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Abstract— This paper has two main contributions. First, it
presents a simple area-wide emission (or dispersion) model for
a freeway traffic networks. The model takes the variation of
the wind speed and direction into account. Second, it presents
a nonlinear parameterized MPC controller for freeway traffic
systems. Next, the proposed model and control approach are
illustrated with a simulation-based case study. The simulation
results show improved traffic performance with respect to the
uncontrolled system.

I. INTRODUCTION

Frequent and sustained traffic jams are day-to-day phe-
nomena many drivers encounter. Traffic jam related health
problems and economic losses are impacting most developed
countries. Despite the development of complex infrastruc-
tures and the accumulation of new knowledge and theory
of traffic system, problems related to traffic jams are still
escalating from time to time. Now, the introduction of
intelligent transportation systems (ITS) is considered to be
one of the most promising solutions in reducing the effects
of traffic jams.

Another issue related to traffic systems is their impact on
the environment. Due to the increase in fuel consumption
and in the frequency and duration of traffic congestion as
a consequence of increasing numbers of vehicles in the
fleet, the emissions of road traffic systems have increased
enormously. For example in most European cities road traffic
emissions account for 40% volatile organic compounds, more
than 70% of NOx, and over 90% of CO [15]. Moreover, the
relationship between dispersion and emissions of the traffic
flow is complicated. Reduction of emissions may not reduce
dispersion of emissions on specific areas near the traffic
road. For example, the emission levels in areas located near
freeways could be affected by the direction and the speed of
the local wind.

Therefore, in order to improve the traffic flow while still
guaranteeing reduced area-wide emissions, one would need
to use an ITS system that controls the traffic flow in such a
way that desired objectives are attained. One such solution
could be the use of a control approach that adapts to the
variation of the traffic system and that handles the various
physical and operational constraints. In this regard, model
predictive control (MPC) and other optimal control methods
have been proposed in the literature [3], [8], [10]. Many
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researchers have shown the potential of MPC control strate-
gies in improving the traffic systems performance. However,
despite its success in simulation-based research [3], [8], [17],
the MPC control approach did not appeal to practitioners due
to several reasons, the most important one of which is the
intensive computation time.

In this paper, we present a special class of MPC con-
trollers that results in lower computation times. We use
parameterized MPC traffic controllers that are based on the
parameterization of the traffic control measures. We further
provide an area-wide emission (dispersion) model that takes
the variation of the wind speed and wind direction into
account. We define a multi-objective cost function based
on a weighted-sum approach. The control approach and the
dispersion model are illustrated with a case study.

In the next section we discuss the traffic flow and emission
models considered in this paper. In Section III we present
a simple area-wide dispersion model, which can be used
for on-line prediction or estimation of the dispersion lev-
els. Section IV presents the proposed control approach. In
Section V we illustrate the proposed control approach and
the dispersion model on a case study. Finally, we conclude
the paper in Section VI.

II. TRAFFIC FLOW AND EMISSION MODELING

Since the proposed control approach requires models to
predict the states and to design the control measures of
the traffic system, in this section we discuss the flow and
emission models employed for these purposes.

A. METANET flow model

In order to make fast on-line optimizations, we use
a macroscopic traffic flow model. In particular, we se-
lect the well known macroscopic traffic flow model called
METANET [12]. METANET is a second-order traffic flow
model. The model describes the evolution of the traffic
variables, viz. the density, the flow, and the space-mean
speed, as a system of nonlinear difference equations. The
METANET model is discrete both in time and space. Let
T be the simulation step size and k be the simulation step
counter. In the METANET model, a node is placed at a
point where there is a change in the geometry of a freeway
(such as a lane drop, an on/off-ramp, or a bifurcation). A
homogeneous freeway that connects such nodes is called a
link. Links are further divided into segments of length 500-
1000 m [12]. The equations that describe the traffic dynamics
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in segment i of link m are given by [12], [8]

qm,i(k) = λmρm,i(k)vm,i(k) (1)

ρm,i(k+1) = ρm,i(k)+
T

Lmλm
[qm,i−1(k)−qm,i(k)] (2)

vm,i(k+1) = vm,i(k)+
T
τ
[V [ρm,i(k)]− vm,i(k)]

+
T vm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
T η [ρm,i+1(k)−ρm,i(k)]

τLm (ρm,i(k)+κ)
(3)

V [ρm,i(k)] = min
{
(αm +1)um,i(k),

vfree,m exp
[
− 1

am

(
ρm,i(k)
ρcr,m

)am]}
(4)

where qm,i(k), ρm,i(k), and vm,i(k), and denote respectively
the flow, density, and space-mean speed of segment i of link
m at the simulation step k, um,i(k) denotes the variable speed
limit of segment i of link m at the simulation step k and
it equal to the freeflow speed vfree,m if there is no control,
Lm denotes the length of the segments of link m, and λm
denotes the number of lanes of link m. Furthermore, ρcr,m
is the critical density, τ a time constant, η the anticipation
constant, am the parameter of the fundamental diagram, αm
the drivers’ compliance factor, and κ is a model parameter.

For origins (such as on-ramps and mainstream entry
points) a queue model is used. The dynamics of the queue
length wo at origin o are modeled as

wo(k+1) = wo(k)+T (do(k)−qo(k)) (5)

where do and qo denote respectively the demand and outflow
of the origin o. The outflow qo is given by

qo(k) = min
[

do(k)+
wo(k)

T
, ro(k)Co,

Co

(
ρjam,m−ρm,1(k)

ρjam,m−ρcr,m

)]
, (6)

with ro(k) the ramp metering rate (where ro ∈ [0 1] for a
metered on-ramp and ro(k) = 1 for an unmetered on-ramp
or mainstream origin), ρjam,m the maximum density of link
m, and Co the capacity of the origin o.

B. VT-macro emission model

Since the outputs of traffic flow models are the inputs of
emission models, the choice of traffic flow models dictates
on the type of emission and fuel consumption that has to be
used. So, we chose VT-macro [17] as emission model.

The VT-macro model is a macroscopic emission and fuel
consumption model that we have in particular developed
for the METANET traffic flow model. The model takes the
dynamics of the average space-mean speed of the traffic flow
model into account (i.e. acceleration effects are included).

Mathematically, the VT-macro model can be described as

Jy,m,i(k) = fy,m,i(vm,i(k),vm,i(k+1),vm,i+1(k+1),ρm,i(k))
(7)

where Jy,m,i(k)[kg/s] is the estimate or prediction of the
emission variable y∈Y = {CO, NOx, HC, CO2} of segment
i of link m during the time period [kT,(k+1)T ] and f is a
nonlinear mapping (for detailed discussion we refer to [17]).

III. DISPERSION MODELING

We define Vw(k) as the wind speed in the time interval
[kT,(k + 1)T ] and ϕ(k) as the direction of the wind in
the same time interval. Here we model the dispersion of
traffic emissions to a neighborhood (or target zone) near to a
traffic freeway. The emissions will be considered to emanate
from the center points of the segments of the freeway1. The
emission particles will move due to wind and dispersion
effects and we will capture the trajectory of the dispersion of
the emissions by wavefronts moving orthogonal to the wind
direction and dispersion cones.

Fig. 1(a) shows the propagation of emissions of vehicles
from segment i of a link2 m at time step k. The emissions
propagate with a line wavefront in the direction of the wind.
Since the emissions from vehicles are relatively more dense
and have a higher temperature than the air particles, the
emitted gases also expand sideways. The expansion of the
emissions is inversely related to the wind speed [2]. We
model this phenomenon with a divergence angle β that
depends only on k. At time step k it represents the divergence
angle that corresponds to half of the angle of the dispersion
cone (see Fig. 1). Then, it is given by the expression

β (k) =
βmax

1+β0Vw(k)
(8)

where βmax ∈ [0, π] is the maximum angle at which the
emission is dispersed and β0 is a model parameter.

Here we approximate wavefronts emanating from segment
i by lines with pl,i left and bottom-most point and pr,i right
and top-most point. Each point of the line between pl,i(k)
and pr,i(k) results in a small cone due to wind and dispersion
and we determine the pl,i(k+1) as the left and bottom-most
point of all cones and the pr,i(k+1) as the right and top-most
point of all cones. Any emissions at a point of the wavefront
formed by a line segment joining the points pl,i(k) and pr,i(k)
diverge with an angle equal to β (k) both to the left and to
the right of the wind direction (e.g. see the points pl,i(k) and
pr,i(k) in Fig. 1(b)).

Now let us assume that a so called puff of emitted gases
from segment i of the freeway in Fig. 1(a) has arrived at
the wavefront formed by the line segment joining the points
pl,i(k− 1) and pr,i(k− 1) at time step k− 1. The emissions
will further move to the next wavefront formed by the line
segment joining the points pl,i(k) and pr,i(k) at wind speed
Vw(k− 1) during the time period [(k− 1)T, kT ]. In general
let us assume that the wind speed or direction has changed
(see Vw(k) and ϕ(k) in Fig. 1(b)) at time step k. This means

1This point modeling approach can also be extended to a line modeling
approach, where the emissions are considered to emanate from a center line
parallel and equal to the segments.

2For brevity, the link index m is not used in the derivations presented in
this section.
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(b) Dispersion at time instant (k+1)T

Fig. 1. Schematic representation of horizontal dispersion of vehicle
emissions with varying wind speed and angle.

that the dispersion speed and direction at every point of
the wavefront will change. Then, the evolution of the end
points of the wavefronts pl,i(k+1) = (xl,i(k+1),yl,i(k+1))
and pr,i(k+1) = (xr,i(k+1),yr,i(k+1)) is then respectively
modeled as

xl,i(k+1) = xl,i(k)−TVw(k)
cos(ϕ(k)−β (k))

cos(β (k))
,

yl,i(k+1) = yl,i(k)+TVw(k)
sin(ϕ(k)−β (k))

cos(β (k))
,

xr,i(k+1) = xr,i(k)−TVw(k)
cos(ϕ(k)+β (k))

cos(β (k))
,

yr,i(k+1) = yr,i(k)+TVw(k)
sin(ϕ(k)+β (k))

cos(β (k))

for cos(β (k)) 6= 0.
Consider the wavefront formed by pl,i(k) and pr,i(k) and

let Ey,i(pl,i(k), pr,i(k)) be the corresponding emission level
for emission y ∈ Y . Then, the emission level for the next
wavefront is

Ey,i(pl,i(k+1), pr,i(k+1)) = γEy,i(pl,i(k), pr,i(k)) (9)

where 0 < γ ≤ 1 is a factor that characterizes the vertical
dispersion.

Then the area that is subject to the emission Ey,i(pl,i(k+
1), pr,i(k+ 1)) during the time period [kT, (k+ 1)T ] is the
tetragon formed by the points pl,i(k), pl,i(k + 1), pr,i(k +
1), and pr,i(k). The area of this tetragon is denoted as
Ai(pl,i(k), pl,i(k+1), pr,i(k+1), pr,i(k)). The areal-density of
the emission in the time period is then given by

Ead,y,i(k+1) =
Ey,i(pl,i(k+1), pr,i(k+1))

Ai(pl,i(k), pl,i(k+1), pr,i(k+1), pr,i(k))
.

(10)

Let the area of the target zone be denoted by At. The area
of the intersection of the target zone and the tetragon formed
by the emission wavefronts is denoted as Aint,i(k). We can
then compute the amount of emissions dispersed to the target
area from segment i of the link as

Et,y,i(k+1) = Aint,i(k)Ead,y,i(k+1). (11)

As wavefronts are emanating from segment i at each time
step, we have to consider the sum of Et,y,i(k + 1) over all
wavefronts emitted in the past that intersect with the target
zone. Let this total emission level be denoted by Etotal,y,i(k+
1). Thus the emission density at the target zone over the time
period [kT,(k+1)T ] due to link m will be

JD,y,m(k) =
1
At

∑
i∈Sm

Etotal,y,i(k) (12)

where Sm is the set of all segments in link m.
The total emission density at the target zone over the time

period [kT,(k + 1)T ] is then the sum of all the emission
densities of all the links over the time period [kT,(k+1)T ],
and it is described as

JD,t,y(k) = ∑
m∈L

JD,y,m(k) (13)

where L is the set of all links in the traffic network.
In the following section we presented the control approach

we propose to reduce the emission levels in the target area.

IV. PARAMETERIZED MPC

The idea of model predictive control (MPC) [14] is based
on two concepts: prediction and moving horizon. The MPC
controller uses the current state of a system as initial condi-
tion and the model of the system to predict the evolution of
the system state with respect to the variation of the control
measures. Based on the predicted states of the system, the
controller determines the value a given cost function. The
controller then optimizes the sequence of control inputs in
such a way that the cost function is minimized over the
predicted horizon. However, only the first control input of
the optimal sequence is applied to the system until the next
control time step, after which the controller repeats the above
process all over again using a moving horizon principle.

The main advantage of MPC is its capability to han-
dle nonlinear models, constraints, and multi-objective cost
functions. In the traffic control research world, MPC has
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proven to improve the road network performance [3], [8],
[18]. However, as a consequence of its high computation
demands, the MPC controller is not yet implemented in
practice. In this regard many papers (e.g. [7], [9], [11], [16])
dealt with the reduction of the computation time of MPC.
But, none has done in a sufficiently satisfactory way to appeal
to practitioners traffic systems.

One way to reduce the computation time of the MPC
controller is to parametrize the control inputs with a set of
few parameters [4], [9], [11], [16]. At every control time
step3 kc, the MPC controller then optimizes the parameters of
the control policy instead of the control inputs. Accordingly,
in the sequel we present two traffic control measures and
provide their parameterization with nonlinear state feedback
control policies. Note that the parameterization is just an
illustration of the control approach, but the control approach
is generic.

A. Control measures

We illustrate our approach using variable speed limits and
ramp metering as traffic control measures. In conventional
MPC, these two control measure would have been optimized
directly. Now, in the parameterized MPC controller the two
control measures are determined according to control laws.
The control policies (laws) of the variable speed limit and
on-ramp metering can be defined in different ways. Here we
just give only examples to illustrate our approach.

The control policy of the variable speed limit is defined
using two nonlinear functions. One function describes the
relative speed difference of a segment with respect to the
speed of a downstream segment. The second is defined as
the relative density difference of a segment with respect
to the density of downstream segment. In both functions
the relative difference between the current segment and the
downstream segment of the freeway is used. This is because
of the fact that drivers tend to adapt the speed of vehicles in
the downstream. Mathematically, these functions are given
by

f1,m(vm,i(kc),vm,i+1(kc)) =
vm,i+1(kc)− vm,i(kc)

vm,i+1(kc)+κv
, (14)

f2,m(ρm,i(kc),ρm,i+1(kc)) =
ρm,i+1(kc)−ρm,i(kc)

ρm,i+1(kc)+κρ

, (15)

where κv and κρ are model parameters introduced to prevent
division by 0.

Using these two functions, the control law that
parametrizes the variable speed limit is chosen to be

usl,m,i(kc + j+1) =θ0,mvfree,m +θ1,m f1,m(·)+θ2,m f2,m(·)
(16)

where j = 0,1, . . . ,Np − 1 and θ·,m are the control law
parameters.

3For the sake of simplicity we assume that the control step size Tc and
the simulation step size T are related by Tc = MT , for some positive integer
M. Therefore, at time instant t = kcTc = kT the control step counter kc is
an integer divisor of the simulation step counter k. They are then related by
k(kc) = Mkc.

The proposed parameterization has only 3 control parame-
ters (one could also consider varying θ·,m over the prediction
horizon) to be optimized in the parameterized MPC control
strategy. This means that the speed limit controller can
reduce the computation time if it is used with a freeway
link with more than three independent variable speed limits
(since there are at least 3×Np speed limit variables over the
prediction horizon in the conventional MPC).

Usually, the speed limits are constrained as Ll≤ usl,m,i(kc+
j+1)≤ Lu, where Ll and Lu are respectively the lower and
upper speed limits.

Using a similar reasoning as for (15), we define the
parameterization of the ramp metering controller to be

ur,m,i(kc + j+1) = ur,m,i(kc + j)

+θ3,m
ρcr,m−ρm,i(kc + j)

ρcr,m
(17)

where j = 0,1, . . . ,Np−1 and θ3,m is the control law param-
eter.

Similar to the speed limit control, the ramp metering rate
is constrainted 0≤ ur,m,i(kc +1)≤ 1.

B. Performance measure

As a performance measure of the parameterized MPC
controller we consider the following measure4:

J(kc) = ζ1
TTS(kc)

TTSn
+ζ2

TE(kc)

TEn
+ζ3

DL(kc)

DLn
+ζ4

∆(kc)

∆n
(18)

where ζn ≥ 0 for n = 1,2,3,4 are weighting coefficients,

TTS(kc) = T
MNp−1

∑
k=Mkc

(
∑

(m,i)∈Iall

λmLmρm,i(k)+ ∑
o∈Oall

wo(k)
)
,

TE(kc) = ∑
y∈Y

µy
TEy(kc)

TEy,n
, DL(kc) = ∑

y∈Y
µy

DLy(kc)

DLy,n
,

∆(kc) =
MNp−1

∑
k=Mkc

∑
s∈Sall

(
‖us(k)−us(k−1)‖2

2

+‖us(k)−us−1(k)‖2
2

)
,

with

TEy(kc) =
MNp−1

∑
k=Mkc

∑
(m,i)∈Iall

Jy,m,i(k),

DLy(kc) = ‖[JD,t,y(Mkc) ... JD,t,y(MNp−1)]>‖∞,

µy denoting the weights of the emissions y ∈ Y , and Iall
and Oall denoting respectively the set all segment-link pairs
and the set of all origins in the traffic network and Sall
denoting the set of all speed limits. Moreover, the nominal
values of the TTS, TE, TEy, DL, DLy, and ∆n are computed
by simulating the uncontrolled traffic system with all speed
limits set to vfree,m and all on-ramp metering set to 1.

4Parameterized MPC is generic as regards the choice of the performance
criteria, and so other objective functions could also be considered instead.
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Fig. 2. A 12 km freeway with 12 variable speed limits and one on-ramp.

C. Optimization method

One of the bottlenecks in MPC control approach is the
extensive optimization and the resulting computational re-
quirements. The parameterized MPC optimization problem
considered for this paper is nonlinear and nonconvex. Thus
a proper choice of an optimization technique has to be
made in order to obtain feasible optimal control values.
Owing to the nonconvex nature of the objective function,
global or multi-start local optimization methods are required.
Hence, multi-start sequential quadratic programming [13,
Section 5.3], pattern search [1], genetic algorithms [5], or
simulated annealing [6] can be used.

V. CASE STUDY

A. Freeway set up

In order to illustrate the proposed control approach and the
area-wide emission modeling we consider a case study with
a 12 km three-lane freeway stretch. The freeway is divided
into 12 equal segments with an on-ramp at the sixth segment
from the left (see Fig. 2) and each segment is provided with
a variable speed limit.

The freeway is subject to wind with speed and direction
given by

Vw(k) = 7+2sin(0.005πk+π/6)sin(0.01πk) (19)

ϕ(k) =
2π

5
+

π

4
cos(0.004πk) (20)

where the wind speed Vw(k) is expressed in m/s and the
wind direction (angle) ϕ(k) in radians. Since the dispersion is
assumed unobstructed, we consider the maximum divergence
of the dispersion to be βmax = π and we set β0 = 0.6.
Moreover, the case study is simulated for over an hour.

B. Performance measures

We consider a multi-objective performance criterion that
accommodates the emissions, dispersion of emissions, and
travel time. The multi-objective function is defined as (18).
In particular, we consider the objective function with µy = 1
and five different combinations of ζn for n = 1,2,3,4. In
all these combinations ζ4 = 0.01, because we want to give
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Fig. 3. Dispersion level for different control objectives.

less emphasis on the variation of the control inputs. The
combination of the remaining weights is tabulated in Table
I along with the results of the simulations. Moreover, the
nominal values of the performance criteria are determined
by simulating the uncontrolled traffic system with vfreem =
120 km/h.

C. Results and discussion

We simulate the system for uncontrolled and controlled
cases. In the controlled cases we consider different scenarios
by varying the weightings of the objective function given in
(18). The simulation results for these scenarios are tabulated
in Table I. The percentail change of in either of the TTS, TE,
or Total DL is described in comparison to the uncontrolled
case.

The evolution of the total dispersion level in the target
area is presented in Fig. 3. The figure depicts the total
dispersion for different control objectives. It shows that the
dispersion level becomes higher than the uncontrolled case
if the control objective is to reduce total time spent (TTS)
or the combination of TTS, total emissions (TE), and total
dispersion level (DL) (see also Table I).

Moreover, when the objective of the controller is set to
either reduce the total emissions or the dispersion level,
the travel time increases by more than 10% relative to the
uncontrolled case. However, both the total dispersion and
the total emission are then reduced respectively by more
than 33% and 47% as compared to the uncontrolled case.
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TABLE I
SIMULATION RESULTS FOR DIFFERENT SCENARIOS.

Scenarios
Performance measure

TTS TE Total DL
[veh.h] (g%) [kg] (g%) [mg/m2s] (g%)

Uncontrolled 1362.1 (–) 127.5 (–) 1.8 (–)
TTS 875.3 (-35.7) 145.4 (+14.0) 2.6 (+44.4)
TE 1590.3 (+16.8) 66.4 (-47.9) 1.2 (-33.3)
DL 1509.0 (+10.8) 70.8 (-44.5) 1.2 (-33.3)
5TE + DL 1532.0 (+12.5) 67.7 (-46.9) 1.3 (-27.8)
10TTS+TE+5DL 874.1 (-35.8) 120.3 (-5.6) 2.3 (+27.8)

The (g%) value denotes the percentail change of the variables with respect to the uncontrolled scenario (‘-’ means decrement and ‘+’ means increment).

An important point to notice here is the difference in TTS
when the objective of the controller is to reduce either TE
only or DL only. When the objective is the DL, the TTS
becomes less worst than when the objective of the controller
is to reduce TE (see Table I). This is because of the fact
that when the controller is focusing on the reduction of TE,
it will reduce the emissions caused by all vehicles over the
whole traffic network. However, when the intention of the
controller is to reduce the dispersion in the target area, it
only focuses on the reduction of the emissions caused by
the traffic networks that affect this particular target. Thus,
the traffic networks that do not emit emissions that affect
the target area could have better traffic flow.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a simple area-wide emission (disper-
sion of emission) model that includes time-varying wind
speed and wind direction. Moreover, we have presented non-
linear control policies that describe the parameterization of
the traffic control measures so that nonlinear parameterized
MPC can be used. We have demonstrated the proposed
control approach and the model with a simulation based
case study. We have considered different scenarios (both
uncontrolled and controlled cases) to illustrate the potential
of the parameterized MPC controller for traffic systems.

In our future work, we will extend the area-wide emission
model from a point model to a full 2D model. We will com-
pare the performance of the parameterized MPC controller
with conventional MPC and consider more complicated
case studies. Moreover, we will investigate the effect and
correlation of queue length formed by ramp metering and
the emissions dispersion.
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