
 
 

A Survey on Diagnostics Methods for Automotive Engines 
 

Javad Mohammadpour*, Matthew Franchek, and Karolos Grigoriadis 
 
 

                                            
* Dept. of Mechanical Engineering, Univ. of Houston, TX 77204; email address: jmohammadpour@uh.edu 

Abstract- Faults affecting the automotive engines can 
potentially lead to increased emissions, increased fuel 
consumption or engine damage. These negative impacts may be 
prevented, or at least alleviated, if faults can be detected and 
isolated in a timely manner. The US Federal and State 
regulations dictate that automotive engines operate with an On-
Board Diagnosis (OBD) system to enable the detection of faults 
resulting in increased emissions. In this paper, we survey and 
discuss the different aspects of fault detection and diagnosis in 
automotive engine systems. The paper aims to describe some of 
the efforts made in the academia and industry on the fault 
detection and isolation for a variety of component faults, 
actuator faults, and sensor faults in automotive engines using 
various data-driven and model-based methods. 
 

1. INTRODUCTION 
 
The basic concept of automotive On-Board Diagnostic 
(OBD) systems is to result in malfunction indicator light 
(MIL) illumination after a fault has been detected on two 
consecutive driving cycles. Pending fault codes are stored on 
the first detection and altered to “active” or “confirmed” 
codes once the MIL comes on. An error is considered to 
progress to a fault when it leads to produced emission that 
exceeds a pre-specified threshold. 

There have been a number of survey papers on 
diagnostics of automotive systems including [1-3], with a 
limited scope of topics and focus on engine subsystems. The 
present paper is the first attempt to survey the work in the 
area of fault detection and diagnostics for automotive 
engines and aftertreatment systems. The aim is to classify 
the most relevant research articles from an academic 
perspective. It should be noted that there are many patents 
issued or pending in this area that will be not surveyed in 
this paper. 

 
2. MONITORING REQUIREMENTS FOR 

AUTOMOTIVE ENGINES AND RELEVANT WORK 
 
This section details the major monitors required for 
automotive engines. For each monitor, we describe the 
purpose, what needs to be detected (i.e., “malfunction 
criteria”), and some of the recent work that address each 
monitor. It is important to note that the OBD regulation only 
requires the system to be designed and calibrated to detect a 
single component failure at the required malfunction criteria 
rather than having to detect every combination of multiple 
component degradations that can cause emissions to exceed 
the malfunction threshold (e.g., 1.5 times the standards). In 
other words, OBD is not required to take into account 
synergistic effects of multiple component failures. For 
example, when calibrating an EGR low flow fault that would 
exceed the threshold, manufacturers would be required to 
implant only a low flow fault in the EGR system and leave 
other emission control components/systems (e.g., catalysts) 
in the nominal condition. 
 

2.1. Fuel system: Manufacturers are required to detect fuel 
system faults that cause emissions to increase. The faults are 
involved in the fuel system pressure control (e.g., common 
rail fuel pressure control or hydraulic pressure control) and 
the focus is on detecting faults when the feedback system 
can no longer deliver the desired pressure. Given the critical 
importance of proper fueling for emission control, 
monitoring for properly injected fuel quantity and injection 
timing are also required. 

A fuzzy-based pattern recognition method has been 
applied in [4] for real-time detection of fuel injection system 
faults in a diesel engine. The fuel system health diagnosis 
system consists of a piezoelectric pressure sensor to measure 
fuel injection pressure patterns and a fault diagnosis 
algorithm to detect abnormal injection pressure patterns and 
identify the causes contributed to thee abnormal patterns. A 
multi-net artificial neural network (ANN)-based diagnosis 
algorithm was proposed in [5-6] to detect a leaking fuel 
injector nozzle in a diesel engine, where it only used a 
pressure transducer. Nonlinear estimators using a 
sufficiently accurate model of powertrain system of an SI 
direct injection engine are designed by Lee et al. [7] to 
detect different actuators faults including high-pressure fuel 
injectors. Recently, Schilling et al. [8-9] developed a system 
to detect and isolate faults due to aging of the air and fuel 
path of common-rail direct injected diesel engines using an 
algorithm based on the information obtained from lambda 
(air-to-fuel ratio) and NOx emissions sensors. Faults 
corresponding to quantity of the injected fuel, mass air flow 
(MAF) and manifold pressure (MAP) sensors are taken into 
account to explain discrepancies in the expected lambda 
and/or NOx measurements. The fault detection method of the 
latter papers is model-based and uses a bank of extended 
Kalman filters; it is the first work reported to use emission 
sensors for fault detection purposes in diesel engines. 
 Payri et al. [10] proposed a diagnosis method for the 
injection process using the rail pressure measurement. The 
authors explored and evaluated different data-driven 
techniques to detect faults in common-rail injection systems. 
Chandroth et al. proposed to use cylinder pressure and 
vibration data [11] to detect the presence of a block in fuel 
injector and poor fuel atomization by training two sets of 
ANNs and using the features extracted from the cylinder 
pressure measurements and vibration amplitudes. 
 
2.2. Misfire and Knock monitoring: For the 2010 to 2012 
model years, manufacturers are required to detect 
malfunctions that cause a complete single cylinder misfire 
(e.g., one cylinder completely dead). For the 2013 and 
subsequent years, misfire monitoring will be required to be 
performed continuously (under all loads and speeds) and to 
look for lower levels of misfire (a cylinder or combination of 
cylinders that are intermittently misfiring) rather than just 
monitoring for a complete dead cylinder only at idle. 
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2.2.1. Misfire detection: Engine misfire detection is an 
important element of OBD systems since engine misfire can 
induce an increasing level of exhaust emissions and 
simultaneously damage the catalytic converter. Many 
methods have been proposed in the literature to address this 
problem including algorithms based on variation in engine 
shaft angular speed (also acceleration and torque), spark-
plug voltage [12], oxygen sensor signal [13], knowledge-
based expert system, and neural networks. 

The first approach for misfire detection is based on the 
evaluation of the instantaneous angular velocity signal 
without using an engine model. These methods evaluate the 
characteristics of the time-domain, angular-domain or 
frequency-domain engine speed signal. The extracted 
features are then used to detect misfire through simple 
threshold check or more complex decision-making 
algorithms (e.g., [14-18]). Most of these algorithms give 
satisfactory results at low speeds, but due to the lack of a 
proper engine model it is difficult to correct the influence of 
the inertia torque at higher engine speeds. 

The second approach is based on the use of model-
based techniques, where a dynamic engine model to estimate 
the indicated torque or in-cylinder pressure is utilized. 
Rizzoni [19] and Connolly and Rizzoni [20] proposed an 
algorithm to estimate the effective torque based on the 
deconvolution in the frequency domain. As the inertia torque 
depends on the mean angular speed, this term is added to 
obtain the indicated torque. Rizzoni [21], Kao and Moskwa 
[22], and Wang and Chu [23] proposed the use of sliding 
mode observers to estimate the indicated torque, while 
Kiencke [24] proposed a Kalman filter-based algorithm. To 
tackle the issue of high complexity of the torque-estimation 
methods discussed above, researchers have tried to improve 
the real-time implementability and its use for on-line misfire 
detection [25-26]. 

Energy models have been used for misfire detection by 
Tinaut et al. [27], where they define two dimensionless 
energy indices for each cylinder with the first index 
evaluating the change in kinetic energy during the 
compression stroke and the second evaluating the change in 
kinetic energy during the expansion stroke. These two 
indices collectively provide a tool to detect the fault 
condition of each cylinder. 

The methods proposed in [18, 28-29] are aimed to: (i) 
detect a missing combustion event, and (ii) classify the event 
into either misfuel event (i.e., missing injection) or misfire 
(i.e., missing ignition) using a feedback from an appropriate 
signal. A different approach to misfire detection is proposed 
in [30-32], where the authors describe new analysis 
techniques based on a wavelet approach allowing for the 
extraction of the frequency components related to a misfire 
event and its localization in the time domain. 
2.2.2. Knock monitoring: Engine knock is caused by 
spontaneous ignition of a portion of the air-fuel mixture 
during the combustion cycle. The very fast release of the 
chemical energy in the mixture results in high local pressure 
and produces a shock wave. This shock leads to the 
resonance of the combustion chamber, thus producing the 
knocking sound. Excessive knock could lead to engine 
damage, and so knock detection is a very important 
requirement for the engine control unit.  

A number of methods have been proposed to detect the 
knock phenomenon in spark ignition and internal 
combustion engines. Samimy and Rizzoni [33] used joint 
time-frequency signal processing methods to detect knock in 
internal combustion engines. The idea is based on the use of 

the relationship between the engine excitation frequency 
taking into account the combustion chamber geometry and 
speed of sound in the cylinder charge. The frequency can be 
estimated using an acoustic model of the combustion 
chamber given by Draper's equation: 

fm,n =
c0 Tηm,n

πB
     (2.1) 

where f is the resonance frequency, ηm,n is nondimensional, 
and the integers m and n refer to the radial and 
circumferential mode numbers. The parameter c0 is the 
phase velocity constant, T is the gas temperature, and B is 
the cylinder bore diameter. From (2.1), another equation is 
extracted in [33] to enable the prediction of the existence of 
frequency shifts in the knock signals suggesting that 
conventional knock detection methods employing a 
stationary signal model can be improved by applying a time-
varying signal detection method. 

In laboratory applications, the in-cylinder pressure is 
used to represent the knock characteristics. A number of 
statistical-based methods using in-cylinder pressure signal 
have been proposed in the literature as a means to determine 
the knock intensity (KI). The most commonly used KI is the 
absolute value of the peak magnitude of the filtered in-
cylinder pressure defined as KI=max|pic|, where pic is the 
band-pass filtered pressure signal. The filter cut-off 
frequencies are selected depending on the engine resonance 
frequency characteristics given by (2.1) [34]. Borg et al. [34] 
presented a method to determine the knocking condition of a 
spark-ignition engine using the discrete wavelet transform as 
a means of analyzing the engine-block vibration signal and a 
fuzzy inference scheme to generate an estimate of the knock 
intensity introduced above. Previous efforts were also made 
in detecting knock using continuous wavelet transform [30, 
35]. In addition to the wavelet transform, Fourier analysis 
has also been used for knock detection [36-37], where the 
spectral intensity of the knock resonance frequencies is used 
as the statistical test for knock determination. 
 
2.3. EGR system monitoring: The exhaust gas recirculation 
(EGR) system is required to be monitored for three primary 
failure modes: low flow, high flow, and slow response to 
achieve the desired flow. EGR is one of the primary oxides 
of nitrogen (NOx) emission control mechanisms for the 
majority of engine manufacturers, and it is critical that the 
desired flow rate is being delivered. Accordingly, most 
manufacturers utilize feedback control systems to modulate 
the EGR valve to achieve a desired flow rate. The feedback 
system usually uses a MAF sensor, and the system 
compensates for small errors to achieve the desired flow 
rate. As long as the system can provide the desired flow rate, 
emissions stay relatively low. However, when the system 
can no longer achieve the flow it needs or it takes too long to 
reach the desired recirculation flow, emissions can increase 
dramatically. For a system that is feedback controlled to an 
actual flow rate, this emission increase should not occur 
until the system is close to its control limits, e.g., cannot 
compensate and deliver the desired flow rate. In addition, the 
performance of the EGR cooler would also need to be 
monitored to ensure it has sufficient cooling capacity. 

Both data-driven and model-based methods have been 
proposed to detect faults in the EGR system. Gaussian radial 
basis function (RBF) neural networks with adaptive 
classifiers are employed in [38] to detect a stuck EGR valve 
in SI engines. A neural network-based method using Self 
Organizing Maps (SOM) was employed in [39] to detect 
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malfunctions of the EGR system of a passenger car diesel 
engine. The SOM outputs a measure of similarity to “typical 
system behavior patterns”, and for the OBD system, this 
value can be used as a metric for system anomaly detection. 
Semi-physical models (identified with local linear neural 
networks) are used in [40] to detect a leaky or stuck EGR 
valve in combustion engines, where residuals are generated 
using signal models and filters. Another diagnosis system for 
diesel engines proposed in the framework of structured 
hypothesis tests was developed to detect EGR-valve stuck in 
closed position in [41], where it was shown that this 
framework is a useful engineering tool to systematically 
design model-based diagnosis systems. Another model-
based fault detection method to identify and isolate the EGR 
valve actuator faults was proposed by making use of 
nonlinear estimators for a model of an SI direct injection 
engine in [7]. A more recent attempt to address the EGR 
system diagnostics in diesel engines was made by 
Mohammadpour et al. [42], where they developed a model-
based method (based on the standard orifice flow equation 
representing the EGR flow back to the intake manifold) to 
detect low flow and high flow faults in the EGR system. The 
proposed fault detection scheme used a recursive total-least-
squares (RTLS) method to estimate two parameters, whose 
changes were shown to be indicative of the fault type and its 
severity. 
 
2.4. Hydrocarbon and NOx catalyst monitoring: 
Oxidation catalysts located upstream the particulate matter 
(PM) filter should be monitored to help the regeneration. 
The requirement also covers monitoring of the other HC 
converting catalysts such as NOx adsorbers and selective 
catalyst reduction (SCR) catalysts. NOx catalysts including 
lean- NOx trap (LNT) catalysts and SCR catalyst systems 
should be monitored. In general, the catalyst itself would be 
monitored to make sure it has sufficient NOx conversion to 
keep emissions below a threshold while additional 
components such as the SCR injection system components 
(urea or ammonia) are monitored for proper functioning. For 
2010 to 2012 model years, the catalysts would need to be 
monitored and a fault needs to be detected when emissions 
exceed the standards by an additional 0.3 g/bhp-hr. For 
instance, for engines certified to a 0.2 g/bhp-hr standard, a 
fault would need to be detected when emissions reach 0.5 
g/bhp-hr. In 2013 models, however, the threshold will drop 
down to the standard plus 0.2 g/bhp-hr. For diagnostics 
purposes, the same NOx sensor for feedback control must be 
also used for monitoring. For non-feedback SCR systems or 
passive LNT, manufacturers are allowed to be reaching 
lower conversion efficiencies. In the following sections, we 
discuss the efforts recently made on fault diagnosis of engine 
aftertreatment system to improve the emission control 
systems efficiency. 
2.4.1. DPF system monitoring: As described in detail in 
[43], the only technology available to meet the diesel 
particulate filter (DPF) leakage monitoring requirement in 
2007 was a pressure sensor combined with a flow 
measurement. This was generally found to be of limited 
capability [44] due to little or no separation between healthy 
and damaged filters and far-reaching implications on the 
monitor frequency. The main contributing factor in the 
limited performance of the DPF diagnostics methods based 
on pressure sensors is the high tolerance caused by the 
sensor due to noise factors not measured by the engine 
control system, as well as the driving conditions under 
which the monitoring occurs. It is suggested by CARB that 

the model-based methods may result in a more accurate 
detection rather than a merely pressure sensor-based 
monitoring.  

Most DPF leakage monitors currently in production are 
based on pressure drop. The Darcy-Forchheimer equation 
driving the pressure drop across the DPF with a constant 
soot loading is give by [45]: 

2
0 1 2p a a vF a FρΔ = + +   (2.2) 

where v, F and ρ represent the kinematic viscosity of the 
exhaust gas, volumetric flow, and gas density, respectively. 
For a DPF loaded with soot, the above equation is rewritten 
as 

2
0 1 2( )p a a R soot vF a FρΔ = + +  (2.3) 

with R being the (normalized) restriction, which is a 
function of soot. The monitor detects a leakage in the DPF 
system when the pressure drop Δp is much lower than what 
the right hand side of (2.2) predicts. Note that this threshold 
depends on temperature and exhaust flow. There are many 
reasons contributing to the discrepancy between the Darcy-
Forchheimer model output and reality. These along with an 
inaccurate approximation of the model coefficients a0, a1 
and a2 estimated from experimental data, taken with 
imperfect measurement equipment, lead to a far-from-
accurate leakage detection method. The work by 
Cunningham et al. [46] provides a promising extension to 
the mean value pressure drop correlation to particulate load 
through Darcy's law that is expected to be useful for DPF 
monitoring and control. van Nieuwstadt and Brahma [43] 
investigate the ability of the model-based DPF leakage 
detection methods over the pressure sensor-based DPF 
leakage monitor, where they presented the noise factors 
entering the relevant models and a numerical evaluation to 
assess the capability of the model-based leakage monitor 
under typical ranges of the noise factors. A recent work by 
Surve [47] proposed to correlate the pre- and post-DPF 
temperature and pressure signals to define its transfer 
function characteristics for the baseline DPF behavior. 
Assessment of how these characteristics change as a result of 
a fault in DPF forms the basis of the proposed fault detection 
algorithm in [47]. The method achieved a fault detection of 
lightly failed DPF not possible by current algorithms based 
on mean value pressure drop. In fact, the main contribution 
of [47] was the extension of dynamic pressure signal 
analysis from steady-state engine operation (proposed in 
[46]) to transient operating conditions. Gheorghiu et al. [48] 
proposed to use a spark discharge soot sensor to detect the 
presence of a crack in the filter causing the filter to become 
no longer airtight. 
2.4.2. LNT system monitoring: The lean NOx trap (LNT) is 
one of the promising technologies to control NOx [49]. The 
LNT can experience performance deterioration and 
malfunctions that may go undetected. A simplified storage 
model that can be integrated into the existing control 
strategy for real-time LNT control and diagnosis was 
developed in [50] that captures the dynamics of NOx 
adsorption, reaction rate, and physical mass transfer process. 
Deactivation of the LNT catalysts is one type of fault that 
can compromise the NOx conversion efficiency if it is not 
properly monitored and compensated for. Thermal exposure 
during high load operating conditions or filter regenerations 
could also lead to the loss of activity, which is irreversible. 
Another cause of deactivation is related to the presence of 
sulfur in the fuel and lubricated oil due to the formation of 
sulfates on the catalyst surface that reduces the LNT storage 
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capacity. Therefore, the LNT catalyst degradation must be 
monitored. There have been very limited contributions to 
fault detection and isolation of LNT aftertreatment systems 
[51-54]. Recently, Canova et al. [51] used a time-varying 
nonlinear ODE model of the LNT system to generate the 
residuals using the system model, through comparison of the 
predicted and measured values of selected variables. The 
fault diagnosis method in [51] was designed to detect and 
isolate critical faults of the LNT aftertreatment system, 
including sulfur poisoning, deactivation of the catalyst 
storage sites due to thermal aging, regeneration controller 
fault, and faults in the sensors (including outlet NOx sensor 
and temperature sensor). The proposed diagnostic method is 
based on the parity equation approach and on the analytical 
redundancy.  
2.4.3. SCR system monitoring: Selective catalytic 
reduction (SCR) is a well-proven NOx reduction technology 
used in power generation for more than 30 years and 
recently in automotive diesel engines. SCR catalysts are 
considered the technology of choice for future heavy-duty 
applications, while LNTs appear to be more promising for 
passenger cars and light-duty trucks. This is due to the 
conversion efficiency, reliability and cost-effectiveness for 
regenerating the system using the onboard fuel. 

There has not been much effort on the development of 
monitoring methods for SCR systems. It is, however, noted 
that all the aftertreatment systems share a common type of 
failure which is to be monitored for: catalyst aging. 
Ammonia storage capacity is an important parameter 
directly reflecting the SCR catalyst aging. Estimation of this 
parameter is then helpful in monitoring the SCR system 
physical conditions. In [55], a simple yet effective method 
was proposed to estimate SCR catalyst ammonia coverage 
ratio and storage capacity based on an extended Kalman 
filter (EKF). In [56], a sliding mode observer was designed 
to estimate the SCR catalyst ammonia storage based on the 
measurements of NOx, ammonia and temperature, and an 
EKF was used to eliminate the NOx sensor cross-sensitivity 
to ammonia. 
2.4.4. TWC system monitoring: Modeling and control of 
three-way catalysts (TWCs) has been a widely discussed 
research topic [57]. Also, a variety of diagnostics methods 
based on the detailed thermodynamics-based modeling of 
the TWC have been developed [58]. Recently, the simplified 
models capturing TWC dynamics as an oxygen 
storage/release process have been employed for the catalyst 
monitoring purposes. Similar to other catalysts discussed so 
far, during its life, the TWC loses the storage property. The 
proposed on-line diagnosis methods in the literature based 
on the oxygen storage model aim to monitor the oxygen 
storage mechanism in order to detect the difference between 
a healthy and a deteriorated one. Let 0< θ <1 be the fraction 
of oxygen sites occupied in the catalyst, also known as 
relative oxygen level. The oxygen storage capacity is 
modeled as a limited integrator as: 

1 10.23 ( , ) (1 )
( ) FG

FG

MAF
C MAF

θ ρ λ θ
λ

= × × × × −&    (2.4) 

where MAF, C(.), ρ, and λ denote the mass air flow, 
effective catalyst capacity, oxygen exchange between the 
exhaust gas and the catalyst, and relative air-fuel ratio 
downstream the catalyst, respectively. Brandt and Grizzle 
[59] employed the above model to develop a diagnostics 
algorithm and analyzed that in the context of a hypothesis 
test based on the oxygen storage capacity of the TWC. The 
Neyman-Pearson criterion was used in [59] as the basis for 

the hypothesis test. A slightly modified version of the model 
(2.4) proposed by Fiengo et al. is used in [60] to present a 
model-based stochastic approach for TWC fault detection. 
The method first generates a “residual signal”, which is the 
difference between the measured quantity of the oxygen 
storage capacity and the estimated one using the simplified 
phenomenological model. The diagnostic algorithm then 
works on the generated signals and implements a stochastic 
analysis in order to provide a statistical confidence in the 
TWC condition. 
 
3. DIAGNOSIS OF SENSOR FAULTS AND LEAKS IN 

AUTOMOTIVE ENGINES 
 
3.1. Detection and diagnosis of engine sensor faults: 
Sensor systems are critical components in all modern 
engineering systems. These measuring systems are 
extensively used not only to obtain system operational 
information but also to determine control actions. A sensor 
fault is typically characterized by a change in the sensor 
parameters or in its operational characteristics. The detection 
and diagnosis of these undesired changes plays a critical role 
in the operation of many engineering systems, and 
automotive systems are no exception to this. The design of 
sensor fault diagnosis schemes using the hardware 
redundancy and analytical redundancy approaches have 
been addressed in the literature [61]. In the hardware 
redundancy approach, redundant sensor systems are 
incorporated into the control system to improve the 
reliability of sensor measurement and enable sensor fault 
detection; however, cost and space make this approach 
unattractive. In contrast, the analytical redundancy-based 
fault diagnosis architectures use system physics-based 
models and information processing methods to achieve the 
necessary redundancy. 

In the automotive systems literature, data-driven and 
model-based approaches have been proposed to diagnose 
different sensor faults. An early work using analytical 
redundancy method in [62] described the applicability of the 
model-based detection filters to diagnose a variety of sensor 
failures in automotive engines. UEGO sensor fault detection 
was studies in [63],[64-66]. 

In addition to UEGO sensors, throttle position (TP) [64, 
66-70], MAF sensor [41, 64-65, 67], engine speed (ES) [64, 
66, 71], and MAP sensors [41, 65-67, 69, 72-75] are among 
those extensively studied and experimented sensors to be 
monitored. Model-based and data-driven methods are also 
proposed to diagnose the ambient pressure sensors (both 
intake and exhaust) [65, 75-76]. The sensor faults are treated 
as either additive (bias term) or multiplicative uncertainties 
in model-based approaches. 
 
3.2. Detection of leaks in automotive engines 
As described in detail in [77], the detection of a leak 
particularly an air leak in the intake manifold can be difficult 
since under a range of operating conditions, the turbocharger 
wastegate inherently counteracts the fault and maintain the 
manifold boost pressure at a pre-specified level. Depending 
on the location of the leak within the intake manifold and the 
control method applied, the EGR process may be also 
affected leading to an increase in NOx emissions [77]. 

Efforts have been made to detect and diagnose different 
types of leaks in automotive engine systems. The use of 
nonlinear model-based adaptive observers to detect intake 
leaks in diesel engines is proposed by Ceccarelli et al. [78-
79], where the authors design observers with fixed gains and 
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variable gains. Vinsonneau et al. [73] also designed a 
nonlinear observer to detect the manifold leakage in SI 
engines in real-time. The idea in [73] was to model the leak 
effect on the air flow as 

0( ( , ) ( , )) ( )m
ai l m

atm

pm f N f p
p

θ θ= + Ψ&  

where the term fl represents the flow perturbation due to the 
leak. The model was obtained following the same lines as 
described next. Structured hypothesis tests (SHT) are 
employed to detect a manifold leak (a leak in the intake 
manifold) and a boost leak (a leak between air mass flow 
and throttle right after the intercooler) in SI engines [69, 80]. 
The aforementioned model-based leak detection methods 
use flow equation through a restriction, i.e., the model for 
flow past the throttle. It is noted that due to the pressure 
difference direction, the air flow through a boost leak is in 
the direction out of the air tube. The manifold leak can be 
also described in a different way noting that in this case, the 
leak air flow is in the direction into the intake manifold. The 
authors in [41, 69, 80] used the above model along with SHT 
to diagnose the leaks, whereas a simple parameter 
identification based on the above leak models is employed in 
[81-82] to detect the faults by tracking the changes in the 
estimated parameters of interest. The manifold leak model 
was added to a nonlinear state-space representation of a 
diesel engine’s air path system model, and an extended 
Kalman filter was designed to estimate the flow 
corresponding to the leak and to detect possible intake 
manifold leakage. 
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