 from F to E , the operator-like

sum A1 +A2 is the relation from F to E defined by

A1 +A2 = {( f ,e1 + e2) : ( f ,e1) ∈ A1,( f ,e2) ∈ A2 },
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Now let A and B be linear relations from F to E and

from E to H , respectively. Then the product of B and A is

the linear relation BA from F to H defined by

BA= {( f ,h)∈F ×H : ( f ,e)∈A, (e,h)∈B for some e∈E }.

This definition agrees with the usual one for operators.

The relation A is closed if it is closed as a subspace of

F ×E ; the closure of the relation A is the closure of the

subspace A in F × E . If A is closed then the subspaces

kerA and mulA are closed. A linear relation A is the graph

of an operator if and only if mulA = {0}. In the present

context a linear operator A from F to E is identified with

its graph. It is said to be closable if its closure is the graph

of an operator.

The adjoint of a linear relation A from F to E is the

closed linear relation A∗ from E to F defined by

A∗= {(e′, f ′)∈E ×F : 〈 f ′ | f 〉F = 〈e′ | e〉E for all ( f ,e)∈A}.

Observe that (A−1)∗ = (A∗)−1, so that (domA)⊥ = mulA∗

and (ranA)⊥ = kerA∗. Clearly the double adjoint A∗∗ is the

closure of the relation A. A linear relation A in a Hilbert

space E (i.e., from E to E ) is said to be skew-symmetric if

A ⊂−A∗, and a linear relation A in a Hilbert space E is said

to be skew-adjoint if A∗ = −A (so that it is automatically

closed).

B. Dirac structures on real vector spaces

Let F and E be real vector spaces whose elements are

labeled as f and e, respectively. We call F the space of flows

and E the space of efforts. The space B = F ×E is called

the bond space and an element of the space B is denoted by

b = ( f ,e). The spaces F and E are power conjugate. This

means that there exists a map

〈· | ·〉 : E ×F → R

called the power product such that it is linear in each

coordinate and it is not degenerate.

Using the power product we define a symmetric bilinear

form

≪ ·, · ≫: B×B → R

defined by

≪ ( f 1
,e1),( f 2

,e2)≫= 〈e1 | f 2〉+ 〈e2 | f 1〉,

for all ( f 1
,e1),( f 2

,e2) ∈ B. We have the following imme-

diate relation between the power product and the bilinear

form

〈e | f 〉=
1

2
≪ b,b ≫

for all b = ( f ,e) ∈ B.

We recall the notions of a Tellegen structure (known also as

power-conserving structure).

Definition 2.1 (Tellegen structure): Let Z be a subspace

of the vector space B. We say that Z is a Tellegen structure

on B if

〈e | f 〉 = 0, ∀ ( f ,e) ∈ Z .

We denote Z [⊥] the orthogonal complement of Z with

respect to the bilinear form ≪ ·, · ≫

Z
[⊥] := {b ∈ B |≪ b, b̃ ≫= 0, ∀ b̃ ∈ Z }.

Remark 2.1: Let Z be a subspace of the vector space

B. Then Z is a Tellegan structure on B if and only if

Z ⊆ Z [⊥]
.

We focus on a special class of Tellegan structures called

Dirac structure.

Definition 2.2 (Dirac structure): Let D be a subset of B.

We say that D is a Dirac structure on B if

D = D
[⊥]

.

It is important to mention that for finite-dimensional

spaces a Dirac structure is a Tellegan structure of maximal

dimension.

C. Dirac structures on Hilbert spaces

In [9], [10], Dirac structures on Hilbert spaces were

defined. For infinite-dimensional Hilbert spaces one can also

approach the analysis of Dirac structures using Krein spaces

which are not Pontryagin spaces. However, in this paper tools

from operator theory and functional analysis will be used to

study Dirac structures in Hilbert spaces.

Let E and F be two Hilbert spaces, called the space

of efforts and the space of flows, respectively. Furthermore,

assume that there exists a unitary operator rE ,F from E to F .

The product space F ×E equipped with the usual Hilbert-

space inner product:

〈( f1,e1) | ( f2,e2)〉F⊕E = 〈 f1 | f2〉F + 〈e1 | e2〉E , (1)

where f1, f2 ∈ F , e1, e2 ∈ E is called the Hilbert space

F ⊕E .

Define a indefinite inner product on F ×E , by:

[( f1,e1) | ( f2,e2)]B = 〈 f1,rE ,F e2〉F + 〈e1,rF ,E f2〉E . (2)

The Cartesian product F × E equipped with the inner

product [· | ·]B is called the bond space B. For a linear space

L ⊂ B the orthogonal complement L [⊥] of L is defined

by:

L
[⊥] = {b′ ∈ B, [b | b′]B = 0, ∀b ∈ L }. (3)

It is easily seen that for any linear subspace L of B one

has:

L
[⊥] =

(

0 rE ,F

rF ,E 0

)

(L ⊥), (4)

where L ⊥ denotes the orthogonal complement of L with

respect to the scalar product (1). Therefore any orthogonal

complement will be closed, and B[⊥]= {0}. The last equality

shows that the bond space is non-degenerate.

Definition 2.3: Let E and F be the spaces of efforts and

flows, respectively, and let B the associated bond space and

let D be a linear subspace of B. D is said to be a Tellegen

structure on B if D ⊂ D [⊥] and D is said to be a Dirac

structure on B if D = D [⊥].

Lemma 2.1: Let D be a subspace of B. Equivalent are:

(i) D is a Tellegen structure;
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(ii) [d1,d2]B = 0 for all d1, d2 ∈ D ;

(iii) [d,d]B = 0 for all d ∈ D .

Lemma 2.2: Let D be a Tellegen structure. Then:

(i) kerD ⊂
(

ran(rE ,FD)
)⊥

= ker(rE ,FD)∗;

(ii) mulD ⊂
(

rF ,E (domD)
)⊥

.

Proof: (i) Let f1 ∈ kerD , so that ( f1,0) ∈ D . Then

[( f1,0) | ( f2,e2)]B = 0 for all ( f2,e2) ∈ D , so that

〈 f1,rE ,F e2〉F = 0 for all e2 ∈ ranD . This shows that f1 ⊥

ran(rE ,FD) and the inclusion kerD ⊂
(

ran(rE ,FD)
)⊥

fol-

lows. The well known identity (ranT )⊥ = kerT ∗ for any

linear relation T (see for instance [1]) leads to the latter

identity in (i).
(ii) Assume now that e1 ∈ mulD so that (0,e1) ∈ D .

Then 〈e1 | rF ,E f2〉E = 0 for all f2 ∈ domD . Thus e1 ⊥

rF ,E (domD), and the inclusion mulD ⊂
(

rF ,E (domD)
)⊥

follows. �

Lemma 2.3: Let D be a Dirac structure. Then the inclu-

sions in Lemma 2.2 become equalities.

Lemma 2.4: Let L be a linear subspace of B. Then:

L
[⊥] =

(

0 −rE ,F

rF ,E 0

)

(L ∗)−1
. (5)

Proof: It follows from the definition of the adjoint relation

that

(L ∗)−1 =

(

IF 0

0 −IE

)

(L ⊥), (6)

so that

L
⊥ =

(

IF 0

0 −IE

)

(L ∗)−1
. (7)

A combination of (4) and (7) leads to (5). �

Lemma 2.5: (i) D is a Tellegen structure if and only if

D ⊂

(

0 −rE ,F

rF ,E 0

)

(D∗)−1;

(i) D is a Dirac structure if and only if

D =

(

0 −rE ,F

rF ,E 0

)

(D∗)−1
.

Remark 2.2: In the sense of the product of linear relations

the conditions in Lemma 2.5 can be stated as follows:

a) D is a Tellegen structure if and only if D ⊂
−rF ,E D∗rF ,E ;

b) D is a Dirac structure if and only if D =−rF ,E D∗rF ,E .

Remark 2.3: In the case E = F a Tellegen structure is

nothing but a skew-symmetric structure in the Hilbert space

E , while a Dirac structure is a skew-adjoint structure in the

same Hilbert space E .

III. AN ORTHOGONAL DECOMPOSITION

OF DIRAC STRUCTURES

It will be shown that any Dirac structure can be orthogo-

nally decomposed into three ”elementary” Dirac structures.

The following example offers a class of Dirac structures.

Example 3.1: Let E be a Hilbert space and let A be a

skew-adjoint (unbounded in general) operator from dom A⊆
E to E , that is

〈Ax | y〉+ 〈x | Ay〉= 0,

for all x, y ∈ dom A = dom A∗. Then the graph of A,

G (A) = {(x,Ax) : x ∈ dom A}

is a Dirac structure. Indeed, the definition of a skew-adjoint

operator leads to

(G (A))[⊥] = G (−A)∗ = G (A),

so that the conclusion follows.

Three classes of Dirac structures are introduced in the

sequel

1) Completely multivalued Dirac structures which are of

the form

Dmul = {(0,e) : e ∈ E };

2) Completely kernel Dirac structures which are of the

form

Dker = {( f ,0) : f ∈ F};

3) Completely skew-adjoint Dirac structures which are

determined by the graphs of injective skew-adjoint (not

necessarily bounded) operators from F to E .

It can be easily seen that the linear subspaces of type (1.)

and type (2.) are Dirac structures, while Example (3.1) shows

that the linear subspaces of type (3.) are Dirac structures as

well. These particular Dirac structures are called fundamental

Dirac structures. Under some conditions it can be shown that

a Dirac structure can be decomposed as an orthogonal sum

of the previous introduced fundamental Dirac structures. The

idea of the construction of such decomposition is as follows.

Define the linear subspace Dmul = D ∩ ({0}×E ) in B and

the linear subspace Emul = {e∈ E : (0,e)∈D} in E . Clearly,

they are closed in B and in E , respectively. Let E1 be the

orthogonal complement of Emul in E , so that E = Emul ⊕E1.

Now define in F the linear subspace Fmul as

Fmul = { f ∈ F : 〈rE ,F e | f 〉= 0, ∀e ∈ E1},

and then it is easy to see that Fmul has an orthogonal

complement F1 in F . Assume now that rE ,F (Emul) =Fmul ,

so that rE ,F (E1) = F1. Therefore Dmul is a completely

multivalued Dirac structure on the bond space Bmul :=
Fmul × Emul and there exists a Dirac structure D1 on the

bond space B1 := F1 ×E1 such that

D = Dmul ⊕D1.

Furthermore, the Dirac structure D1 is the graph of a skew-

adjoint (not necessarily bounded) operator from the Hilbert

space F1 to the Hilbert space E1. Define the linear subspace

Dker = D1 ∩ (F1 × {0}) in B1 and the linear subspace

Fker = { f ∈ F1 : ( f ,0) ∈ D1} in F1. These subspaces

are closed in B1 and in F1, respectively. Let Fskew be

the orthogonal complement of Fker in F1, so that F1 =
Fker ⊕Fskew. Now define in E1 the linear subspace Eker as

Eker = {e ∈ E1 : 〈rE ,F e | f 〉= 0, ∀ f ∈ Fskew},

and then it follows that Eker has an orthogonal complement

Eskew in E1. Assume now that rE ,F (Eker) = Fker , so that

rE ,F (Eskew) =Fskew. Then Dker is a completely kernel Dirac
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structure on the bond space Bker := Fker × Eker and there

exists a Dirac structure Dskew on the bond space Bskew :=
Fskew ×Eskew such that

D1 = Dker ⊕Dskew.

Clearly, the Dirac structure Dskew is the graph of an closed

injective skew-adjoint (not necessarily bounded) operator

from the Hilbert space Fskew to the Hilbert space Eskew.

Conclude that under the assumptions imposed above, a Dirac

structure can be written down as an orthogonal sum of three

fundamental Dirac structures on the ”smaller” bond Hilbert

spaces Bmul , Bker and Bskew, respectively. Moreover, this

decomposition is given by

D = Dmul ⊕Dker ⊕Dskew,

and is comparable to the so called ”constrained input-output

representation” of a Dirac structure in finite-dimensional

spaces, see [23].

IV. A SCATTERING REPRESENTATION

OF DIRAC STRUCTURES

The scattering representation of Dirac structures for infi-

nite dimensional spaces was basically introduced in [8] (see

also [9]). For simplicity one considers the Hilbert space E

to be the scattering variable space.

For any linear subspace V of B define the linear relation

O in E by

OV = IE − 2rF ,E (V + rF ,E )
−1
. (8)

One can show that the following results hold.

Lemma 4.1: Let D be a Dirac structure on the Hilbert

space B. Then OD is a unitary operator in E .

Lemma 4.2: Let O be a unitary operator in E . Then the

linear relation

DO :=

{(

1

2
r−1
F ,E

(IE −O)e,
1

2
(IE +O)e

)

: e ∈ E

}

(9)

is a Dirac structure on B.

Lemmas 4.1 and 4.2 lead to the following characterization

of Dirac structures on Hilbert spaces.

Theorem 4.1: There exists a one-to-one correspondence

between the class of Dirac structures on the Hilbert space B

and the class of unitary operators in E .

V. THE KERNEL / IMAGE REPRESENTATIONS

OF DIRAC STRUCTURES

Let H be a Hilbert space isometrically isomorphic to E

and F . A Dirac structure D is said to be represented in

kernel representation if

D = {( f ,e) ∈ F ×E , F f +Ee = 0} (10)

for certain linear maps F : F → H and E : E → H

satisfying the conditions

FrE ,F E∗+ErF ,E F∗ = 0, (11)

ran [F E] = H , (12)

where ran [F E] stands for the closure of the range of the

operator [F E]. This definition agrees with the one in the

finite-dimensional case (see for instance [2]). Next it will be

proven that a kernel representation of a Dirac structure can

always be done.

Lemma 5.1: Let D be a Dirac structure. Then the linear

relations (D + rF ,E )
−1 and (D − rF ,E )

−1 are the graphs of

two bounded operators from E to F .

Proof: Let (e, f ) ∈ (D + rF ,E )
−1, so that ( f ,e) ∈ (D +

rF ,E ). Since ( f ,rF ,E f ) ∈ rF ,E one has ( f ,e− rF ,E f ) ∈ D .

Using Cauchy inequality one can obtain

‖ f‖ ≤ ‖e‖, (13)

for all ( f ,e) ∈ D . If e = 0 then f = 0 so that (D + rF ,E )
−1

is the graph of an operator. Furthermore, the inequality (13)

shows that the operator is bounded. Using similar arguments

it can be shown that (D−rF ,E )
−1 is the graph of a bounded

operator from E to F . �

Lemma 5.2: Let D be a Dirac structure. Then one has:

(D+rF ,E )
−1 ·(D∗+rE ,F )−1 =(D−rF ,E )

−1 ·(D∗−rE ,F )−1
.

(14)

Proof: The identity (14) is equivalent to

(D∗+ rE ,F ) · (D + rF ,E ) = (D∗− rE ,F ) · (D − rF ,E ).

By a direct computation the last identity is equivalent to the

identity D∗ = −rE ,F DrE ,F , which expresses the fact that

D is a Dirac structure. �

A. A construction for the kernel representation

Assume that D is a Dirac structure, and let ( f ,e) ∈ D .

Since ( f ,rF ,E f ) ∈ rF ,E it follows that ( f ,e+ rF ,E ) ∈ D +
rF ,E , so that (e+rF ,E , f ) ∈ (D+rF ,E )

−1. This implies that

(D + rF ,E )
−1(e+ rF ,E ) = f , so that

(D + rF ,E )
−1e+(D + rF ,E )

−1rF ,E f = f . (15)

Similarly one gets:

(D − rF ,E )
−1e− (D − rF ,E )

−1rF ,E f = f . (16)

Define now the operators E and F by:

E = (D + rF ,E )
−1 − (D − rF ,E )

−1
, (17)

and by:

F = [(D + rF ,E )
−1 +(D − rF ,E )

−1]rF ,E . (18)

Take H = F . Clearly, E and F are bounded everywhere

defined linear operators E ∈ [E ,F ] and F ∈ [F ]. Using the

operators E and F , a combination of (15) and (16) leads to

the representation (10).

In order to prove (11) one remarks that

E∗ = (D∗+ rE ,F )−1 − (D∗− rE ,F )−1
,

and

F∗ = rE ,F · [(D∗+ rE ,F )−1 +(D∗− rE ,F )−1].

Using the obvious identity rE ,F ·rF ,E = I and (14), one gets

(11) by a direct computation. Finally, one can show that (12)
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holds, and so the construction of the kernel representation has

been done. We call this kernel representation the ”canonical

kernel representation” of D .

B. The image representation of a Dirac structure

It follows from (10) and (11) that D can be also written

in image representation as

D = {( f ,e) ∈ F ×E , f = rE ,F E∗h, e = rF ,E F∗h, h ∈ H }

or equivalently:

D = {(rE ,F E∗h,rF ,E F∗h), h ∈ H }. (19)

C. The links between scattering and kernel/image represen-

tations of Dirac structures

Assume that D is a Dirac structure and let O its canonical

scattering operator, and (E,F) its canonical kernel/image

representation. It follows from (8) that

(D + rF ,E )
−1 =

1

2
rE ,F (IE −O). (20)

Simple computations leads to the following identity:

(D − rF ,E )
−1 =

1

2
rE ,F (O−1 − IE ). (21)

Using now (17) and (18) it is easily seen that:

E =
1

2
rE ,F (2IE −O−O

−1), (22)

while

F =
1

2
rE ,F (O−1 −O)rF ,E . (23)

Conversely, a combination of (22) and (23) implies that

O = IE − rF ,E E − rF ,E FrE ,F , (24)

and

O
∗ = O

−1 = IE − rF ,E E + rF ,E FrE ,F . (25)

VI. COMPOSITION OF DIRAC STRUCTURES VIA

KERNEL/IMAGE REPRESENTATION

In this section the concept of the composition of Dirac

structures is briefly studied via kernel/image representation.

In order to define the composition, one needs two Dirac

structures which have a joint pair of variables that can be

used for interconnection. Hence one assumes that the efforts

and flows of both Dirac structures can be split into a proper

pair and a joint pair. More precisely, the following definition

is used:

Definition 6.1: Assume that the spaces of efforts and

flows are decomposed as E = E1 ⊕E2, F =H = F1 ⊕F2,

and that there exist unitary mappings rEi,Fi
from Ei onto Fi,

i = 1, 2. A linear subspace D ⊂ B = (F1 ⊕F2)× (E1⊕E2)
is called a split Tellegen structure (split Dirac structure) if it

is a Tellegen structure (Dirac structure, respectively), with

rE ,F =

[

rE1,F1
0

0 rE2,F2

]

.

Furthermore, the way of composing two Dirac structures is

given as follows:

Definition 6.2: Let Fi and Ei, i= 1, 2, 3 be Hilbert spaces

and let DA ⊂ (F1 ⊕F2)×(E1⊕E2) and DB ⊂ (F2 ⊕F3)×
(E2 ⊕E3) be two split Tellegen or Dirac structures. Then the

composition DAoDB of DA and DB (through F2 × E2) is

defined by:

D
AoD

B = {( f1, f3,e1,e3) : (26)

( f1, f2,e1,e2) ∈ D
A
, (− f2, f3,e2,e3) ∈ D

B}
If DA and DB in (26) are split Tellegen structures, then their

composition is a split Tellegen structure with

rE ,F =

[

rE1,F1
0

0 rE3,F3

]

.

We refer to [25], [24], [16], [17] for further details. Consider

now the corresponding scattering operators:

O
A =

[

OA
11 OA

12

OA
21 OA

22

]

: E1 ⊕E2 → E1 ⊕E2,

and

O
B =

[

OB
22 OB

23

OA
32 OB

33

]

: E2 ⊕E3 → E2 ⊕E3.

Consider also the kernel/image operators

EA =

[

EA
11 EA

12

EA
21 EA

22

]

: E1 ⊕E2 → F1 ⊕F2,

and

FA =

[

FA
11 FA

12

FA
21 FA

22

]

: F1 ⊕F2 → F1 ⊕F2.

corresponding to the Dirac structure DA, and the ker-

nel/image operators

EB =

[

EB
22 EB

23

EB
32 EB

33

]

: E2 ⊕E3 → F2 ⊕F3,

and

FB =

[

FB
22 FB

23

FB
32 FB

33

]

: F2 ⊕F3 → F2 ⊕F3,

corresponding to the Dirac structure DB.

For unitary operators OA and OB, denote by OA
⋆OB

the Redheffer star product of them (see for instance [26],

[6]). One also needs the following bounded linear operators,

defined on appropriate spaces:

(EF)1
23 = EA

22rF2,E2
EB

23 +FA
22EB

23 −EB
23,

(EF)2
23 = EA

22rF2,E2
FB

23 +FA
22FB

23 −FB
23,

(EF)1
21 = EA

21 +FA
21rE1,F1

.

(EF)1
22 = EA

22rF2,E2
EB

22 +FA
22EB

22 −EA
22 −EB

22,

(EF)2
22 = EA

22rF2,E2
EB

22 +FA
22FB

22 −FA
22 −FB

22,

(EF)
1(∗)
12 = EB∗

22 rE2,F2
EA∗

12 +EB∗
22 FA∗

12 −EA∗
12 ,

(EF)
2(∗)
12 = FB∗

22 rE2,F2
EA∗

12 +FB∗
22 FA∗

12 ,

(EF)
1(∗)
33 = EB∗

33 + rF3,E3
FB∗

33 .

The main result of this section is a complete characteri-

zation of the case when DAoDB is a Dirac structure. More

precisely, the following result holds true:
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Theorem 6.1: Let DA and DB be split Dirac structures

on (F1 ⊕F2)× (E1 ⊕ E2) and on (F2 ⊕F3)× (E2 ⊕ E3),
respectively. Let OA and OB be corresponding scattering op-

erators, and let (EA
,FA) and (EB

,FB) be the corresponding

kernel/image operators. The following four statements are

equivalent

(i) DAoDB is a split Dirac structure on (F1⊕F3)×(E1⊕
E3);

(ii) OB ∗OA is a unitary operator in E1 ⊕E3;

(iii) The following two conditions hold true:

ran
[

O
A
21 | O

A
22O

B
23

]

⊂ ran(OA
22O

B
22 −IE2

)

and

ran
[

O
B∗
22 O

A∗
12 | OB∗

32

]

⊂ ran(OB∗
22 O

A∗
22 −IE2

)

(iv) The following two conditions hold true:

ran
[

−rF2,E2
(EF)1

21 | rF2,E2

(

(EF)1
23 +(EF)2

23rE3,F3

)]

⊂ ran
(

rF2,E2

(

(EF)1
22 +(EF)2

22rF2,E2

))

ran [
(

(EF)
1(∗)
12 + rF2,E2

(EF)
2(∗)
12

)

rE1,F1

| IE3
− (EF)

1(∗)
33 rE3,F3

]

⊂ ran
((

(EF)
1(∗)
22 + rF2,E2

(EF)
2(∗)
22

)

rE2,F2

)

Proof: Different arguments for the proof of the equiv-

alence of (i), (ii) and (iii) can be found in [25], [24],

[16], [17]. Although a direct proof can be done (it will be

presented elsewhere), the equivalence of (i) and (iv) can be

proved by rewriting the conditions in (iii) with the help of

(24) and (25). �

VII. CONCLUSIONS

In this paper standard tools from linear relations have been

used to derive different representations for Dirac structures

on Hilbert spaces: an orthogonal decomposition, a scattering

representation, a constructive kernel representation and an

image representation. The Hilbert space setting is large

enough from the point of view of the possible applications.

The composition for Dirac structures on Hilbert spaces has

been also studied. It is known that for infinite-dimensional

systems the composition of two Dirac structures may not be a

Dirac structure ([8]). Necessary and sufficient conditions for

preserving the Dirac structure under composition of systems

have been presented. One set of conditions is in terms of

kernel/image representations. The other set of conditions is

using a certain scattering representation. The complete proofs

and illustrative example(s) will be presented in a follow up

paper.
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