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Abstract—This paper deals with the on-line simultaneous
estimation of frequencies, amplitudes, and phases of a pair of
sinusoidal signals with values of the frequencies that are close
to each other. The proposed nonlinear parametric identification
method is based on the interconnection of two quadrature-
based adaptive filters, originally conceived for the extraction of
a single sinusoidal signal. The distinctive feature of quadrature-
based filters, inherited by the method under consideration,
consists in performing the adaptation in a parametric space
having higher dimensions than the number of unknowns. The
stability analysis, based on two-time scale averaging arguments,
shows the existence of multiple asymptotically stable manifolds
corresponding to the simultaneous detection of the two sinu-
soidal signals.

I. INTRODUCTION

The problem of estimating the characteristic parameters
of multiple sinusoids with unknown frequencies, phases and
amplitudes has received considerable attention of researchers
in the field of signal processing (see [1], [2], [3], [4] and the
references therein), multi-tonal sound extraction and noise
attenuation (see [5], [6] and [7]), power system’s monitoring
([8], [9]), vibration suppression and control, etc..
Typically, the problem of detecting multiple sinusoids is

approached by means of the Fourier Transform, associated
to some peak detection heuristics, based on energy consid-
eration (see [1], [2], [3]). For the practical implementation
of the method, the signal is sampled in time with a suitably
small sampling period and then arrays of data are collected
for further batch elaboration. Although this technique is par-
ticularly suited for the real-time implementation (thanks to
the efficiency of Fast Fourier Transform (FFT) algorithms),
it also presents some drawbacks: the maximum dimension of
the batch window limits from above the minimum frequency
which can be accounted for by the method, while the
sampling interval introduced quantization in the frequency
domain, that is, the resolution of the frequency estimator is
affected by the sampling rate.
To overcome the quantization issue of the FFT, it has been

suggested by many authors to use a bank of single-sinusoid
estimators, each one in charge of detecting frequency, phase
and amplitude of a single component. Moreover, in many
cases, the complexity of these filters is even lower than that
of FFT. Among the various methods for frequency detection
proposed in the literature, the Kalman Filter, [10], and the
Extended Kalman Filter (EKF) have attracted increasing
interest among practitioners (see, e.g., [11]), both for the
strong theoretical basis and the ease of implementation.
Nonetheless, both the the EKF is known to be very sensitive
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with respect to its tuning parameters. In this regard, Adaptive
Notch Filtering (ANF) represents a valid alternative when
an accurate model of the process is not available (see [12],
[13] and [14]). This technique consists of a very sharp notch
whose base frequency adaptively tracks that of the input
signal.
A major issue in multiple-frequency identification with a

bank of adaptive filters in parallel is that it is possible for
two or more estimators to converge to the same frequency
value, leaving some component of the signal unaccounted
for. One of the most used techniques to overcome this issue
is the cascaded ANF (see [5] anf [15]), which has superior
performance compared to FFT in terms of computational
efficiency and convergence rate (it can be used in hardware
with limited computational resources, too). The cascade ANF
is composed of p notch filters of order 2 in series to estimate
p frequencies of p sinusoids. Each notch filter undergoes an
on-line adaptation to minimize the time-averaged norm of
the residual signal. It is worth noting that this architecture
works in practice only when the sinusoids can be sorted
hierarchically according to their amplitudes, such that the
1-st filter cancels the fundamental harmonic and so on.
Even after the full convergence, the frequency estimates of
a cascaded ANF do not perfectly settle upon fixed values,
but oscillations are observed in particular in the higher-
order modules. The presence of such limit cycles, known
as the “beating phenomena”, is due to the mutual interaction
between the estimators. Only by using some a priori infor-
mations, such that the sinusoids are harmonically related,
and which order harmonics are dominant, it is possible to
mitigate the beating effect by applying ad-hoc techniques
based on heuristic arguments.
An alternative to the cascaded ANF has been proposed by

Guo and Bodson [16] for the two-sinusoidal signals case. It
is based on a supervisory discrete-time logic which detects
those pathological situations in which the two filters converge
to the same frequency, thus forcing the separation of the two
estimates.
In this framework, we are going to describe a technique

capable to extract the characteristic parameters of a couple
of sinusoidal signals from their sum-signal in real-time,
avoiding, at the same time, the beating phenomenon. The
proposed method, compared to [16], relies on the continuous-
time dynamic decoupling of two nonlinear quadrature-based
frequency-adaptive filters (FAF), operated by a so-called de-
correlator block, while a supervisory logic is only provided
to detect the single-sinusoid case. The architecture of the
multiple-frequency estimation scheme is depicted in Fig-
ure 1, that will be explained later on. The use of nonlinear
quadrature-based filters is motivated by the robustness shown
by these estimators in facing the presence of both noise
and time-varying fundamental frequencies (see [17] and the
references therein). Moreover, the stability properties of the
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overall dynamical system emerging from the interconnection
of the nonlinear quadrature-based estimators can be analyzed
toward the equilibria by means of nonlinear averaging meth-
ods, such that it is possible to characterize the effect of the
tuning parameters on the convergence of the estimator.

The paper is organized as follows: In Section II, the
problem of two sinusoidal terms detection will be formalize
and the architecture of the estimator will be introduced.
In Section III, the stability properties of the filter will be
analyzed by means of a two-time scale averaging analysis.
Finally, in Section IV the effectiveness of the proposed
scheme will be shown through a simulation example.

II. TWO-SINUSOID DETECTION BY THE
INTERCONNECTION OF QUADRATURE-BASED FILTERS

Let us consider the following signal, consisting in the sum
of two sinusoids having unknown, but time-invariant, ampli-
tudes (A1, A2), frequencies (ω1, ω2) and phases (ϑ1, ϑ2):

v(t) = A1 sin(ω1t+ ϑ1) +A2 sin(ω2t+ ϑ2). (1)

The signal v(t) can be equivalently expressed as:

v(t) = a1 sin(ω1t+ φ1) + c1 cos(ω1t+ φ1)+
a2 sin(ω2t+ φ2) + c2 cos(ω2t+ φ2),

(2)

where the parameters ai, ci and φi, i ∈ {1, 2} verify Ai �√
a2i + c2i and φi = ϑi + δi, being

δi = acos

(
ai
Ai

)
sign(ci) (3)

the phase lag between each of the sinusoids in (1) and the
sinusoidal component of the quadrature (Fourier) represen-
tation (2). Note that for each sinusoid Ai sin(ωit + ϑi),
i ∈ {1, 2}, there are ∞ quadruplets (ai, ci, φi, ωi) in the
quadrature representation which verify the identity (1).
In the work [18], it has been shown that, for the single-

sinusoid detection case, it is possible to estimate the triplet
(A,ω, ϑ) ∈ R

3 by performing the adaptation in the higher
dimensional parameter space of the quadruplets (a, c, φ, ω) ∈
R

4 by means of a Frequency-Adaptive quadrature-based
Filter (FAF). In particular, the existence of a manifold
Ω ∈ R

4 containing asymptotically stable equilibria in the
extended parametric space has been proven, ensuring the
local stability of the filter. Moreover, a direct correspondence
has been established between the characteristic parameters of
the estimator and its convergence speed.
Next, we will consider the problem of detecting two

sinusoidal signals with different frequencies (ω1 �= ω2) , for
which A1 > 0 and A2 > 0.
Relying on the interconnection of a couple of frequency-

adaptive quadrature-based filters (denoted as FAFA and
FAFB) and on a decorrelator (see Figure 1), the proposed
method allows the complete detection of the two distinct
sinusoidal components. Considering the underlying archi-
tecture as a single parametric identification scheme for
the six unknowns (A1, ω1, ϑ1, A2, ω2, ϑ2) ∈ R

6, then the
proposed method inherits from the FAF the property of
performing the adaptation in a higher dimensional parametric
space. In this case the adaptation involves 10 variables:
the 10-plet (âA, ĉA, φ̂A, ω̂A, âB, ĉB, φ̂B , ω̂B, âC , ĉC) ∈ R

10

is expected to converge to any of the admissible 10-plets
(aA, cA, φA, ωA, aB, cB, φB , ωB, aC , cC) belonging to the

following manifolds:

ΩA,1,B,2�

⎧⎪⎪⎨
⎪⎪⎩
(aA, cA, φA, ωA, aB, cB, φB , ωB, aC , cC)∈R10:

ωA = ω1,
√
a2A + c2A = A1, φA + δA = ϑ1,

ωB = ω2,
√
a2B + c2B = A2, φB + δB = ϑ2,

aC = 0, cC = 0;

⎫⎪⎪⎬
⎪⎪⎭

ΩA,2,B,1�

⎧⎪⎪⎨
⎪⎪⎩
(aA, cA, φA, ωA, aB, cB, φB , ωB, aC , cC)∈R10:

ωA = ω2,
√
a2A + c2A = A2, φA + δA = ϑ2,

ωB = ω1,
√
a2B + c2B = A1, φB + δB = ϑ1,

aC = 0, cC = 0;

⎫⎪⎪⎬
⎪⎪⎭

which correspond to the case of complete discrimina-
tion/detection of the two sinusoidal terms. In particular,
while the two FAFs (FAFA and FAFB) are associated to
the first eight parameters, the variables âC and ĉC belong to
the decorrelator module, which is responsible for “steering”
the two FAFs to different frequencies. Next, the differential
equations governing the devised detection scheme will be
introduced and discussed.

As far as Figure 1 is concerned, letting v̂A(t), v̂B(t) and
v̂C(t) be defined as

v̂A(t) � âA(t) sin(θ̂A(t)) + ĉA(t) cos(θ̂A(t))

v̂B(t) � âB(t) sin(θ̂B(t)) + ĉB(t) cos(θ̂B(t))

v̂C(t) � âC(t) sin(θ̂C(t)) + ĉC(t) cos(θ̂C(t))

and considering the interconnections among the quadrature-
based filters and the decorrelator, the following adaptation
laws for the parameters of FAFA are proposed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂aA(t)=λ
[
sin

(
θ̂A(t)

)
v(t)−sin

(
θ̂A(t)

)
×(

v̂A(t) + v̂B(t) + μC v̂C(t)
)]

˙̂cA(t)=λ
[
cos

(
θ̂A(t)

)
v(t)−cos

(
θ̂A(t)

)
×(

v̂A(t) + v̂B(t) + μC v̂C(t)
)]

˙̂
θA(t)= μθ

˙̂
δA(t) + ω̂A(t)

˙̂ωA(t)= μω
˙̂
δA(t)

(4)

while the parameters of FAFB evolve according to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂aB(t)=λ
[
sin

(
θ̂B(t)

)
v(t)−sin

(
θ̂B(t)

)
×(

v̂A(t) + v̂B(t)− μC v̂C(t)
)]

˙̂cB(t)=λ
[
cos

(
θ̂B(t)

)
v(t)−cos

(
θ̂B(t)

)
×(

v̂A(t) + v̂B(t)− μC v̂C(t)
)]

˙̂
θB(t)= μθ

˙̂
δB(t) + ω̂B(t)

˙̂ωB(t)= μω
˙̂
δB(t)

(5)

where λ ∈ R>0, μθ ∈ R>0, μω ∈ R>0 and μC ∈ R>0 are
tuning parameters.

The intuition behind the derivation of the filter consists
in that, if FAFA and FAFB are initialized the same way,
then they both start to track the fundamental frequency
with the same adaptation transient. Then, the decorrelator
starts to extract from the output of FAFB the component in
synchronous with FAFA, re-injecting the signal with opposite
sign at the two inputs of the FAFs, which therefore are fed
with different signals.

In view of (3), the time-derivative of the phase lags
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Fig. 1 Architecture of the two-frequency detection method, consisting of two frequency-adaptive quadrature-based filters (
FAFA and FAFB) with a decorrelation module. The DecorrelatorC is responsible for “steering” the two estimated frequencies
toward different values.

FAFA

FAFB

−
+

vA(t)

vB(t)

+

+

θ̂A(t)

v̂B(t)

v̂A(t)

DecorrelatorC

μC
v̂C(t)

ω̂B(t), ÂB(t), ϑ̂B(t)

ω̂A(t), ÂA(t), ϑ̂A(t)eA,B(t)v(t)

−

−

+

δ̂i(t), i ∈ {A,B} is given by
˙̂
δi(t) =

˙̂
δi (âi(t), ĉi(t)) = −

(
ĉi(t)

Â2
i (t)

˙̂ai(t)− âi(t)

Â2
i (t)

˙̂ci(t)

)
.

(6)
Finally, the dynamics of the decorrelator is described by⎧⎨

⎩
˙̂aC(t)=λ sin

(
θ̂C(t)

)(
v̂B(t)− v̂C(t)

)
˙̂cC(t)=λ cos

(
θ̂C(t)

)(
v̂B(t)− v̂C(t)

)
.

(7)

Note that the decorrelator inherits the instantaneous phase
from the FAFA (that is, θ̂C(t) = θ̂A(t)). The phase inher-
itance also implies that the signal generated by the decor-
relator has fundamental frequency ω̂C(t) = ω̂A(t), when
˙̂aC(t) = 0 and ˙̂cC(t) = 0.

By performing a stability analysis based on averaging, we
will show that the manifolds ΩA,1,B,2 and ΩA,2,B,1 contain
stable equilibria for the estimator.

III. STABILITY ANALYSIS

Given the true parameters of the sinusoidal terms, namely
A1, ω1, ϑ2 and A2, ω2, ϑ1, let us consider an admissi-
ble target 10-plet (aA, cA, φA, ωA, aB, cB, φB, ωB, 0, 0) ∈
ΩA,1,B,2. Let us introduce the error variables ãA(t) �
âA(t) − a1, ãB(t) � âB(t) − a2,c̃A(t) � ĉA(t) − c1,
c̃B(t) � ĉB(t) − c2, ω̃A(t) � ω̂A(t) − ω1, ω̃B(t) �
ω̂B(t) − ω2, φ̃A(t) � φ̂A(t) − φ1, φ̃B(t) � φ̂B(t) − φ2,
ψ̃A(t) � −(φ̃1 + ω̃1t) = ω1t + φ1 − θ̂A(t), ψ̃B(t) �
−(φ̃2+ω̃2t) = ω2t+φ2−θ̂B(t) and let us set ãC(t) = âC(t),

c̃C(t) = ĉC(t). From

v(t)= a1 sin
(̂
θA(t) + ψ̃A(t)

)
+ c1 cos

(
θ̂A(t) + ψ̃A(t)

)
+a2 sin

(
θ̂B(t) + ψ̃B(t)

)
+ c2 cos

(
θ̂B(t) + ψ̃B(t)

)
=a1 sin

(
θ̂A(t)

)
cos

(
ψ̃A(t)

)
+a1 cos

(
θ̂A(t)

)
sin
(
ψ̃A(t)

)
+c1 cos

(̂
θA(t)

)
cos

(
ψ̃A(t)

)
−c1 sin

(
θ̂A(t)

)
sin
(
ψ̃A(t)

)
+a2 sin

(
θ̂B(t)

)
cos

(
ψ̃B(t)

)
+a2 cos

(
θ̂B(t)

)
sin
(
ψ̃B(t)

)
+c2 cos

(̂
θB(t)

)
cos

(
ψ̃B(t)

)
−c2 sin

(
θ̂B(t)

)
sin
(
ψ̃B(t)

)
(8)

it follows that the error dynamics for the overall system can
be expressed as

˙̃aA(t)=λ sin
(̂
θA(t)

){
−ãA(t) sin

(
θ̂A(t)

)
− c̃A(t) cos

(
θ̂A(t)

)
+μC ãC(t) sin

(
θ̂A(t)

)
+μC c̃C(t) cos

(
θ̂A(t)

)
+a1 sin

(
θ̂A(t)

)[
cos

(
ψ̃A(t)

)
−1
]
+a1 cos

(̂
θA(t)

)
sin
(
ψ̃A(t)

)
+c1 cos

(
θ̂A(t)

)[
cos

(
ψ̃A(t)

)
−1
]
−c1 sin

(
θ̂A(t)

)
sin

(
ψ̃A(t)

)
−ãB(t) sin

(̂
θB(t)

)
− c̃B(t) cos

(̂
θB(t)

)
+a2 sin

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
+aB cos

(̂
θB(t)

)
sin
(
ψ̃B(t)

)
+c2 cos

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
−c2 sin

(̂
θB(t)

)
sin
(
ψ̃B(t)

)}

˙̃cA(t)=λ cos
(
θ̂A(t)

){
...

}
˙̃
ψA(t)= −ω̃A(t)− μθ

˙̂
δA(t)

˙̃ωA(t)= μω
˙̂
δA(t)
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˙̃aB(t)=λ sin
(̂
θB(t)

){
−ãA(t) sin

(̂
θA(t)

)
− c̃A(t) cos

(
θ̂A(t)

)
−μc ãC(t) sin

(
θ̂A(t)

)
−μC c̃C(t) cos

(
θ̂A(t)

)
+a1 sin

(
θ̂A(t)

)[
cos

(
ψ̃A(t)

)
−1
]
+a1 cos

(̂
θA(t)

)
sin
(
ψ̃A(t)

)
+c1 cos

(
θ̂A(t)

)[
cos

(
ψ̃A(t)

)
−1
]
−c1 sin

(
θ̂A(t)

)
sin

(
ψ̃A(t)

)
−ãB(t) sin

(̂
θB(t)

)
− c̃B(t) cos

(̂
θB(t)

)
+a2 sin

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
+a2 cos

(
θ̂B(t)

)
sin
(
ψ̃B(t)

)
+c2 cos

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
−c2 sin

(̂
θB(t)

)
sin
(
ψ̃B(t)

)}

˙̃cB(t)=λ cos
(
θ̂B(t)

){
...

}
˙̃
ψB(t)= −ω̃B(t)− μθ

˙̂
δB(t)

˙̃ωB(t)= μω
˙̂
δB(t)

˙̃aC(t)=λsin
(
θ̂A(t)

){
− ãB(t) sin

(
θ̂B(t)

)
− c̃B(t) cos

(̂
θB(t)

)
+a2 sin

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
+a2 cos

(
θ̂B(t)

)
sin
(
ψ̃B(t)

)
+c2 cos

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
−c2 sin

(̂
θB(t)

)
sin
(
ψ̃B(t)

)
−ãC(t) sin(θ̂A(t)) − c̃C(t) cos(θ̂A(t))

}

˙̃cC(t)=λcos
(
θ̂A(t)

){
− ãB(t) sin

(̂
θB(t)

)
− c̃B(t) cos

(
θ̂B(t)

)
+a2 sin

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
+a2 cos

(
θ̂B(t)

)
sin
(
ψ̃B(t)

)
+c2 cos

(
θ̂B(t)

)[
cos

(
ψ̃B(t)

)
−1
]
−c2 sin

(̂
θB(t)

)
sin
(
ψ̃B(t)

)
−ãC(t) sin(θ̂A(t)) − c̃C(t) cos(θ̂A(t))

}
(9)

with θ̂A(t) = ω1t+ φ1 − ψ̃A(t), θ̂B(t) = ω2t+ φ2 − ψ̃B(t)
and where the bracketed expressions {...} in the 2-nd and
6-th differential equations have been used to compact the
notation.

Now, a two-time scale averaging analysis can be per-
formed to analyze the behavior of the estimator. Given a
time-variant differential system in the form

ẋ(t) = λf(t, x(t)), x(0) = x0, (10)

the averaging analysis relates the properties of the solutions
of (10) to the solutions of the so-called “averaged” system

ẋ(t) = λf(x(t)), x(0) = x0, (11)

f(z) � lim
T→∞

1

T

T∫
0

f(τ, z) dτ. (12)

As widely discussed in literature (see e.g., [19], [20] and
[21]), the stability properties of the original system, for small
values of λ, can be inferred from those of the averaged
counterpart. However, since in our setup the phases θ̂A(t)
and θ̂B(t) undergo an on-line adaptation, they do not evolve
linearly in time, and their trends depend on the particular

initial frequency estimation error. The stability analysis in
this situation can be performed by advocating two-time scale
averaging arguments. Indeed, considering the dynamics of
ψ̃A(t) and ψ̃B(t), we can write

θ̂A(t) = ω1t+ φ1 + ψ̃A(0)−
t∫

0

(
ω̃A(τ) + μθ

˙̂
δA

)
dτ

θ̂B(t) = ω2t+ φ2 + ψ̃B(0)−
t∫

0

(
ω̃B(τ) + μθ

˙̂
δB

)
dτ

For a suitably small value of λ, it is possible to take ˙̂
δA ≈ 0

and ω̃A(τ) frozen to the initial value, that is ω̃A(τ) ≈
ω̃A(0), ∀τ ∈ [0,+∞]. Nonetheless, these positions (which
hold as approximations for arbitrary initial conditions) are
exact in correspondence of the equilibria, and thus they can
be exploited to analyze the local stability properties of the
averaged system. Under the two-time scales separation as-
sumption, we will make use of the following approximations:

θ̂A(t) ≈ (ω1 − ω̃A(0))t+ φ1 + ψ̃A(0)

= ω̂A(0) t+ φ1 + ψ̃A(0)

θ̂B(t) ≈ (ω2 − ω̃B(0))t+ φ2 + ψ̃B(0)

= ω̂B(0) t+ φ2 + ψ̃B(0)

(13)

for local stability characterization. Now, for the equilibrium
under concern, let us consider ω̂A(0) = ω1 and ω̂B(0) = ω2

in (13). By using (12) and (13), the two-time scales averaged
dynamics of the estimation errors can be written as

ȧA(t)=λ
{
−aA(t) +a1

[
cos

(
ψA(t)

)−1
]
−c1 sin

(
ψA(t)

)
−μc aC(t)

}
ċA(t)=λ

{
− cA(t)+a1 sin

(
ψA(t)

)
+c1

[
cos

(
ψA(t)

)−1
]

−μc cC(t)
}

ψ̇A(t)=−ωA(t)− μθ δ̇A(t)

ω̇A(t)=μω δ̇A(t)

ȧB(t)=λ
{
−aB(t) +a2

[
cos

(
ψB(t)

)−1
]
−c2 sin

(
ψB(t)

)}
ċB(t)=λ

{
− cB(t)+a2 sin

(
ψB(t)

)
+c2

[
cos

(
ψB(t)

)−1
]}

ψ̇B(t)=−ωB(t)− μθ δ̇B(t)

ω̇B(t)=μω δ̇B(t)

and
ȧC(t) = −λaC(t)
ċA(t) = −λ cC(t)
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where we have used the notation

δ̇A(t) = δ̇
(
aA(t), cA(t), ψA(t)

)
=

−λ
(a1+aA(t))2+(c1+cA(t))2

×{
(cA(t)+c1)

[
−aA(t)− μCaC(t)+a1

(
cos

(
ψA(t)

)−1
)

−c1 sin
(
ψA(t)

)]
−(aA(t)+a1)

[
−cA(t)− μCcC(t) +a1 sin

(
ψA(t)

)
+c1

(
cos

(
ψA(t)

)−1
)]}

=
−λ

(a1+aA(t))2+(c1+cA(t))2
×{

− (a21+c
2
1 + aA(t)a1+cA(t)c1) sin

(
ψA(t)

)
+(aA(t)+a1)(cA(t)−μC aC(t))
−(cA(t)+c1)(aA(t)−μC cC(t))

+(cA(t)a1−aA(t)c1)
[
cos

(
ψA(t)

)−1
]}

and

δ̇B(t) = δ̇
(
aB(t), cB(t), ψB(t)

)
=

−λ
(a2+aB(t))2+(c2+cB(t))2

×{
− (a22+c

2
2 + aB(t)a2+cB(t)c2) sin

(
ψB(t)

)
+(aB(t)+a2)cB(t)−(cB(t)+c2)aB(t)

+(cB(t)a2−aB(t)c2)
[
cos

(
ψB(t)

)−1
]}

Finally, to analyze the local stability of the equilibrium
(ΩA,1,B,2) let us consider the linearized equations for small
perturbations:

ȧA(t) = λ
(
−aA(t)−c2ψA(t)− μCaC(t)

)
ċA(t) = λ

(
− cA(t)+ a2ψA(t)− μCcC(t)

)
ψ̇A(t) = −ωA(t)− λμθψA(t)

−λμθ

(
− c1
a21 + c21

aA(t) +
a1

a21 + c21
cA(t)

)

−λμθμC

(
− a1
a21 + c21

aC(t) +
c1

a21 + c21
cC(t)

)

ω̇A(t) = λμω

(
− c1
a21 + c21

aA(t) +
a1

a21 + c21
cA(t) + ψA(t)

)

+λμωμC

(
− a1
a21 + c21

aC(t) +
c1

a21 + c21
cC(t)

)

ȧB(t) = λ
(
−aB(t)−c2ψB(t)

)
ċB(t) = λ

(
− cB(t)+ a2ψB(t)

)
ψ̇B(t) = −ωB(t)− λμθψB(t)

−λμθ

(
− c2
a22 + c22

aB(t) +
a2

a22 + c22
cB(t)

)

ω̇B(t) = λμω

(
− c2
a22 + c22

aB(t) +
a2

a22 + c22
cB(t) + ψB(t)

)
ȧC(t) =−λaC(t)
ċC(t) =−λ cC(t).
The dynamic matrix of the system for assigned a1, c1, a2, c2
is then given by the matrix MΩA,1,B,2 shown in Figure III.

The local exponential stability of the estimate is guar-
anteed if the roots of the characteristic polynominal of

MΩA,1,B,2 have negative real parts. A sufficient condition for
stability is therefore that λ, μθ and μω are chosen such that
the coefficients of the polynomial satisfy the usual Routh-
Hurwitz conditions. The local exponential stability of the set
ΩA,2,B,1 can also be established by proceeding along the
same lines of the proof above.

IV. EXAMPLE

The effectiveness of the proposed two-frequency detection
approach is confirmed by the provided example, in which the
following signal has been used to test the devised quadrature-
based method:

v(t) = A1 sin(ω1t+ ϑ1) +A2 sin(ω3t+ ϑ2), (14)

with ω1 = 2π60, A1 = 110, ϑ1 = 0, ω2 = 2π61, A2 = 12,
ϑ2 = π/9 for t ∈ [0, 250). At time t = 250 the frequency and
the amplitude of the second sinusoidal subsume a stepwise
change: ω2 = 2π40, A2 = 24. The two filters FAFA and
FAFA have been initialized with the same guessed frequency
ω̂A(0) = ω̂B(0) = 2π60 and with the following parameter
set: âA = 110, ĉA = 0, θ̂A = 0, âB = 0, ĉB = 0, θ̂B = 0.
The decorrelator has been initialized with âC = ĉC = 0,
while the tuning parameters have been set to λ = 0.1 μω =
12 μθ = 1e−4 and μC = 0.75. The results of the simulation
are shown in Figures 3 and 4, where the successful detection
of the two sinusoidal components can be observed. Due
to the perturbation introduced by the stepwise change on
the frequency and amplitude of the second signal, the first
sinusoidal term, detected previously by the FAFA, is detected
by FAFB after the transitory. The simulations have confirmed
that changes from one stable configuration (ΩA,1,B,2) to the
other (ΩB,1,A,2) may occur only due to sudden external
perturbation, while the detection is not affected by beating
phenomena after complete convergence.

Fig. 3 Estimated (solid-blu / FAFA)-(dashed-green/ FAFB)
and true (dotted-back) time-evolution of fundamental fre-
quencies for the two sinusoidal terms. The smaller-amplitude
sinusoidal term changes stepwise its fundamental frequency
ω2 and amplitude A2 at time instant t = 250 s. After
the frequency change, the estimator finds a new stable
equilibrium.
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Fig. 2 Dynamic matrix of the error system (with respect to an arbitrary equilibrium in the set ΩA,1,B,2) linearized in the
origin. The local stability can be achieved by a suitable choice of λ, μθ, μω, μc, for any value of the unknown parameters.

MΩA,1,B,2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ 0 −λc1 0 0 0 0 0 −λμC 0
0 −λ λa1 0 0 0 0 0 0 −λμC

λμθc1
a21 + c21

−λμθa1
a21 + c21

−λμθ −1 0 0 0 0
−λμθμCa1
a21 + c21

λμθμCc1
a21 + c21−λμωc1

a21 + c21

λμωa1
a21 + c21

λμω 0 0 0 0 0
−λμωμCa1
a21 + c21

λμωμCc1
a21 + c21

0 0 0 0 −λ 0 −λc2 0 0 0
0 0 0 0 0 −λ λa2 0 0 0

0 0 0 0
λμθc2
a22 + c22

−λμθa2
a22 + c22

−λμθ −1 0 0

0 0 0 0
−λμθc2
a22 + c22

λμθa2
a22 + c22

λμω 0 0 0

0 0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 0 0 0 −λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4 Estimated(solid-blu / FAFA)-(dashed-green/ FAFB)
and true (dotted-back) time-evolution of amplitudes for the
two sinusoidal components.
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V. CONCLUSION
In the present work, a novel method for detecting the

amplitude, the phase and the frequency of a couple of sinu-
soidal signals has been presented. The devised technique is
based on the interconnection of quadrature-based frequency-
adaptive filters. The stability properties of the scheme have
been characterized by a two-time scale averaging analysis.
Further research will be devoted to address the frequency-

detection in presence of a constant bias on the incoming
signal and to extend the method to the genericN -frequencies
case.
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